Global Registry of Acute Coronary Events Score Underestimates Post-Acute Coronary Syndrome Mortality among Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Statistical Analysis
3. Results
3.1. Baseline Demographics
3.2. Predicted and Observed All-Cause Mortality by Cancer Status
3.3. Performance of GRACE Score by Cancer Status
3.4. Mortality by Revascularization Status for Low and High GRACE Score
3.5. Predicted and Observed Mortality by Cancer Characteristics among Those with Prior Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Armenian, S.H.; Xu, L.; Ky, B.; Sun, C.; Farol, L.T.; Pal, S.K.; Douglas, P.S.; Bhatia, S.; Chao, C. Cardiovascular Disease among Survivors of Adult-Onset Cancer: A Community-Based Retrospective Cohort Study. J. Clin. Oncol. 2016, 34, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Strongman, H.; Gadd, S.; Matthews, A.; Mansfield, K.E.; Stanway, S.; Lyon, A.R.; Dos-Santos-Silva, I.; Smeeth, L.; Bhaskaran, K. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: A population-based cohort study using multiple linked UK electronic health records databases. Lancet 2019, 394, 1041–1054. [Google Scholar] [CrossRef] [PubMed]
- Koo, C.Y.; Zheng, H.; Tan, L.L.; Foo, L.-L.; Seet, R.; Chong, J.-H.; Hausenloy, D.J.; Chng, W.-J.; Richards, A.M.; Lee, C.-H.; et al. Lipid profiles and outcomes of patients with prior cancer and subsequent myocardial infarction or stroke. Sci. Rep. 2021, 11, 21167. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; D’ascenzo, F.; Vadalà, P.; Wilton, S.B.; Noussan, P.; Colombo, F.; Roubín, S.R.; Abu Assi, E.; González-Juanatey, J.R.; Henriques, J.P.S.; et al. Prevalence and outcome of patients with cancer and acute coronary syndrome undergoing percutaneous coronary intervention: A BleeMACS substudy. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Wong, C.W.; Kontopantelis, E.; Barac, A.; Brown, S.-A.; Velagapudi, P.; Hilliard, A.A.; Bharadwaj, A.S.; Alraies, M.C.; Mohamed, M.; et al. Percutaneous coronary intervention in patients with cancer and readmissions within 90 days for acute myocardial infarction and bleeding in the USA. Eur. Heart J. 2021, 42, 1019–1034. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 78, e187–e285. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Fox, K.A.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; Van de Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A.; et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE). BMJ 2006, 333, 1091. [Google Scholar] [CrossRef]
- D’Ascenzo, F.; Biondi-Zoccai, G.; Moretti, C.; Bollati, M.; Omedè, P.; Sciuto, F.; Presutti, D.G.; Modena, M.G.; Gasparini, M.; Reed, M.J.; et al. TIMI, GRACE and alternative risk scores in Acute Coronary Syndromes: A meta-analysis of 40 derivation studies on 216,552 patients and of 42 validation studies on 31,625 patients. Contemp. Clin. Trials 2012, 33, 507–514. [Google Scholar] [CrossRef]
- Gevaert, S.A.; Halvorsen, S.; Sinnaeve, P.R.; Sambola, A.; Gulati, G.; Lancellotti, P.; Van Der Meer, P.; Lyon, A.R.; Farmakis, D.; Lee, G.; et al. Evaluation and management of cancer patients presenting with acute cardiovascular disease: A Consensus Document of the Acute CardioVascular Care (ACVC) association and the ESC council of Cardio-Oncology—Part 1: Acute coronary syndromes and acute pericardial diseases. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 947–959. [Google Scholar] [CrossRef]
- National Registry of Diseases Office. Available online: https://www.nrdo.gov.sg (accessed on 30 January 2022).
