Current Status of Angiogenesis Inhibitors as Second-Line Treatment for Unresectable Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Second-Line Treatment with Angiogenesis Inhibitors for Unresectable Colorectal Cancer
2.1. Angiogenic Factors and Angiogenesis Inhibitors
2.2. Availability of Angiogenesis Inhibitors for Second-Line Treatment
2.3. Biomarkers for Angiogenesis Inhibitors
2.3.1. Biomarkers for BEV
2.3.2. Biomarkers for RAM
2.3.3. Biomarkers for AFL
2.3.4. Other Biomarkers Thought to Be Associated with Angiogenesis Inhibitors
3. Angiogenesis Inhibitors and Anti-EGFR Antibodies
3.1. Second-Line Treatment with Anti-EGFR Antibodies
3.2. Angiogenesis Inhibitors vs. Anti-EGFR Antibody with Bevacizumab beyond Progression
3.3. Treatment with Angiogenesis Inhibitors after Use of an Anti-EGFR Antibody
4. New Angiogenesis Inhibitors and Regimens
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Venook, A.P.; Niedzwiecki, D.; Lenz, H.J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O’Neil, B.H.; Atkins, J.N.; et al. Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With KRAS Wild-Type Advanced or Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2017, 317, 2392–2401. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Muro, K.; Shitara, K.; Yamazaki, K.; Shiozawa, M.; Ohori, H.; Takashima, A.; Yokota, M.; Makiyama, A.; Akazawa, N.; et al. Panitumumab vs Bevacizumab Added to Standard First-line Chemotherapy and Overall Survival Among Patients With RAS Wild-type, Left-Sided Metastatic Colorectal Cancer: A Randomized Clinical Trial. JAMA 2023, 329, 1271–1282. [Google Scholar] [CrossRef]
- Grothey, A.; Sargent, D.; Goldberg, R.M.; Schmoll, H.J. Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J. Clin. Oncol. 2004, 22, 1209–1214. [Google Scholar]
- Bennouna, J.; Sastre, J.; Arnold, D.; Österlund, P.; Greil, R.; Van Cutsem, E.; von Moos, R.; Viéitez, J.M.; Bouché, O.; Borg, C.; et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): A randomised phase 3 trial. Lancet Oncol. 2013, 14, 29–37. [Google Scholar] [CrossRef]
- Tabernero, J.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Van Cutsem, E.; Grothey, A.; et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015, 16, 499–508. [Google Scholar]
- Van Cutsem, E.; Tabernero, J.; Lakomy, R.; Prenen, H.; Prausová, J.; Macarulla, T.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.; Ferry, D.; et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 2012, 30, 3499–3506. [Google Scholar] [CrossRef]
- Cunningham, D.; Pyrhönen, S.; James, R.D.; Punt, C.J.; Hickish, T.F.; Heikkila, R.; Johannesen, T.B.; Starkhammar, H.; Topham, C.A.; Awad, L.; et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 1998, 352, 1413–1418. [Google Scholar] [CrossRef]
- Giantonio, B.J.; Catalano, P.J.; Meropol, N.J.; O’Dwyer, P.J.; Mitchell, E.P.; Alberts, S.R.; Schwartz, M.A.; Benson, A.B., 3rd. Eastern Cooperative Oncology Group Study E3200. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: Results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 2007, 25, 1539–1544. [Google Scholar] [CrossRef]
- Sobrero, A.F.; Maurel, J.; Fehrenbacher, L.; Scheithauer, W.; Abubakr, Y.A.; Lutz, M.P.; Vega-Villegas, M.E.; Eng, C.; Steinhauer, E.U.; Prausova, J.; et al. EPIC: Phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; Punt, C.J.; et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol. 2010, 28, 4706–4713. [Google Scholar] [CrossRef] [PubMed]
- Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 2013, 369, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Oliner, K.S.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; et al. Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer. Clin. Cancer Res. 2015, 21, 5469–5479. [Google Scholar] [CrossRef]
- Peeters, M.; Oliner, K.S.; Parker, A.; Siena, S.; Van Cutsem, E.; Huang, J.; Humblet, Y.; Van Laethem, J.L.; André, T.; Wiezorek, J.; et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin. Cancer Res. 2013, 19, 1902–1912. [Google Scholar] [CrossRef]
- Tran, B.; Kopetz, S.; Tie, J.; Gibbs, P.; Jiang, Z.Q.; Lieu, C.H.; Agarwal, A.; Maru, D.M.; Sieber, O.; Desai, J. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011, 117, 4623–4632. [Google Scholar] [CrossRef]
- Funkhouser, W.K., Jr.; Lubin, I.M.; Monzon, F.A.; Zehnbauer, B.A.; Evans, J.P.; Ogino, S.; Nowak, J.A. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: A report of the association for molecular pathology. J. Mol. Diagn. 2012, 14, 91–103. [Google Scholar] [CrossRef]
- Latham, A.; Srinivasan, P.; Kemel, Y.; Shia, J.; Bandlamudi, C.; Mandelker, D.; Middha, S.; Hechtman, J.; Zehir, A.; Dubard-Gault, M.; et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019, 37, 286–295. [Google Scholar] [CrossRef]
- Yoshino, T.; Tukachinsky, H.; Lee, J.K.; Sokol, E.; Pavlick, D.C.; Aiyer, A.; Fabrizio, D.; Venstrom, J.M.; Mishima, S.; Nakamura, Y.; et al. Genomic immunotherapy (IO) biomarkers detected on comprehensive genomic profiling (CGP) of tissue and circulating tumor DNA (ctDNA). J. Clin. Oncol. 2021, 39, 2541. [Google Scholar] [CrossRef]
- Siena, S.; Sartore-Bianchi, A.; Marsoni, S.; Hurwitz, H.I.; McCall, S.J.; Penault-Llorca, F.; Srock, S.; Bardelli, A.; Trusolino, L. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann. Oncol. 2018, 29, 1108–1119. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Colon Cancer Version 1.2022—25 February 2022. Available online: https://www.nccn.org/guidelines/category_1 (accessed on 3 August 2022).
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, Y.; Muro, K.; Saito, Y.; Ito, Y.; Ajioka, Y.; Hamaguchi, T.; Hasegawa, K.; Hotta, K.; Ishida, H.; Ishiguro, M.; et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int. J. Clin. Oncol. 2020, 25, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Okamoto, W.; Kato, T.; Esaki, T.; Kato, K.; Komatsu, Y.; Yuki, S.; Masuishi, T.; Nishina, T.; Ebi, H.; et al. Circulating tumor DNA-guided treatment with pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer: A phase 2 trial. Nat. Med. 2021, 27, 1899–1903. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef]
- Bai, L.; Wang, F.; Zhang, D.S.; Li, C.; Jin, Y.; Wang, D.S.; Chen, D.L.; Qiu, M.Z.; Luo, H.Y.; Wang, Z.Q.; et al. A plasma cytokine and angiogenic factor (CAF) analysis for selection of bevacizumab therapy in patients with metastatic colorectal cancer. Sci. Rep. 2015, 5, 17717. [Google Scholar] [CrossRef]
- Parikh, A.R.; Lee, F.C.; Yau, L.; Koh, H.; Knost, J.; Mitchell, E.P.; Bosanac, I.; Choong, N.; Scappaticci, F.; Mancao, C.; et al. MAVERICC, a Randomized, Biomarker-stratified, Phase II Study of mFOLFOX6-Bevacizumab versus FOLFIRI-Bevacizumab as First-line Chemotherapy in Metastatic Colorectal Cancer. Clin. Cancer Res. 2019, 25, 2988–2995. [Google Scholar] [CrossRef]
- Okamoto, W.; Sakai, K.; Makiyama, A.; Yamamoto, Y.; Shitara, K.; Denda, T.; Izawa, N.; Nakano, Y.; Nishina, T.; Esaki, T.; et al. A phase II study to explore biomarkers for the use of mFOLFOX6/XELOX plus bevacizumab as a first-line chemotherapy in patients with metastatic colorectal cancer (WJOG7612GTR). ESMO Open 2022, 7, 100592. [Google Scholar] [CrossRef]
