Partial Truncation of the C-Terminal Domain of PTCH1 in Cancer Enhances Autophagy and Metabolic Adaptability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Genomic Dataset
2.3. Cell Lines
2.4. Cell Culture
2.5. Genome Editing and Selection
2.6. Generation of PTCH1 Truncation Mutants
2.7. Quantitative PCR
2.8. Co-Immunoprecipitation
2.9. Western Blotting
2.10. Proliferation Assays
2.11. Statistical Analysis
3. Results
3.1. Overrepresentation of PTCH1 C-Terminal Domain Mutations in Colorectal, Endometrial and Stomach Cancers
3.2. Cancer-Associated PTCH1 CTD Truncations Lose Interaction with ATG101
3.3. Cancer-Associated PTCH1 CTD Truncation Mutants Lack Autophagy Inhibitory Activity
3.4. Truncation of the CTD in Endogenous PTCH1 in Colorectal Cancer Cells Increases Autophagic Flux and Dysregulates Expression of Autophagy-Related Proteins
3.5. PTCH1 CTD Truncation Enhances Proliferation under Nutrient Starvation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robbins, D.J.; Fei, D.L.; Riobo, N.A. The Hedgehog signal transduction network. Sci. Signal. 2012, 5, re6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasper, M.; Regl, G.; Frischauf, A.M.; Aberger, F. GLI transcription factors: Mediators of oncogenic Hedgehog signalling. Eur. J. Cancer 2006, 42, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Taipale, J.; Beachy, P.A. The Hedgehog and Wnt signalling pathways in cancer. Nature 2001, 411, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Brennan, D.; Chen, X.; Cheng, L.; Mahoney, M.G.; Riobo, N.A. Noncanonical Hedgehog signaling. Vitam. Horm. 2012, 88, 55–71. [Google Scholar] [PubMed] [Green Version]
- Chen, X.; Morales-Alcala, C.C.; Riobo-Del Galdo, N.A. Autophagic flux is regulated by interaction between the C-terminal domain of PATCHED1 and ATG101. Mol. Cancer Res. 2018, 16, 909–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yorimitsu, T.; Klionsky, D.J. Autophagy: Molecular machinery for self-eating. Cell Death Differ. 2005, 12, 1542–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.C.; Yuan, H.-X.; Guan, K.-L. Autophagy regulation by nutrient signaling. Cell Res. 2014, 24, 42–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Hsia, E.Y.C.; Brigui, A.; Plessis, A.; Beachy, P.A.; Zheng, X. The role of ciliary trafficking in Hedgehog receptor signaling. Sci. Signal. 2015, 8, ra55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.L.; Chinchilla, P.; Fombonne, J.; Ho, L.; Guix, C.; Keen, J.H.; Mehlen, P.; Riobo, N.A. Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog. Mol. Cell. Biol. 2014, 34, 3855–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mille, F.; Thibert, C.; Fombonne, J.; Rama, N.; Guix, C.; Hayashi, H.; Corset, V.; Reed, J.C.; Mehlen, P. The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat. Cell Biol. 2009, 11, 739–746. [Google Scholar] [CrossRef] [PubMed]
- White, E. Deconvoluting the context-dependent role of autophagy in cancer. Nat. Rev. Cancer 2012, 12, 401–410. [Google Scholar] [PubMed] [Green Version]
