Immunotherapy Plus Locoregional Therapy Leading to Curative-Intent Hepatectomy in HCC: Proof of Concept Producing Durable Survival Benefits Detectable with Liquid Biopsy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HCC | hepatocellular carcinoma |
VEGF | vascular endothelial growth factor |
mRECIST | modified Response Evaluation Criteria in Solid Tumors |
AFP | alpha-fetoprotein |
ICI | immune checkpoint inhibitor |
PDL-1 | programmed death ligand 1 |
ctDNA | circulating tumor DNA |
TACE | transarterial chemoembolization |
TARE | transarterial radioembolization |
Y-90 | yttrium-90 |
SBRT | stereotactic body radiation therapy |
TMB | tumor mutational burden |
LRT | locoregional treatment |
OS | overall survival |
NED | no evidence of disease |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Koulouris, A.; Tsagkaris, C.; Spyrou, V.; Pappa, E.; Troullinou, A.; Nikolaou, M. Hepatocellular Carcinoma: An Overview of the Changing Landscape of Treatment Options. J. Hepatocell. Carcinoma 2021, 8, 387–401. [Google Scholar] [CrossRef]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Lahouel, K.; Lo, S.N.; Wang, Y.; Kosmider, S.; Wong, R.; Shapiro, J.; Lee, M.; Harris, S.; et al. Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. N. Engl. J. Med. 2022, 386, 2261–2272. [Google Scholar] [CrossRef]
- Kotani, D.; Oki, E.; Nakamura, Y.; Yukami, H.; Mishima, S.; Bando, H.; Shirasu, H.; Yamazaki, K.; Watanabe, J.; Kotaka, M.; et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 2023, 29, 127–134. [Google Scholar] [CrossRef]
- Jardim, D.L.; Goodman, A.; de Melo Gagliato, D.; Kurzrock, R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 2021, 39, 154–173. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Xie, C.; Wu, H.; Pan, T.; Zheng, X.; Yang, X.; Zhang, G.; Lian, Y.; Lin, J.; Peng, L. A novel panel based on immune infiltration and tumor mutational burden for prognostic prediction in hepatocellular carcinoma. Aging 2021, 13, 8563–8587. [Google Scholar] [CrossRef]
- Yin, L.; Zhou, L.; Xu, R. Identification of Tumor Mutation Burden and Immune Infiltrates in Hepatocellular Carcinoma Based on Multi-Omics Analysis. Front. Mol. Biosci. 2020, 7, 599142. [Google Scholar] [CrossRef]
- Gabbia, D.; De Martin, S. Tumor Mutational Burden for Predicting Prognosis and Therapy Outcome of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 3441. [Google Scholar] [CrossRef]
- Liu, Z.; Jiao, D.; Liu, L.; Zhou, X.; Yao, Y.; Li, Z.; Li, J.; Chen, J.; Lei, Q.; Han, X. Development and validation of a robust immune-related risk signature for hepatocellular carcinoma. Medicine 2021, 100, e24683. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Xin, H.Y.; Luo, C.B.; Li, J.; Zhou, Z.J.; Zou, J.X.; Zhou, S.L. Associations among the mutational landscape, immune microenvironment, and prognosis in Chinese patients with hepatocellular carcinoma. Cancer Immunol. Immunother. 2021, 70, 377–389. [Google Scholar] [CrossRef]