- Weickhardt, A.J.; Williams, D.S.; Lee, C.K.; Chionh, F.; Simes, J.; Murone, C.; Wilson, K.; Parry, M.M.; Asadi, K.; Scott, A.M.; et al. Vascular endothelial growth factor D expression is a potential biomarker of bevacizumab benefit in colorectal cancer. Br. J. Cancer 2015, 113, 37–45. [Google Scholar] [CrossRef]
- Tabernero, J.; Hozak, R.R.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Prausová, J.; et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann. Oncol. 2018, 29, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Sims, T.N.; Gao, B.; Phillips, R.; Lowy, I. Potential predictive and prognostic biomarkers identified in baseline plasma samples from the VELOUR trial. J. Clin. Oncol. 2015, 33, 638. [Google Scholar]
- Van Cutsem, E.; Paccard, C.; Chiron, M.; Tabernero, J. Impact of Prior Bevacizumab Treatment on VEGF-A and PlGF Levels and Outcome Following Second-Line Aflibercept Treatment: Biomarker Post Hoc Analysis of the VELOUR Trial. Clin. Cancer Res. 2020, 26, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Otsu, S.; Hironaka, S.; Takashima, A.; Mizusawa, J.; Kataoka, T.; Fukuda, H.; Tsukamoto, S.; Hamaguchi, T.; Kanemitsu, Y.; et al. Phase II biomarker identification study of anti-VEGF agents with FOLFIRI for pre-treated metastatic colorectal cancer. Future Oncol. 2023, 19, 1593–1600. [Google Scholar] [CrossRef]
- Tischer, E.; Gospodarowicz, D.; Mitchell, R.; Silva, M.; Schilling, J.; Lau, K.; Crisp, T.; Fiddes, J.C.; Abraham, J.A. Vascular endothelial growth factor: A new member of the platelet-derived growth factor gene family. Biochem. Biophys. Res. Commun. 1989, 165, 1198–1206. [Google Scholar] [CrossRef]
- Pàez-Ribes, M.; Allen, E.; Hudock, J.; Takeda, T.; Okuyama, H.; Viñals, F.; Inoue, M.; Bergers, G.; Hanahan, D.; Casanovas, O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 15, 220–231. [Google Scholar] [CrossRef]
- Koch, S.; Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012, 2, a006502. [Google Scholar] [CrossRef]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef]
- Arcondéguy, T.; Lacazette, E.; Millevoi, S.; Prats, H.; Touriol, C. VEGF-A mRNA processing, stability and translation: A paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res. 2013, 41, 7997–8010. [Google Scholar] [CrossRef]
- Meyer, R.D.; Mohammadi, M.; Rahimi, N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J. Biol. Chem. 2006, 281, 867–875. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Stacker, S.A.; Caesar, C.; Baldwin, M.E.; Thornton, G.E.; Williams, R.A.; Prevo, R.; Jackson, D.G.; Nishikawa, S.; Kubo, H.; Achen, M.G. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 2001, 7, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 2005, 333, 328–335. [Google Scholar] [CrossRef]
- Muller, Y.A.; Chen, Y.; Christinger, H.W.; Li, B.; Cunningham, B.C.; Lowman, H.B.; de Vos, A.M. VEGF and the Fab fragment of a humanized neutralizing antibody: Crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 1998, 6, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, A.; Delle Monache, S.; Cortellini, A.; Di Padova, M.; Ficorella, C. “Vessels in the Storm”: Searching for Prognostic and Predictive Angiogenic Factors in Colorectal Cancer. Int. J. Mol. Sci. 2018, 19, 299. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Li, B.; Winer, J.; Armanini, M.; Gillett, N.; Phillips, H.S.; Ferrara, N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993, 362, 841–844. [Google Scholar] [CrossRef] [PubMed]