- Galluzzi, L.; Pietrocola, F.; Bravo-San Pedro, J.M.; Amaravadi, R.V.; Baehrecke, E.H.; Cecconi, F.; Codogno, P.; Debnath, J.; Gewirtz, D.A.; Karantza, V.; et al. Autophagy in malignant transformation and cancer progression. EMBO J. 2015, 34, 856–880. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, S.; Kornberg, T.B. The C-terminal tail of the Hedgehog receptor Pacthed regulates both localization and turnover. Genes Dev. 2006, 20, 2539–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, L.J.; Kuhne, R.; Scheneider-Mergener, J.; Oschkinat, H. Recognition of proline-rich motifs by protein-protein interaction domains. Angew. Chem. Int. Ed. Engl. 2005, 44, 2852–2869. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, S.R.; Mizushima, N. Monitoring and measuring autophagy. Int. J. Mol. Sci. 2017, 18, 1865. [Google Scholar] [CrossRef] [PubMed]
- Wasson, C.W.; Caballero-Ruiz, B.; Gillespie, J.; Derrett-Smith, E.; Mankouri, J.; Denton, C.P.; Canettieri, G.; Riobo-Del Galdo, N.A.; Del Galdo, F. Induction of pro-fibrotic CLIC4 in dermal fibroblasts by TGF-b/Wnt3a is mediated by GLI2 upregulation. Cells 2022, 11, 530. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Ruiz, B.; Department of Molecular Medicine, Sapienza University of Rome, Roma, Italy; Canettieri, G.; Department of Molecular Medicine, Sapienza University of Rome; Institute Pasteur Italy-Cenci Bolognetti Foundation, Roma, Italy; Riobo-Del Galdo, N.A.; School of Molecular and Cellular Biology, School of Medicine, University of Leeds; Leeds Institute for Medical Research, School of Medicine, University of Leeds; Leeds Cancer Research, University of Leeds; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK. Personal communication, 2022.
- Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.J.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lopez, J.; Kumar, R.; Smith, K.S.; Northcott, P.A. Deconstructing Sonic Hedgehog medulloblastoma: Molecular subtypes, drivers, and beyond. Trends Genet. 2021, 37, 235–250. [Google Scholar] [CrossRef]
Cohort (Site) | PTCH1 Mutations (%) | PTCH1 CTD Mutations (%) | Enrichment of CTD Mutations (fold) 1 |
---|---|---|---|
TCGA-UCEC | 62/512 (12.11%) | 30/512 (5.85%) | 2.56 |
TCGA-COAD TCGA-STAD All combined | 31/427 (7.26%) 33/434 (7.60%) 126/1373 (9.18%) | 12/427 (2.8%) 10/434 (2.3%) 52/1373 (4.08%) | 2.07 1.6 2.19 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-Ruiz, B.; Gkotsi, D.S.; Ollerton, H.; Morales-Alcala, C.C.; Bordone, R.; Jenkins, G.M.L.; Di Magno, L.; Canettieri, G.; Riobo-Del Galdo, N.A. Partial Truncation of the C-Terminal Domain of PTCH1 in Cancer Enhances Autophagy and Metabolic Adaptability. Cancers 2023, 15, 369. https://doi.org/10.3390/cancers15020369
Caballero-Ruiz B, Gkotsi DS, Ollerton H, Morales-Alcala CC, Bordone R, Jenkins GML, Di Magno L, Canettieri G, Riobo-Del Galdo NA. Partial Truncation of the C-Terminal Domain of PTCH1 in Cancer Enhances Autophagy and Metabolic Adaptability. Cancers. 2023; 15(2):369. https://doi.org/10.3390/cancers15020369
Chicago/Turabian StyleCaballero-Ruiz, Begoña, Danai S. Gkotsi, Hattie Ollerton, Cintli C. Morales-Alcala, Rosa Bordone, Georgia M. L. Jenkins, Laura Di Magno, Gianluca Canettieri, and Natalia A. Riobo-Del Galdo. 2023. "Partial Truncation of the C-Terminal Domain of PTCH1 in Cancer Enhances Autophagy and Metabolic Adaptability" Cancers 15, no. 2: 369. https://doi.org/10.3390/cancers15020369
APA StyleCaballero-Ruiz, B., Gkotsi, D. S., Ollerton, H., Morales-Alcala, C. C., Bordone, R., Jenkins, G. M. L., Di Magno, L., Canettieri, G., & Riobo-Del Galdo, N. A. (2023). Partial Truncation of the C-Terminal Domain of PTCH1 in Cancer Enhances Autophagy and Metabolic Adaptability. Cancers, 15(2), 369. https://doi.org/10.3390/cancers15020369