- Sim, H.W.; Zheng, H.; Richards, A.M.; Chen, R.W.; Sahlen, A.; Yeo, K.-K.; Tan, J.W.; Chua, T.; Tan, H.C.; Yeo, T.C.; et al. Beta-blockers and renin-angiotensin system inhibitors in acute myocardial infarction managed with inhospital coronary revascularization. Sci. Rep. 2020, 10, 15184. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.P. Monitoring cancer incidence and risk factors in Singapore. Ann. Acad. Med. Singap. 1990, 19, 133–138. [Google Scholar] [PubMed]
- Granger, C.B.; Goldberg, R.J.; Dabbous, O.; Pieper, K.S.; Eagle, K.A.; Cannon, C.P.; Van de Werf, F.; Avezum, A.; Goodman, S.G.; Flather, M.D.; et al. Predictors of Hospital Mortality in the Global Registry of Acute Coronary Events. Arch. Intern. Med. 2003, 163, 2345–2353. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.A.A.; FitzGerald, G.; Puymirat, E.; Huang, W.; Carruthers, K.; Simon, T.; Coste, P.; Monsegu, J.; Steg, P.G.; Danchin, N.; et al. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated GRACE risk score. BMJ Open 2014, 4, e004425. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Cautela, J.; Ederhy, S.; Damaj, G.L.; Salem, J.; Barlesi, F.; Farnault, L.; Charbonnier, A.; Mirabel, M.; Champiat, S.; et al. Cardiovascular Toxicity Related to Cancer Treatment: A Pragmatic Approach to the American and European Cardio-Oncology Guidelines. J. Am. Heart Assoc. 2020, 9, e018403. [Google Scholar] [CrossRef]
- Rao, V.U.; Reeves, D.J.; Chugh, A.R.; O’quinn, R.; Fradley, M.G.; Raghavendra, M.; Dent, S.; Barac, A.; Lenihan, D. Clinical Approach to Cardiovascular Toxicity of Oral Antineoplastic Agents: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2693–2716. [Google Scholar] [CrossRef]
- López-Sendón, J.; Álvarez-Ortega, C.; Zamora Auñon, P.; Buño Soto, A.; Lyon, A.R.; Farmakis, D.; Cardinale, D.; Canales Albendea, M.; Feliu Batlle, J.; Rodríguez Rodríguez, I.; et al. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry. Eur. Heart J. 2020, 41, 1720–1729. [Google Scholar] [CrossRef]
- Drobni, Z.D.; Alvi, R.M.; Taron, J.; Zafar, A.; Murphy, S.P.; Rambarat, P.K.; Mosarla, R.C.; Lee, C.; Zlotoff, D.A.; Raghu, V.K.; et al. Association between Immune Checkpoint Inhibitors with Cardiovascular Events and Atherosclerotic Plaque. Circulation 2020, 142, 2299–2311. [Google Scholar] [CrossRef]
- Mihalcea, D.; Memis, H.; Mihaila, S.; Vinereanu, D. Cardiovascular Toxicity Induced by Vascular Endothelial Growth Factor Inhibitors. Life 2023, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.D.; Cehic, D.A.; Morgia, M.; Bergrom, C.; Toohey, J.; Guerrero, P.A.; Ferencik, M.; Kikuchi, R.; Carver, J.R.; Zaha, V.G.; et al. Cardiovascular Manifestations from Therapeutic Radiation: A Multidisciplinary Expert Consensus Statement from the International Cardio-Oncology Society. JACC CardioOncol. 2021, 3, 360–380. [Google Scholar] [CrossRef]