- Truong, P.; Rahal, A.; Kallail, K.J. Metastatic Hepatocellular Carcinoma Responsive to Pembrolizumab. Cureus 2016, 8, e631. [Google Scholar] [CrossRef]
- Tighe, S.P.; Iqbal, U.; Fernandes, C.T.; Ahmed, A. Treatment of inoperable hepatocellular carcinoma with immunotherapy. BMJ Case Rep. 2019, 12, e229744. [Google Scholar] [CrossRef]
- Chiang, C.-L.; Chan, A.C.Y.; Chiu, K.W.H.; Kong, F.-M. Combined Stereotactic Body Radiotherapy and Checkpoint Inhibition in Unresectable Hepatocellular Carcinoma: A Potential Synergistic Treatment Strategy. Front. Oncol. 2019, 9, 1157. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; He, X.; Xu, Y.; Wang, X. Complete response to the combination of Lenvatinib and Pembrolizumab in an advanced hepatocellular carcinoma patient: A case report. BMC Cancer 2019, 19, 1062. [Google Scholar] [CrossRef]
- Adcock, C.S.; Puneky, L.V.; Campbell, G.S. Favorable Response of Metastatic Hepatocellular Carcinoma to Treatment with Trans-arterial Radioembolization Followed by Sorafenib and Nivolumab. Cureus 2019, 11, e4083. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Kodama, K.; Morio, K.; Fujino, H.; et al. Complete response to pembrolizumab in advanced hepatocellular carcinoma with microsatellite instability. Clin. J. Gastroenterol. 2020, 13, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.G.; Li, H.B.; Yuan, Z.N.; Liu, W.; Yang, Q.; Cheng, Y.; Wang, W.J.; Wang, G.Y.; Li, H. Achievement of complete response to nivolumab in a patient with advanced sarcomatoid hepatocellular carcinoma: A case report. World J. Gastrointest. Oncol. 2020, 12, 1209–1215. [Google Scholar] [CrossRef]
- Bucalau, A.M.; Tancredi, I.; Pezzullo, M.; Covas, A.; Verset, G. Complete response of a hepatocellular carcinoma with complex macrovascular invasion after combined treatment with chemoembolization and immunotherapy: A case report. Acta Gastroenterol. Belg. 2021, 84, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.R.; Yan, Q.; Lin, H.M.; Shi, G.Z.; Cao, Y.; Zeng, H.; Liu, C.; Zhang, R. Anti-programmed cell death ligand 1-based immunotherapy in recurrent hepatocellular carcinoma with inferior vena cava tumor thrombus and metastasis: Three case reports. World J. Clin. Cases 2021, 9, 5988–5998. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Umoru, G.; Westhart, K.; Abudayyeh, A.; Saharia, A.; Ghobrial, R.M. Immunotherapy as a Neoadjuvant Therapy for a Patient with Hepatocellular Carcinoma in the Pretransplant Setting: A Case Report. Curr. Oncol. 2022, 29, 4267–4273. [Google Scholar] [CrossRef]
- Goto, Y.; Tajiri, K.; Tanaka, S.; Murayama, A.; Muraishi, N.; Hayashi, Y.; Yasuda, I. A ruptured sarcomatoid hepatocellular carcinoma treated with combined immunotherapy. Clin. J. Gastroenterol. 2023, 16, 244–249. [Google Scholar] [CrossRef]
- Zhong, K.; Xu, Y.; Cheng, Y.; Wen, Y.; Cai, L.; He, G.; Huang, H.; Fu, S.; Zhong, X.; Zheng, Y.; et al. Case report: Primary hepatocellular carcinoma with portal vein tumor thrombus characterized by active tumor immune microenvironment achieving a complete response following treatment of combined immunotherapy. Front. Immunol. 2022, 13, 999763. [Google Scholar] [CrossRef]