- Kabbinavar, F.; Hurwitz, H.I.; Fehrenbacher, L.; Meropol, N.J.; Novotny, W.F.; Lieberman, G.; Griffing, S.; Bergsland, E. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003, 21, 60–65. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef]
- Lu, D.; Jimenez, X.; Zhang, H.; Bohlen, P.; Witte, L.; Zhu, Z. Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int. J. Cancer 2002, 97, 393–399. [Google Scholar] [CrossRef]
- Rockwell, P.; Neufeld, G.; Glassman, A.; Caron, D.; Goldstein, N. In vitro neutralization of vascular endothelial growth factor activation of Flk-1 by a monoclonal antibody. Mol. Cell Differ. 1995, 3, 91–109. [Google Scholar]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O’Bryant, C.; Chow, L.Q.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S.D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; et al. VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 2002, 99, 11393–11398. [Google Scholar] [CrossRef] [PubMed]
- Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Sugrue, M.M.; Purdie, D.M.; Dong, W.; Sargent, D.; Hedrick, E.; Kozloff, M. Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: Results from a large observational cohort study (BRiTE). J. Clin. Oncol. 2008, 26, 5326–5334. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.A.; El-Rayes, B.F. Considering Efficacy and Cost, Where Does Ramucirumab Fit in the Management of Metastatic Colorectal Cancer? Oncologist 2015, 20, 981–982. [Google Scholar] [CrossRef]
- Hegde, P.S.; Jubb, A.M.; Chen, D.; Li, N.F.; Meng, Y.G.; Bernaards, C.; Elliott, R.; Scherer, S.J.; Chen, D.S. Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin. Cancer Res. 2013, 19, 929–937. [Google Scholar] [CrossRef]
- Lieu, C.H.; Tran, H.; Jiang, Z.Q.; Mao, M.; Overman, M.J.; Lin, E.; Eng, C.; Morris, J.; Ellis, L.; Heymach, J.V.; et al. The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer. PLoS ONE 2013, 8, e77117. [Google Scholar] [CrossRef]
- Tebbutt, N.C.; Wilson, K.; Gebski, V.J.; Cummins, M.M.; Zannino, D.; van Hazel, G.A.; Robinson, B.; Broad, A.; Ganju, V.; Ackland, S.P.; et al. Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: Results of the Australasian Gastrointestinal Trials Group Randomized Phase III MAX Study. J. Clin. Oncol. 2010, 28, 3191–3198. [Google Scholar] [CrossRef]
- Albonici, L.; Giganti, M.G.; Modesti, A.; Manzari, V.; Bei, R. Multifaceted Role of the Placental Growth Factor (PlGF) in the Antitumor Immune Response and Cancer Progression. Int. J. Mol. Sci. 2019, 20, 2970. [Google Scholar] [CrossRef]
- Kopetz, S.; Hoff, P.M.; Morris, J.S.; Wolff, R.A.; Eng, C.; Glover, K.Y.; Adinin, R.; Overman, M.J.; Valero, V.; Wen, S.; et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: Efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 2010, 28, 453–459. [Google Scholar] [CrossRef]
- Waugh, D.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Muro, K.; Cunningham, D.; Bodoky, G.; Sobrero, A.; Cascinu, S.; Ajani, J.; Oh, S.C.; Al-Batran, S.E.; Wainberg, Z.A.; et al. Biomarker analyses of second-line ramucirumab in patients with advanced gastric cancer from RAINBOW, a global, randomized, double-blind, phase 3 study. Eur. J. Cancer 2020, 127, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Shao, Y.Y.; Chen, H.M.; Lin, Y.L.; Lin, Z.Z.; Lai, M.S.; Cheng, A.L.; Yeh, K.H. Primary tumor site is a useful predictor of cetuximab efficacy in the third-line or salvage treatment of KRAS wild-type (exon 2 non-mutant) metastatic colorectal cancer: A nationwide cohort study. BMC Cancer 2016, 16, 327. [Google Scholar] [CrossRef] [PubMed]