- Potts, J.E.; Iliescu, C.A.; Mattei, J.C.L.; Martinez, S.C.; Holmvang, L.; Ludman, P.; De Belder, M.A.; Kwok, C.S.; Rashid, M.; Fischman, D.L.; et al. Percutaneous coronary intervention in cancer patients: A report of the prevalence and outcomes in the United States. Eur. Heart J. 2019, 40, 1790–1800. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.; Potts, J.; O Mohamed, M.; Parwani, P.; Swamy, P.; Lopez-Mattei, J.C.; Rashid, M.; Kwok, C.S.; Fischman, D.L.; Vassiliou, V.S.; et al. Acute myocardial infarction treatments and outcomes in 6.5 million patients with a current or historical diagnosis of cancer in the USA. Eur. Heart J. 2020, 41, 2183–2193. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.O.; Van Spall, H.G.C.; Kontopantelis, E.; Alkhouli, M.; Barac, A.; Elgendy, I.Y.; Khan, S.U.; Kwok, C.S.; Shoaib, A.; Bhatt, D.L.; et al. Effect of primary percutaneous coronary intervention on in-hospital outcomes among active cancer patients presenting with ST-elevation myocardial infarction: A propensity score matching analysis. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Witassek, F.; Erne, P.; Rickli, H.; Radovanovic, D. Treatment of patients with myocardial infarction depends on history of cancer. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 639–645. [Google Scholar] [CrossRef]
- Ueki, Y.; Vögeli, B.; Karagiannis, A.; Zanchin, T.; Zanchin, C.; Rhyner, D.; Otsuka, T.; Praz, F.; Siontis, G.C.; Moro, C.; et al. Ischemia and Bleeding in Cancer Patients Undergoing Percutaneous Coronary Intervention. JACC CardioOncol. 2019, 1, 145–155. [Google Scholar] [CrossRef]
- Guo, W.; Fan, X.; Lewis, B.R.; Johnson, M.P.; Rihal, C.S.; Lerman, A.; Herrmann, J. Cancer Patients Have a Higher Risk of Thrombotic and Ischemic Events after Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2021, 14, 1094–1105. [Google Scholar] [CrossRef]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar] [CrossRef]
- Iliescu, C.A.; Grines, C.L.; Herrmann, J.; Yang, E.H.; Cilingiroglu, M.; Charitakis, K.; Hakeem, A.; Toutouzas, K.P.; Leesar, M.A.; Marmagkiolis, K. SCAI Expert consensus statement: Evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the cardiological society of india, and sociedad Latino Americana de Cardiologıa intervencionista). Catheter. Cardiovasc. Interv. 2016, 87, E202–E223. [Google Scholar] [CrossRef]
- Chan, M.Y.; Shah, B.R.; Gao, F.; Sim, L.L.; Chua, T.; Tan, H.C.; Yeo, T.C.; Ong, H.Y.; Foo, D.; Goh, P.P.; et al. Recalibration of the Global Registry of Acute Coronary Events risk score in a multiethnic Asian population. Am. Heart J. 2011, 162, 291–299. [Google Scholar] [CrossRef] [PubMed]
Prior Cancer (n = 2471) | No Cancer (n = 22,058) | p-Value | |
---|---|---|---|
Age, median (IQR), years | 76 (67–84) | 64 (55–76) | <0.001 |