- Tsai, K.F.; Tsai, J.C.H.; Li, M.F.; Tan, J.W.H.; Chou, C.K.; Liang, H.L.; Chan, S.H. Complete Response in Metastatic Hepatocellular Carcinoma with Cardiac and Lung Involvement via Multimodality Treatment. Medicina 2021, 57, 849. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Gu, X.; Chen, L.; Wu, Q.; Li, H.; Bai, H.; Yang, J.; Qian, J. Case Report: Antiangiogenic Therapy Plus Immune Checkpoint Inhibitors Combined With Intratumoral Cryoablation for Hepatocellular Carcinoma. Front. Immunol. 2021, 12, 740790. [Google Scholar] [CrossRef]
- Swed, B.; Ryan, K.; Gandarilla, O.; Shah, M.A.; Brar, G. Favorable response to second-line atezolizumab and bevacizumab following progression on nivolumab in advanced hepatocellular carcinoma: A case report demonstrating that anti-VEGF therapy overcomes resistance to checkpoint inhibition. Medicine 2021, 100, e26471. [Google Scholar] [CrossRef] [PubMed]
- Krug, S.; Mattheis, L.; Haemmerle, M.; Rosendahl, J.; Kleeff, J.; Michl, P. The impact of atezolizumab and bevacizumab in hepatocellular carcinoma with activated ß-catenin signaling. Cancer Rep. 2022, 5, e1493. [Google Scholar] [CrossRef] [PubMed]
- Nong, X.; Zhang, Y.M.; Liang, J.C.; Xie, J.L.; Zhang, Z.M. Complete response by patients with advanced hepatocellular carcinoma after combination immune/targeted therapy and transarterial chemoembolization: Two case reports and literature review. Transl. Cancer Res. 2022, 11, 2973–2984. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Chen, B.; Peng, D.; He, J.; Zhao, W.; Chen, T.; Xie, Z.; Pang, F. Case Report: Complete response after tislelizumab treatment in a hepatocellular carcinoma patient with abdominal lymph node metastasis. Front. Immunol. 2023, 14, 1163656. [Google Scholar] [CrossRef] [PubMed]
- Shigefuku, R.; Yoshikawa, K.; Tsukimoto, M.; Owa, H.; Tamai, Y.; Tameda, M.; Ogura, S.; Sugimoto, R.; Tanaka, H.; Eguchi, A.; et al. Hepatocellular Carcinoma Pseudoprogression Involving the Main Portal Vein, Right Ventricular Invasion, and Exacerbation of Lung Metastases in a Patient on Atezolizumab Plus Bevacizumab. Intern. Med. 2023, 62, 539–543. [Google Scholar] [CrossRef]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef]
- Foerster, F.; Gairing, S.J.; Ilyas, S.I.; Galle, P.R. Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology 2022, 75, 1604–1626. [Google Scholar] [CrossRef]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef]
- Raj, R.; Aykun, N.; Wehrle, C.J.; Maspero, M.; Krishnamurthi, S.; Estfan, B.; Kamath, S.; Aucejo, F. Immunotherapy for Advanced Hepatocellular Carcinoma-a Large Tertiary Center Experience. J. Gastrointest. Surg. 2023, 27, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012, 56, 908–943. [CrossRef]
- EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [CrossRef]