- Moretto, R.; Cremolini, C.; Rossini, D.; Pietrantonio, F.; Battaglin, F.; Mennitto, A.; Bergamo, F.; Loupakis, F.; Marmorino, F.; Berenato, R.; et al. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer. Oncologist 2016, 21, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.; Lueza, B.; Douillard, J.Y.; Peeters, M.; Lenz, H.J.; Venook, A.; Heinemann, V.; Van Cutsem, E.; Pignon, J.P.; Tabernero, J.; et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 2017, 28, 1713–1729. [Google Scholar] [CrossRef]
- Hecht, J.R.; Cohn, A.; Dakhil, S.; Saleh, M.; Piperdi, B.; Cline-Burkhardt, M.; Tian, Y.; Go, W.Y. SPIRITT: A Randomized, Multicenter, Phase II Study of Panitumumab with FOLFIRI and Bevacizumab with FOLFIRI as Second-Line Treatment in Patients with Unresectable Wild Type KRAS Metastatic Colorectal Cancer. Clin. Color. Cancer 2015, 14, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Yonesaka, K.; Denda, T.; Yamazaki, K.; Moriwaki, T.; Tsuda, M.; Takano, T.; Okuda, H.; Nishina, T.; Sakai, K.; et al. Randomized study of FOLFIRI plus either panitumumab or bevacizumab for wild-type KRAS colorectal cancer-WJOG 6210G. Cancer Sci. 2016, 107, 1843–1850. [Google Scholar] [CrossRef]
- Bennouna, J.; Hiret, S.; Bertaut, A.; Bouché, O.; Deplanque, G.; Borel, C.; François, E.; Conroy, T.; Ghiringhelli, F.; des Guetz, G.; et al. Continuation of Bevacizumab vs Cetuximab Plus Chemotherapy After First Progression in KRAS Wild-Type Metastatic Colorectal Cancer: The UNICANCER PRODIGE18 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 83–90. [Google Scholar] [CrossRef]
- Parisi, A.; Cortellini, A.; Cannita, K.; Venditti, O.; Camarda, F.; Calegari, M.A.; Salvatore, L.; Tortora, G.; Rossini, D.; Germani, M.M.; et al. Evaluation of Second-line Anti-VEGF after First-line Anti-EGFR Based Therapy in RAS Wild-Type Metastatic Colorectal Cancer: The Multicenter “SLAVE” Study. Cancers 2020, 12, 1259. [Google Scholar] [CrossRef]
- Satake, H.; Kagawa, Y.; Shinozaki, E.; Tanizawa, Y.; Jin, L.; Cai, Z.; Makiyama, A. Real-World Data Analysis of Second-Line Antiangiogenic Targeted Treatments Following Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies and First-Line FOLFOX for Patients with Metastatic Colorectal Cancer. Adv. Ther. 2022, 39, 2596–2613. [Google Scholar] [CrossRef]
- Nakamura, M.; Tsuji, A.; Okita, Y.; Matsumoto, T.; Sagawa, T.; Watanabe, T.; Kataoka, K.; Manaka, D.; Shiraishi, K.; Akazawa, N.; et al. A multicenter phase 2 trial of ramucirumab plus FOLFIRI as second-line treatment for patients with RAS wild-type metastatic colorectal cancer previously treated with combination chemotherapy with anti-EGFR antibody: JACCRO CC-16. J. Clin. Oncol. 2022, 40, 112. [Google Scholar] [CrossRef]
- Li, J.; Qin, S.; Xu, R.H.; Shen, L.; Xu, J.; Bai, Y.; Yang, L.; Deng, Y.; Chen, Z.D.; Zhong, H.; et al. Effect of Fruquintinib vs Placebo on Overall Survival in Patients With Previously Treated Metastatic Colorectal Cancer: The FRESCO Randomized Clinical Trial. JAMA 2018, 319, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Lonardi, S.; Garcia-Carbonero, R.; Elez, E.; Yoshino, T.; Sobrero, A.; Yao, J.; García-Alfonso, P.; Kocsis, J.; Cubillo Gracian, A.; et al. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer (FRESCO-2): An international, multicentre, randomised, double-blind, phase 3 study. Lancet 2023, 402, 41–53. [Google Scholar] [CrossRef]
- Fruquintinib Plus Capecitabine Versus Bevacizumab Plus Capecitabine as Maintenance Therapy Following First-line Treatment for Metastatic Colorectal Cancer. Available online: https://www.clinicaltrials.gov/study/NCT04733963?term=Fruquintinib%20Plus%20Capecitabine&rank=2 (accessed on 12 July 2023).