Male sex, n (%) | 1405 (56.9) | 15,999 (72.5) | <0.001 |
Ethnicity, n (%) | <0.001 | ||
Chinese | 1996 (80.8) | 14,188 (64.3) | |
Malay | 275 (11.1) | 4580 (20.8) | |
Indian | 182 (7.4) | 2981 (13.5) | |
Others | 18 (0.7) | 309 (1.4) | |
Body mass index, median (IQR), kg/m2 | 22.7 (19.8–25.5) | 24.4 (21.9–27.4) | <0.001 |
Cardiovascular risk factors | |||
Current smoker, n (%) | 273 (11.1) | 6978 (31.6) | <0.001 |
Hypertension, n (%) | 1883 (76.2) | 14,658 (66.5) | <0.001 |
Systolic blood pressure, median (IQR), mmHg | 131 (110–152) | 134 (115–155) | <0.001 |
Diastolic blood pressure, median (IQR), mmHg | 69 (59–80) | 75 (63–88) | <0.001 |
Hyperlipidaemia, n (%) | 1591 (64.4) | 14,978 (67.9) | <0.001 |
Total cholesterol, median (IQR), mmol/L | 4.16 (3.31–5.05) | 4.85 (4.00–5.74) | <0.001 |
HDL cholesterol, median (IQR), mmol/L | 1.10 (0.89–1.32) | 1.06 (0.90–1.26) | 0.12 |
LDL cholesterol, median (IQR), mmol/L | 2.45 (1.70–3.26) | 3.08 (2.31–3.90) | <0.001 |
Diabetes mellitus, n (%) | 1097 (44.4) | 9854 (44.7) | 0.79 |
HbA1c, median (IQR), % | 6.1 (5.6–7.2) | 6.1 (5.6–7.6) | 0.002 |
History of ACS or revascularization, n (%) | 344 (13.9) | 2785 (12.6) | 0.067 |
ACS characteristics | |||
STEMI, n (%) | 381 (18.7) | 7776 (37.9) | <0.001 |
Cardiac arrest, n (%) | 42 (1.7) | 526 (2.4) | 0.032 |
Killip class on arrival, n (%) | 0.003 | ||
I | 2106 (85.2) | 18,185 (82.4) | |
II | 165 (6.7) | 1595 (7.2) | |
III | 140 (5.7) | 1581 (7.2) | |
IV | 60 (2.4) | 697 (3.2) | |
Heart rate, median (IQR), beats per minute | 89 (74–105) | 82 (69–99) | <0.001 |
Creatinine, median (IQR), µmol/L | 101 (73–155) | 91 (75–124) | <0.001 |
Underwent revascularization, n (%) | 606 (24.5) | 12,714 (57.6) | <0.001 |
LVEF, median (IQR), % | 46 (35–59) | 48 (35–60) | 0.18 |
Medications at discharge | |||
Aspirin, n (%) | 1297 (68.3) | 17,293 (87.6) | <0.001 |
Beta-blocker, n (%) | 1304 (68.6) | 16,082 (81.4) | <0.001 |
ACE-I/ARB, n (%) | 795 (41.8) | 12,154 (61.5) | <0.001 |
Lipid lowering therapy, n (%) | 1467 (77.2) | 18,350 (92.9) | <0.001 |
Mortality | |||
Predicted risk for in-hospital mortality, median (IQR), % | 3.3 (1.7–7.0) | 2.1 (1.0–4.9) | <0.001 |
Observed in-hospital mortality, n (%) | 564 (22.8) | 2261 (10.3) | <0.001 |
Observed in-hospital cardiovascular mortality, n (%) | 129 (5.2) | 1057 (4.8) | 0.35 |
Predicted risk for 1-year mortality, median (IQR), % | 12.1 (5.7–23.8) | 5.9 (2.9–15.3) | <0.001 |
Observed 1-year mortality, n (%) | 1211 (49.0) | 4129 (18.7) | <0.001 |
Observed 1-year cardiovascular mortality, n (%) | 170 (6.9) | 1342 (6.1) | 0.12 |
(A) | |||
Among Those with Prior Cancer | |||
No Revascularization (n = 1865) | With Revascularization (n = 606) | p-Value | |
In-hospital all-cause mortality, n (%) | 516 (27.7) | 48 (7.9) | <0.001 |