- Han, J.-W.; Yoon, S.-K. Immune Responses Following Locoregional Treatment for Hepatocellular Carcinoma: Possible Roles of Adjuvant Immunotherapy. Pharmaceutics 2021, 13, 1387. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Toom, S.; Avula, A.; Kumar, V.; Rahma, O.E. The Immune Modulation Effect of Locoregional Therapies and Its Potential Synergy with Immunotherapy in Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2020, 7, 11–17. [Google Scholar] [CrossRef]
- Xue, J.; Ni, H.; Wang, F.; Xu, K.; Niu, M. Advances in locoregional therapy for hepatocellular carcinoma combined with immunotherapy and targeted therapy. J. Interv. Med. 2021, 4, 105–113. [Google Scholar] [CrossRef]
- Facciorusso, A.; Del Prete, V.; Antonino, M.; Crucinio, N.; Neve, V.; Di Leo, A.; Carr, B.I.; Barone, M. Post-recurrence survival in hepatocellular carcinoma after percutaneous radiofrequency ablation. Dig. Liver Dis. 2014, 46, 1014–1019. [Google Scholar] [CrossRef]
- Okuwaki, Y.; Nakazawa, T.; Kokubu, S.; Hidaka, H.; Tanaka, Y.; Takada, J.; Watanabe, M.; Shibuya, A.; Minamino, T.; Saigenji, K. Repeat radiofrequency ablation provides survival benefit in patients with intrahepatic distant recurrence of hepatocellular carcinoma. Am. J. Gastroenterol. 2009, 104, 2747–2753. [Google Scholar] [CrossRef]
- Fang, P.; Hu, J.H.; Cheng, Z.G.; Liu, Z.F.; Wang, J.L.; Jiao, S.C. Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma: A systematic review of phase II trials. PLoS ONE 2012, 7, e49717. [Google Scholar] [CrossRef]
- Hu, J.; Tang, H.; Xie, F.; Zhang, Y.; Jia, S.; Zhou, J. Abstract 1020: Tissue-informed ctDNA MRD assay detects post-surgery minimal residual disease in HCC patients. Cancer Res. 2023, 83, 1020. [Google Scholar] [CrossRef]
- Pinato, D.J. Circulating-free tumour DNA and the promise of disease phenotyping in hepatocellular carcinoma. Oncogene 2018, 37, 4635–4638. [Google Scholar] [CrossRef]
- Hu, J.; Tang, H.; Xie, F.; Zhang, Y.; Jia, S.; Zhou, J. Ultra-sensitive baseline-informed MRD assay to predict prognosis outcomes in patients with resectable hepatocellular carcinoma. J. Clin. Oncol. 2023, 41, e16228. [Google Scholar] [CrossRef]
- Wong, M.; Kim, J.T.; Cox, B.; Larson, B.K.; Kim, S.; Waters, K.M.; Vail, E.; Guindi, M. Evaluation of tumor mutational burden in small early hepatocellular carcinoma and progressed hepatocellular carcinoma. Hepat. Oncol. 2021, 8, Hep39. [Google Scholar] [CrossRef]
- Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Laheru, D.A.; Frampton, G.M.; et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. J. Clin. Investig. 2019, 4, e126908. [Google Scholar] [CrossRef]
N = 11 | |
---|---|
Sex, N (%): Female Male | 2 (18.2%) 9 (81.8%) |
Race, N (%): White Black Multiracial | 8 (72.7%) 2 (18.2%) 1 (9.1%) |
Age at Presentation, Mean (SD) | 66.7 (±9.7) |
Neutrophil/Lymphocyte Ratio, Mean (SD) | 3.25 (±1.20) |
Total bilirubin, mg/dL, Mean (SD) | 0.80 (±0.37) |
Albumin, g/dL, Mean (SD) | 3.65 (±0.53) |
INR, Mean (SD) | 1.09 (±0.08) |
MELD Score, Mean (SD) | 9.4 (±2.37) |
Child Pugh Score, Mean (SD) | 5.3 (±0.50) |
Child Pugh Class, N (%) A | 4 (36.4%) |