- Ma, S.; Chen, R.; Duan, L.; Li, C.; Yang, T.; Wang, J.; Zhao, D. Efficacy and safety of toripalimab with fruquintinib in the third-line treatment of refractory advanced metastatic colorectal cancer: Results of a single-arm, single-center, prospective, phase II clinical study. J. Gastrointest. Oncol. 2023, 14, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Comparing Chidamide+Sintilimab+Bev With Standard Second-line FOLFIRI+Bev in Advanced MSS/pMMR mCRC. Available online: https://www.clinicaltrials.gov/study/NCT05768503?term=Chidamide%2BSintilimab%2BBev%20With%20Standard%20Second-line%20FOLFIRI%2BBev%20&rank=1 (accessed on 12 July 2023).
- Prager, G.W.; Taieb, J.; Fakih, M.; Ciardiello, F.; Van Cutsem, E.; Elez, E.; Cruz, F.M.; Wyrwicz, L.; Stroyakovskiy, D.; Pápai, Z.; et al. Trifluridine-Tipiracil and Bevacizumab in Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2023, 388, 1657–1667. [Google Scholar] [CrossRef]
- Taniguchi, H.; Yuki, S.; Shiozawa, M.; Masuishi, T.; Nishina, T.; Kagawa, Y.; Takahashi, T.; Yasui, H.; Denda, T.; Sunakawa, Y.; et al. Plasma VEGF-D and PlGF levels according to prior use of biologics among metastatic colorectal cancer: Preliminary results from GI-SCREEN CRC-Ukit study. J. Clin. Oncol. 2020, 38, 178. [Google Scholar] [CrossRef]
Clinical Trial | Phase | Previous Regimen | RAS Status | Treatment Arm | n | Primary Endpoint | Median OS, Months (95%CI) | Median PFS, Months (95%CI) | ORR% (95%CI) | HR |
---|---|---|---|---|---|---|---|---|---|---|
Cunningham, D. et al. (1998) [9] | III | fluorouracil-based regimens | NE | IRI | 189 | OS | 9.2 | NE | NE | NE |
BSC | 90 | 6.5 | ||||||||
Grothey, A. et al. (2004) [5] * | III | FOLFIRI | NE | FOLFOX | 81 | 4.2 (3.7–5.2) | 15(7–23) | NE | ||
FOLFOX | FOLFIRI | 69 | 2.5 (2.1–3.3) | 4 (0–9) | ||||||
Giantonio, B.J. et al. (2007) [10] | III | Fluoropyrimidine+ IRI | NE | BEV + FOLFOX | 286 | OS | 12.9 | 7.3 | 22.7 | OS (BEV + FOLFOX vs. FOLFOX); 0.75, p = 0.0011 |
FOLFOX | 291 | 10.8 | 4.7 | 8.6 | ||||||
BEV | 243 | 10.2 | 2.7 | 3.3 | ||||||
Sobrero, A.F. et al. (2008) [11] | III | Fluoropyrimidine+ oxaliplatin (with or without BEV) | EGFR expressing | Cmab + IRI | 648 | OS | 10.7 (9.6–11.3) | 4.0 (3.2–4.1) | 16.4 (13.6–19.4) | OS: (0.975; 95%CI: 0.854–1.114; p = 0.71) |
IRI | 650 | 10.0 (9.1–11.3) | 2.6 (2.1–2.7) | 4.2 (2.8–6.0) | ||||||
Peeters, M. et al. (2010) [12] | III | Fluoropyrimidine-based chemotherapy (with or without oxaliplatin, BEV) | KRAS wild type | Pmab + FOLFIRI | 303 | PFS/OS | 14.5 (13.0–16.0) | 5.9 (5.5–6.7) | 35 (30–41) | PFS: (0.73; 95%CI: 0.59–0.90; p = 0.004) OS: (0.85; 95%CI: 0.70–1.04; p = 0.12) |
FOLFIRI | 294 | 12.5 (11.2–14.2) | 3.9 (3.7–5.3) | 10 (7–14) | ||||||
KRAS mutant type | Pmab + FOLFIRI | 238 | 11.8 (19.4–13.3) | 5.0 (3.8–5.6) | 13 (9–18) | PFS: (0.85; 95%CI: 0.68–1.06; p = 0.14) OS: (0.94; 95%CI: 0.76–1.15) | ||||
FOLFIRI | 248 | 11.1 (10.3–12.4) | 4.9 (3.6–5.6) | 14 (10–19) |
First-Line | Second-Line | Third or Later | |
---|---|---|---|
intensive therapy recommended | fluoropyrimidine+oxaliplatin +/−molecular targeted agents | BEV + FOLFIRI | Regorafenib or t rifluridine/tipiracil +/−BEV or Anti EGFR Ab +irinotecan |
RAM + FOLFIRI | |||
AFL + FOLFIRI | |||
Irinotecan +/−fluoropyrimidine +/−molecular targeted agents | |||
BRAF inhitor +Anti EGFR Ab +/−MEK inhibitor | irinotecan-based therapy or late line | ||
HER2 inhibitor | |||