In-hospital cardiovascular mortality, n (%) | 101 (5.4) | 28 (4.6) | 0.45 |
1-year all-cause mortality, n (%) | 1107 (59.4) | 104 (17.2) | <0.001 |
1-year cardiovascular mortality, n (%) | 136 (7.3) | 34 (5.6) | 0.16 |
Among those with prior cancer and GRACE score ≤ 140 | |||
No revascularization (n = 815) | With revascularization (n = 320) | p-value | |
In-hospital all-cause mortality, n (%) | 178 (21.8) | 4 (1.3) | <0.001 |
In-hospital cardiovascular mortality, n (%) | 31 (3.8) | 2 (0.6) | 0.003 |
1-year all-cause mortality, n (%) | 35 (33.0) | 4 (4.2) | <0.001 |
1-year cardiovascular mortality, n (%) | 3 (2.8) | 0 (0.0) | 0.25 |
Among those with prior cancer and GRACE score > 140 | |||
No revascularization (n = 1050) | With revascularization (n = 286) | p-value | |
In-hospital all-cause mortality, n (%) | 338 (32.2) | 44 (15.4) | <0.001 |
In-hospital cardiovascular mortality, n (%) | 70 (6.7) | 26 (9.1) | 0.16 |
1-year all-cause mortality, n (%) | 1072 (60.9) | 100 (19.6) | <0.001 |
1-year cardiovascular mortality, n (%) | 133 (7.6) | 34 (6.7) | 0.50 |
(B) | |||
Among Those with No Cancer | |||
No Revascularization (n = 9344) | With Revascularization (n = 12714) | pValue | |
In-hospital all-cause mortality, n (%) | 1672 (17.9) | 589 (4.6) | <0.001 |
In-hospital cardiovascular mortality, n (%) | 620 (6.6) | 437 (3.4) | <0.001 |
1-year all-cause mortality, n (%) | 3184 (34.1) | 945 (7.4) | <0.001 |
1-year cardiovascular mortality, n (%) | 835 (8.9) | 507 (4.0) | <0.001 |
Among those with no cancer and GRACE score ≤ 140 | |||
No revascularization (n = 4436) | With revascularization (n = 9213) | p-value | |
In-hospital all-cause mortality, n (%) | 381 (8.6) | 74 (0.8) | <0.001 |
In-hospital cardiovascular mortality, n (%) | 107 (2.4) | 37 (0.4) | <0.001 |
1-year all-cause mortality, n (%) | 87 (7.1) | 44 (0.9) | <0.001 |
1-year cardiovascular mortality, n (%) | 15 (1.2) | 13 (0.3) | <0.001 |
Among those with no cancer and GRACE score > 140 | |||
No revascularization (n = 4908) | With revascularization (n = 3501) | p-value | |
In-hospital all-cause mortality, n (%) | 1291 (26.3) | 515 (14.7) | <0.001 |
In-hospital cardiovascular mortality, n (%) | 513 (10.5) | 400 (11.4) | 0.16 |
1-year all-cause mortality, n (%) | 3097 (38.2) | 901 (11.3) | <0.001 |
1-year cardiovascular mortality, n (%) | 820 (10.1) | 494 (6.2) | <0.001 |
Predicted Risk in %, Median (IQR) | p Value | Observed Mortality, n (%) | p-Value | |
---|---|---|---|---|
* Cancer AJCC staging | 0.568 | <0.001 | ||
I | 3.5 (1.6–7.6) | 203 (54.1) | ||
II | 3.1 (1.7–7.1) | 207 (57.2) | ||
III | 3.0 (1.7–5.7) | 205 (65.1) | ||
IV | 2.9 (1.6–6.6) | 298 (83.9) | ||
† Duration from cancer diagnosis | <0.001 | <0.001 | ||
1st quartile | 2.8 (1.5–5.7) | 469 (75.9) | ||
2nd quartile | 3.4 (1.6–7.4) | 396 (64.1) | ||