Cirrhosis, N (%) Alcohol abuse history, N (%) HCV, N (%) HBV, N (%) | 4 (36.4%) 3 (27.3%) 4 (36.4%) 1 (9.1%) |
Prior Treatment, N (%) Ablation, N (%): Radioembolization, N (%): Chemoembolization, N (%): Radiotherapy, N (%): Resection, N (%): Systemic Chemotherapy, N (%): | 7 (63.6%) 0 (0%) 4 (36.4%) 1 (9%) 3 (27.3%) 3 (27.3%) 1 (9%) |
Immunotherapy, N (%): Atezolizumab + Bevacizumab Nivolumab | 9 (81.8%) 2 (18.2%) |
Adverse effects (immune related), N (%) | 3 (27.3%) |
Pre-Treatment AFP, ng/mL, Mean (SD) | 28,035.2 (±58,034.2) |
Pre-Treatment Number of Lesions, N (%): 1 2–3 4–10 Infiltrative Innumerable | 3 (27.3%) 2 (18.2%) 3 (27.3%) 2 (18.2%) 1 (9.1%) |
Pre-Treatment size of biggest lesion, cm, mean (SD) | 9.25 (±5.32) |
Pre-Treatment tumor vascular thrombus, N (%): | 4 (36.4%) |
Stage, N (%) II IIIA IIIB IVA IVB | 1 (9.1%) 2 (18.2%) 4 (36.4%) 1 (9.1%) 3 (27.3%) |
Post-Treatment AFP, ng/mL, Mean (SD) | 32.43 (±49.39) |
Patient Status, N (%): Alive Dead Cancer-Related Deaths | 9 (81.8%) 2 (18.2%) 1 (9.1%) |
Overall Survival (days), Mean (SD) | 883 (±510) |
Pt. # | Gender | Age at Diagnosis | Prior/Concurrent Liver Directed Therapy | Pre-Treatment AFP (ng/mL) | Pre-Treatment Stage | Immunotherapy Agent | Number of Cycles | Immunotherapy Side Effects | Post-Treatment AFP (ng/mL) | Surgery after Downstaging | OS (Days) | Explant Pathology | Status at Last Follow Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 80 | No | 64,000 | IIIB | Atezolizumab | 15 | Arthritis | 106.2 | Yes | 748 | pCR | NED |
2 | M | 82 | No | 6.1 | IIIA | Atezo/Bev | 1 | Hepatitis | 16.1 | Yes | 469 | 70% necrosis | NED |
3 | M | 51 | Yes | 3734.7 | IVA | Atezo/Bev | 5 | No | 158.6 | Yes | 341 | 75% necrosis | NED |
4 | M | 73 | No | 72.3 | IIIB | Atezo/Bev | 11 | No | 37.1 | Yes | 244 | 75% necrosis | NED |
5 | M | 61 | No | 13.8 | II | Nivolumab | 4 | Arthritis | 4.4 | No | 2145 | NED | |
6 | M | 54 | Yes | 39,787 | IIIB | Atezo/Bev | 22 | No | 3 | No | 930 | NED | |
7 | M | 67 | Yes | 200,000 | IIIB | Atezo/Bev | 20 | No | 4.4 | No | 469 | NED | |
8 | F | 77 | No | 650 | IIIA | Nivolumab | 31 | No | 3 | No | 1042 | NED | |
9 | M | 68 | No | 116 | IVB | Atezo/Bev | 45 | No | 15.6 | No | 979 | Stable disease | |
10 | F | 63 | Yes | 3.9 | IB | Atezo/Bev | 9 | No | 3 | No | 1155 | Death (Bev complication) | |
11 | M | 59 | Yes | 3.8 | IVB | Atezo/Bev | 3 | No | 3 | No | 1199 | Death (disease) |
Authors | # of Cases | Immunotherapy Agent | Response | Concurrent Local/Systemic Treatment | Adverse Effects | Surgery after Downstaging |
---|---|---|---|---|---|---|
Truong et al., 2016 [17] | 1 | Pembrolizumab | CR | No | No | No |
Tighe et al., 2019 [18] | 1 | Nivolumab | PR | TACE | No | No |
Chiang et al., 2019 [19] | 5 | Nivolumab ± Pembrolizumab | 2 CR 3 PR | TACE ± SBRT | Pneumonitis dermatitis | No |
Liu et al., 2019 [20] | 1 | Pembrolizumab | CR | Lenvatinib | No | No |
Adcock et al., 2019 [21] | 1 | Nivolumab | CR | TARE + Sorefenib | No | No |
Ando et al., 2020 [22] | 1 | Pembrolizumab | CR | No | No | No |