fluoropyrimidine+irinotecan +/−molecular targeted agents | fluoropyrimidine+oxaliplatin +/−molecular targeted agents | Regorafenib Or trifluridine/tipiracil +/−BEV or Anti EGFR Ab +irinotecan | |
BRAF inhitor +Anti EGFR A +/−MEK inhibitor | oxaliplatin-based therapy or late line | ||
HER2 inhibitor | |||
intensive therapy not recommended | fluoropyrimidine+/−BEV | to be considered depending on the patient’s condition | |
Ani EGFR Ab | |||
dMMR/MSI-H | pembrolizumab | intensive treatment or not intensive |
Clinical Trial | Treatment Arm | n | Primary Endpoint | Median OS, Months (95%CI) | Median PFS, Months (95%CI) | ORR, % | HR |
---|---|---|---|---|---|---|---|
Bennouna, J. et al. (2013) [6] | BEV+FOLFOX/FOLFIRI | 409 | OS | 11.2 (10.4–12.2) | 5.7 (5.2–6.2) | 5.4 | OS: (0.81; 95%CI 0.69–0.94; p = 0.0062) |
FOLFOX/FOLFIRI | 411 | 9.8 (8.9–10.7) | 4.1 (3.7–4.4) | 3.9 | |||
Van Cutsem, E. et al. (2012) [8] | AFL + FOLFIRI | 612 | OS | 13.5 (12.52–14.95) | 6.9 (6.51–7.2) | 19.8 | OS: (0.817; 95.34%CI 0.713–0.937; p = 0.0032) |
FOLFIRI | 614 | 12.6 (11.07–13.11) | 4.67 (4.21–5.36) | 11.1 | |||
Tabernero, J. et al. (2015) [7] | RAM + FOLFIRI | 536 | OS | 13.3 (12.4–14.5) | 5.7 (5.5–6.2) | 13.4 | OS: (0.844; 95%CI 0.73–0.976; p = 0.0219) |
FOLFIRI | 536 | 11.7 (10.8–12.7) | 4.5 (4.2–5.4) | 12.5 |
BEV + FOLOX/FOLFIRI | RAM + FOLFIRI | AFL + FOLFIRI | |||||||
---|---|---|---|---|---|---|---|---|---|
(ML18147) | (RAISE) | (VELOUR) | |||||||
Adverse Event (%) | Grade ≥ 3 | Grade 4 | Grade 5 | Grade ≥ 3 | Grade 4 | Grade 5 | Grade ≥ 3 | Grade 4 | Grade 5 |
Hypertension | 2 | - | 0 | 11.2 | 0.2 | 0 | 19.3 | 0.2 | - |
Proteinuria | <1 | - | 0 | 3 | 0.2 | 0 | 7.8 | 0.3 | - |
Hemorrhage | 2 | - | 0.2 | 5.5 | 0.4 | 1,2 | 3.0 | 0.2 | - |
GI perforation | 2 | - | 0.2 | 1.7 | 1.0 | 1.0 | 0.5 | 0.3 | - |
Arterial thromboembolic event | 1 | - | 0.2 | 0.8 | 0.2 | 0.2 | 1.8 | 1.0 | - |
Venous thromboembolic event | 5 | - | 0 | 4.2 | 1.0 | 0 | 7.8 | 4.7 | - |
Healing complications | <1 | - | 0 | 0.2 | - | - | - | - | - |
Treatment-related death (%) | 0.98 | 1.49 | 1 | ||||||
Cost in Japan, for 1 course | |||||||||
Height 160 cm, weight 50 kg, body surface area 1.46 m2 | BEV+FOLFIRI | RAM+FOLFIRI | AFL+FOLFIRI | ||||||
¥143,206 | ¥338,621 | ¥226,712 |
Clinical Trial | Study Design | Treatment Line | Biomarker | Sample Used for Biomarker Assessment | Biomarker Level | Treatment Arm | n | Median OS, Months (95%CI) | HR (95%CI) | Interaction p | Median PFS, Months (95%CI) | HR (95%CI) | Interaction p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bai L et al. (2015) [28] | Retrospective | 1st line | VEGF-A | Plasma | all | BEV + CT | 91 | 26.6 (20.6–32.5) | 10.5 (9.1–11.8) | ||||
CT | 95 | 24.5 (20.5–28.4) | 6.9 (5.7–8.1) | ||||||||||
Low | BEV + CT | 62 | 50 | 0.42 (0.2-.0.84) p = 0.011 | 0.034 | 10.8 | 0.53 (0.36–0.76) p = 0.01 | 0.023 | |||||
CT | 61 | 28 | 6.4 | ||||||||||
High | BEV + CT | 33 | 19.6 | 1.25 (0.77–2.02) p = 0.370 | 7.8 | 0.90 (0.53–1.53) p = 0.70 | |||||||
CT | 27 | 29.9 | 7.8 | ||||||||||
Parikh, A.R. et al. (2019) [29] | Phase II | 1st line | VEGF-A | Plasma | Low | BEV + CT | 185 | 27.9 (24.97–36.01) | 1.64 (1.20–2.24) p < 0.01 | ||||
High | 184 | 22.8 (18.76–27.27) | |||||||||||
Okamoto, W. et al. (2022) [30] | Phase II | 1st line | VEGF-Asi | Plasma | Low | BEV + CT | 48 | 38 | 1.7 (1.1–2.9) p = 0.029 | 13 | 1.3 (0.8–2.1) p = 0.25 | ||
High | 49 | 26 | 11 | ||||||||||
Weickhardt, A.J. et al. (2015) [31] | Post hoc analysis of MAX trial (Phase III) | 1st line | VEGF-D | Tumor tissue (Immunohistochemical analysis.) | score 0.1+ | BEV + CT | 32 | not reached | 0.35 (0.13–0.90) | 0.01 | 16.8 | 0.22 (0.08–0.55) | 0.02 |