3rd quartile | 3.6 (1.8–8.0) | 364 (58.9) | ||
4th quartile | 3.6 (1.8–7.2) | 324 (52.5) | ||
Cancer subtype | <0.001 | <0.001 | ||
Head and neck | 2.5 (1.2–4.4) | 83 (51.9) | ||
Upper gastrointestinal | 3.8 (2.1–6.9) | 75 (69.4) | ||
Hepatobiliary and pancreas | 3.0 (1.7–6.3) | 123 (82.6) | ||
Colorectal and anal | 3.5 (1.7–8.5) | 262 (59.0) | ||
Lung and pleura | 3.1 (1.7–6.0) | 140 (88.1) | ||
Thyroid | 3.0 (1.3–7.3) | 20 (50.0) | ||
Breast | 3.6 (1.8–7.1) | 156 (56.9) | ||
Gynecological | 2.9 (1.4–6.1) | 113 (52.6) | ||
Urological (Kidney and bladder) | 3.8 (1.7–9.8) | 102 (60.4) | ||
Prostate | 3.7 (1.8–7.6) | 139 (60.4) | ||
Hematological | 3.3 (1.7–6.1) | 163 (65.7) | ||
Skin (Melanoma and non-melanoma) | 4.5 (2.3–7.9) | 129 (67.2) | ||
‡ Cancer treatment | ||||
Surgery | 3.1 (1.6–6.7) | 0.075 | 510 (55.0) | <0.001 |
No surgery | 3.4 (1.7–7.0) | 723 (76.0) | ||
Radiotherapy | 2.6 (1.4–5.1) | <0.001 | 217 (62.5) | 0.18 |
No radiotherapy | 3.4 (1.7–7.3) | 1016 (66.3) | ||
Chemotherapy | 2.6 (1.4–5.0) | <0.001 | 342 (66.7) | 0.56 |
No chemotherapy | 3.5 (1.8–7.7) | 891 (65.2) | ||
Hormone therapy | 3.8 (1.9–8.1) | 0.006 | 175 (65.5) | 0.98 |
No hormone therapy | 3.1 (1.6–6.7) | 1058 (65.6) | ||
Biological therapy | 2.8 (1.6–5.2) | 0.159 | 58 (61.1) | 0.37 |
No biological therapy | 3.2 (1.7–7.0) | 1175 (65.9) |
Predicted Risk in %, Median (IQR) | p Value | Observed Mortality, n (%) | p-Value | |
---|---|---|---|---|
* Cancer AJCC staging | 0.021 | <0.001 | ||
I | 14.3 (5.8–26.3) | 143 (38.1) | ||
II | 10.9 (5.5–23.0) | 145 (40.1) | ||
III | 11.2 (5.6–21.1) | 171 (54.3) | ||
IV | 9.9 (5.1–19.5) | 266 (74.9) | ||
† Duration from cancer diagnosis | <0.001 | <0.001 | ||
1st quartile | 9.7 (5.3–19.5) | 411 (66.5) | ||
2nd quartile | 12.0 (5.6–23.5) | 311 (50.3) | ||
3rd quartile | 13.9 (6.1–27.4) | 251 (40.6) | ||
4th quartile | 13.0 (6.7–26.4) | 238 (38.6) | ||
Cancer subtype | <0.001 | <0.001 | ||
Head and neck | 7.0 (3.8–15.0) | 56 (35.0) | ||
Upper gastrointestinal | 12.6 (6.7–23.0) | 68 (63.0) | ||
Hepatobiliary and pancreas | 10.4 (5.6–21.3) | 109 (73.2) | ||
Colorectal and anal | 13.1 (6.3–29.2) | 197 (44.4) | ||
Lung and pleura | 10.6 (5.9–19.4) | 123 (77.4) | ||
Thyroid | 11.8 (4.1–31.1) | 13 (38.2) | ||
Breast | 12.4 (6.3–23.8) | 109 (39.8) | ||
Gynaecological | 10.9 (5.1–22.9) | 92 (42.8) | ||
Urological (Kidney and bladder) | 14.4 (6.4–31.7) | 81 (47.9) | ||
Prostate | 13.9 (7.3–28.3) | 100 (43.5) | ||
Haematological | 11.6 (4.8- 20.2) | 132 (53.2) | ||
Skin (Melanoma and non-melanoma) | 18.0 (9.5–31.4) | 91 (47.4) | ||
‡ Cancer treatment | ||||
Surgery | 11.1 (5.3–23.3) | 0.126 | 387 (41.7) | <0.001 |
No surgery | 12.4 (5.7–23.3) | 603 (63.4) | ||
Radiotherapy | 8.6 (4.4–18.0) | <0.001 | 175 (50.4) | 0.35 |
No radiotherapy | 12.6 (5.9–24.7) | 815 (53.2) | ||