Zhu et al., 2020 [23] | 1 | Nivolumab | CR | No | No | No |
Bucalau et al., 2021 [24] | 1 | Nivolumab | CR | TACE | No | No |
Liu et al., 2021 [25] | 3 | Atezo/Bev Pembrolizumab Tislelizumab | CR | No | No | No |
Abdelrahim et al., 2022 [26] | 1 | Atezo/Bev | CR | No | No | Transplant |
Goto et al., 2023 [27] | 1 | Atezo/Bev | PR | No | No | No |
Zhong et al., 2022 [28] | 1 | Camrelizumab | CR | Sorafenib | No | No |
Tsai et al., 2021 [29] | 1 | Nivolumab | CR | No | No | No |
Li et al., 2021 [30] | 1 | Toripalimab | CR | Lenvatinib + Intratumoral cryoablation | No | No |
Swed et al., 2021 [31] | 1 | Atezo/Bev | PR | No | Arthritis | No |
Krug et al., 2022 [32] | 1 | Atezo/Bev | CR | No | No | No |
Nong et al., 2022 [33] | 2 | - | CR | Lenvatinib + TACE | No | Yes |
Deng et al., 2023 [34] | 1 | Tislelizumab | CR | RFA | No | No |
Shigefuku et al., 2023 [35] | 1 | Atezo/Bev | CR | No | No | No |
Patient | Pre-Treatment ctDNA Variants (% Amplification) | Pre-Treatment TMB (Mut/mB) | Post-Treatment, Post-Resection ctDNA Variants | Post-Treatment TMB (Mut/mB) |
---|---|---|---|---|
1 | CHEK2 Splice Site SNV (0.7%) ROS1 G192E (0.2%) | 4.82 | None Detected | 0 |
2 | TP53 L32fs (0.4%) MYC S281S (0.2%) TERT Promoter SNV (0.4%) CTNNB1 T41I (0.4%) | 12.54 | None Detected | 0 |
3 | MTOR T1840T (0.3%) CCND2 T280N (0.3%) ARID1A H544H (0.1%) | 15.31 | None Detected | 0 |
4 | PALB2 E230 (49.8%) | 3.29 | PALB2 E230 (49.0%) | 2.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raj, R.; Wehrle, C.J.; Aykun, N.; Stitzel, H.; Ma, W.W.; Krishnamurthi, S.; Estfan, B.; Kamath, S.; Kwon, D.C.H.; Aucejo, F. Immunotherapy Plus Locoregional Therapy Leading to Curative-Intent Hepatectomy in HCC: Proof of Concept Producing Durable Survival Benefits Detectable with Liquid Biopsy. Cancers 2023, 15, 5220. https://doi.org/10.3390/cancers15215220
Raj R, Wehrle CJ, Aykun N, Stitzel H, Ma WW, Krishnamurthi S, Estfan B, Kamath S, Kwon DCH, Aucejo F. Immunotherapy Plus Locoregional Therapy Leading to Curative-Intent Hepatectomy in HCC: Proof of Concept Producing Durable Survival Benefits Detectable with Liquid Biopsy. Cancers. 2023; 15(21):5220. https://doi.org/10.3390/cancers15215220
Chicago/Turabian StyleRaj, Roma, Chase J. Wehrle, Nihal Aykun, Henry Stitzel, Wen Wee Ma, Smitha Krishnamurthi, Bassam Estfan, Suneel Kamath, David C. H. Kwon, and Federico Aucejo. 2023. "Immunotherapy Plus Locoregional Therapy Leading to Curative-Intent Hepatectomy in HCC: Proof of Concept Producing Durable Survival Benefits Detectable with Liquid Biopsy" Cancers 15, no. 21: 5220. https://doi.org/10.3390/cancers15215220
APA StyleRaj, R., Wehrle, C. J., Aykun, N., Stitzel, H., Ma, W. W., Krishnamurthi, S., Estfan, B., Kamath, S., Kwon, D. C. H., & Aucejo, F. (2023). Immunotherapy Plus Locoregional Therapy Leading to Curative-Intent Hepatectomy in HCC: Proof of Concept Producing Durable Survival Benefits Detectable with Liquid Biopsy. Cancers, 15(21), 5220. https://doi.org/10.3390/cancers15215220