CT | 18.9 | 5.8 | |||||||||||
score 2 | BEV + CT | 117 | 21.6 | 0.82 (0.52–1.30) | 8.8 | 0.67 (0.45–1.0) | |||||||
CT | 20.6 | 6 | |||||||||||
score 3 | BEV + CT | 110 | 19.4 | 1.28 (0.79–2.09) | 9 | 0.77 (0.50–1.17) | |||||||
CT | 24.5 | 7 | |||||||||||
Tabernero, J. et al. (2018) [32] | Planned study of RAISE (Phase III) | 2nd line | VEGF-D | Plasma | Low | RAM + FOLFIRI | 176 | 12.6 (10.7–14.0) | 1.32 (1.02–1.70) p = 0.0344 | 0.0005 | 5.4 (4.2–5.8) | 1.16 (0.93–1.45) p = 0.1930 | <0.0001 |
FOLFIRI | 172 | 13.1 (11.8–17.0) | 5.6 (5.3–6.9) | ||||||||||
High | RAM + FOLFIRI | 270 | 13.9 (12.5–15.6) | 0.73 (0.60–0.89) p = 0.0022 | 6.0 (5.6–7.0) | 0.62 (0.52–0.74) p < 0.0001 | |||||||
FOLFIRI | 266 | 11.5 (10.1–12.4) | 4.2 (4.1–4.5) | ||||||||||
Van Cutsem, E. et al. (2020) [34] | Post hoc analysis of VELOUR trial (Phase III) | 2nd line | VEGF-A | Plasma | Low | AFL + FOLFIRI | 148 | 12.8 (11.6–16.7) | 0.974 (0.735–1.291) p = 0.854 | 6.8 (5.9–7.5) | 0.898 (0.681–1.185) p = 0.448 | ||
FOLFIRI | 139 | 12.9 (11.1–15.1) | 5.5 (4.5–6.7) | ||||||||||
High | AFL + FOLFIRI | 140 | 12.5 (10.4–15.6) | 0.673 (0.508–0.892) p = 0.00566 | 6.9 (5.7–8.3) | 0.660 (90.493–0.885) p = 0.00521 | |||||||
FOLFIRI | 126 | 9.6 (8.5–11.3) | 4.0 (3.0–4.3) |
Anti-EGFR Antibody versus Bevacizumab beyond Bevacizumab | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Clinical Trial | Phase | Previous Regimen | RAS Status | Treatment Arm | n | Primary Endpoint | Median OS, Months (95%CI) | Median PFS, Months (95%CI) | ORR% (95%CI) | HR |
Hecht, J.R. et al. (2015) [67] | II | Oxaliplatin-based chemotherapy with BEV | KRAS wild type | Panitumumab + FOLFIRI | 91 | PFS | 18 (13.5–21.7) | 7.7 (5.7–11.8) | 32 (23–43) | PFS: (1.01; 95%CI: 0.68–1.50; p = 0.97) |
Bevacizumab + FOLFIRI | 91 | 21.4 (16.5–24.6) | 9.2 (7.8–10.6) | 19 (11–29) | ||||||
Shitara, K. et al. (2016) [68] | II | Fluoropyrimidine + oxaliplatin + BEV | KRAS exon 2 (codon 12 or 13) wild type | Panitumumab + FOLFIRI | 59 | OS | 16.2 (12.5–22.4) | 6.0 (5.0–7.5) | 46.2 (32.2–60.5) | OS: (1.16; 95%CI: 0.76–1.77) |
Bevacizumab + FOLFIRI | 58 | 13.4 (11.1–1.77) | 5.9 (3.9–7.8) | 5.7 (1.2–15.7) | ||||||
Bennouna, J. et al. (2019) [69] | II | BEV + FOLFOX or FOLFIRI | KRAS(exons 2, 3, 4) NRAS(exons 2, 3, 4) wild type | Cetuximab + FOLOX or FOLFIRI | 65 | PFS rate at 4 months | 10.4 (7.0–16.2) | 5.6 (4.2–6.5) 66.7% (53.6–76.8) | 31.8 (20.3–43.2) | PFS: (0.71; 95%CI: 0.50–1.02; p = 0.06) |
Bevacizumab + FOLOX or FOLFIRI | 67 | 15.8 (9.5–22.3) | 7.1 (5.7–8.2) 80.3% (68.0–88.3) | 24.6 (14.1–35.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsu, S.; Hironaka, S. Current Status of Angiogenesis Inhibitors as Second-Line Treatment for Unresectable Colorectal Cancer. Cancers 2023, 15, 4564. https://doi.org/10.3390/cancers15184564
Otsu S, Hironaka S. Current Status of Angiogenesis Inhibitors as Second-Line Treatment for Unresectable Colorectal Cancer. Cancers. 2023; 15(18):4564. https://doi.org/10.3390/cancers15184564
Chicago/Turabian StyleOtsu, Satoshi, and Shuichi Hironaka. 2023. "Current Status of Angiogenesis Inhibitors as Second-Line Treatment for Unresectable Colorectal Cancer" Cancers 15, no. 18: 4564. https://doi.org/10.3390/cancers15184564
APA StyleOtsu, S., & Hironaka, S. (2023). Current Status of Angiogenesis Inhibitors as Second-Line Treatment for Unresectable Colorectal Cancer. Cancers, 15(18), 4564. https://doi.org/10.3390/cancers15184564