Chemotherapy | 8.0 (4.4–16.9) | <0.001 | 281 (54.8) | 0.27 |
No chemotherapy | 13.2 (6.5–26.2) | 709 (51.9) | ||
Hormone therapy | 13.3 (6.6–28.3) | 0.016 | 134 (50.2) | 0.38 |
No hormone therapy | 11.3 (5.4–23.0) | 856 (53.1) | ||
Biological therapy | 7.4 (4.7–16.3) | 0.004 | 46 (48.4) | 0.39 |
No biological therapy | 11.9 (5.6–23.7) | 944 (52.9) |
In-Hospital Cardiovascular Mortality, n (%) | p Value | 1-Year Cardiovascular Mortality, n (%) | p-Value | |
---|---|---|---|---|
* Cancer AJCC staging | 0.175 | 0.45 | ||
I | 26 (6.9) | 29 (7.7) | ||
II | 16 (4.4) | 22 (6.1) | ||
III | 11 (3.5) | 17 (5.4) | ||
IV | 16 (4.5) | 18 (5.1) | ||
† Duration from cancer diagnosis | 0.050 | 0.025 | ||
1st quartile | 19 (3.1) | 26 (4.2) | ||
2nd quartile | 38 (6.2) | 49 (7.9) | ||
3rd quartile | 37 (6.0) | 49 (7.9) | ||
4th quartile | 35 (5.7) | 46 (7.5) | ||
‡ Cancer treatment | ||||
Radiotherapy | 17 (4.9) | 0.806 | 22 (6.3) | 0.73 |
No radiotherapy | 80 (5.2) | 105 (6.9) | ||
Chemotherapy | 23 (4.5) | 0.415 | 33 (6.4) | 0.73 |
No chemotherapy | 74 (5.4) | 94 (6.9) | ||
Hormone therapy | 12 (4.5) | 0.594 | 12 (4.5) | 0.11 |
No hormone therapy | 85 (5.3) | 115 (7.1) | ||
Biological therapy | 3 (3.2) | 0.365 | 3 (3.2) | 0.15 |
No biological therapy | 94 (5.3) | 124 (7.0) | ||
At least one of the four therapies | 40 (4.6) | 0.320 | 54 (6.2) | 0.40 |
None of the four therapies | 57 (5.6) | 73 (7.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, C.-Y.; Zheng, H.; Tan, L.-L.; Foo, L.-L.; Shih, E.; Hausenloy, D.J.; Soo, R.A.; Wong, A.S.; Richards, A.M.; Lee, C.-H.; et al. Global Registry of Acute Coronary Events Score Underestimates Post-Acute Coronary Syndrome Mortality among Cancer Patients. Cancers 2023, 15, 5222. https://doi.org/10.3390/cancers15215222
Koo C-Y, Zheng H, Tan L-L, Foo L-L, Shih E, Hausenloy DJ, Soo RA, Wong AS, Richards AM, Lee C-H, et al. Global Registry of Acute Coronary Events Score Underestimates Post-Acute Coronary Syndrome Mortality among Cancer Patients. Cancers. 2023; 15(21):5222. https://doi.org/10.3390/cancers15215222
Chicago/Turabian StyleKoo, Chieh-Yang, Huili Zheng, Li-Ling Tan, Ling-Li Foo, E’Ching Shih, Derek J. Hausenloy, Ross A. Soo, Alvin S. Wong, Arthur M. Richards, Chi-Hang Lee, and et al. 2023. "Global Registry of Acute Coronary Events Score Underestimates Post-Acute Coronary Syndrome Mortality among Cancer Patients" Cancers 15, no. 21: 5222. https://doi.org/10.3390/cancers15215222
APA StyleKoo, C. -Y., Zheng, H., Tan, L. -L., Foo, L. -L., Shih, E., Hausenloy, D. J., Soo, R. A., Wong, A. S., Richards, A. M., Lee, C. -H., & Chan, M. Y. (2023). Global Registry of Acute Coronary Events Score Underestimates Post-Acute Coronary Syndrome Mortality among Cancer Patients. Cancers, 15(21), 5222. https://doi.org/10.3390/cancers15215222