The Five “Ws” of Frailty Assessment and Chronic Lymphocytic Leukemia: Who, What, Where, Why, and When
Abstract
:Simple Summary
Abstract
1. Introduction
2. Who?
2.1. Age and CLL
2.2. Biology Disease according to Age
2.3. Life Expectancy and Prognostic Models in CLL
3. What?
3.1. Comprehensive Geriatric Assessment
3.2. Comorbidities, Targeted Therapies and CLL
3.2.1. Scales to Assess Comorbidities
3.2.2. Comorbidities with Special Interest with Targeted Therapies
- Cardiovascular comorbidity
- High bleeding risk or patients under antiaggregant/anticoagulant therapies
- Infection
- Renal impairment
- Other comorbidities
4. Where?
5. Why?
6. When?
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balducci, L.; Dolan, D. Chronic Lymphocytic Leukemia in the Elderly: Epidemiology and Proposed Patient-Related Approach. Cancer Control 2015, 22, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, E.R.M.; Vondeling, A.M.; Thielen, N.; van der Griend, R.; Stauder, R.; Hamaker, M.E. Geriatric assessment in older patients with a hematologic malignancy: A systematic review. Haematologica 2020, 105, 1484–1493. [Google Scholar] [CrossRef]
- Kay, N.E.; Hampel, P.J.; Van Dyke, D.L.; Parikh, S.A. CLL update 2022: A continuing evolution in care. Blood Rev. 2022, 54, 100930. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef]
- CLL/SLL NCCN Guidelines. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf (accessed on 3 July 2023).
- Rhodes, J.M.; Barrientos, J.C.; Rai, K.R. How Have Targeted Agents Changed the Treatment Landscape for Elderly Patients with CLL? Curr. Oncol. Rep. 2022, 24, 1705–1713. [Google Scholar] [CrossRef]
- Stauder, R.; Eichhorst, B.; Hamaker, M.E.; Kaplanov, K.; Morrison, V.A.; Österborg, A.; Poddubnaya, I.; Woyach, J.A.; Shanafelt, T.; Smolej, L.; et al. Management of chronic lymphocytic leukemia (CLL) in the elderly: A position paper from an international Society of Geriatric Oncology (SIOG) Task Force. Ann. Oncol. 2017, 28, 218–227. [Google Scholar] [CrossRef]
- Dale, W.; Klepin, H.D.; Williams, G.R.; Alibhai, S.M.H.; Bergerot, C.; Brintzenhofeszoc, K.; Hopkins, J.O.; Jhawer, M.P.; Katheria, V.; Loh, K.P.; et al. Practical Assessment and Management of Vulnerabilities in Older Patients Receiving Systemic Cancer Therapy: ASCO Guideline Update. J. Clin. Oncol. 2023, online ahead of print, JCO2300933. [Google Scholar] [CrossRef]
- Ofori-Asenso, R.; Chin, K.L.; Mazidi, M.; Zomer, E.; Ilomaki, J.; Zullo, A.R.; Gasevic, D.; Ademi, Z.; Korhonen, M.J.; LoGiudice, D.; et al. Global Incidence of Frailty and Prefrailty Among Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e198398. [Google Scholar] [CrossRef]
- Rivas-Ruiz, F.; Machón, M.; Contreras-Fernández, E.; Vrotsou, K.; Padilla-Ruiz, M.; Díez Ruiz, A.I.; de Mesa Berenguer, Y.; Vergara, I. Group GIFEA Prevalence of frailty among community-dwelling elderly persons in Spain and factors associated with it. Eur. J. Gen. Pr. 2019, 25, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.M.; Deodato, M.; Zamprogna, G.; Cairoli, R.; Montillo, M.; Tedeschi, A. SOHO State of the Art Updates and Next Questions: What is Fitness in the Era of Targeted Agents? Clin. Lymphoma Myeloma Leuk. 2022, 22, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A. What is Fitness in the Era of Targeted Agents? Clin. Lymphoma Myeloma Leuk. 2020, 20 (Suppl. S1), S84–S86. [Google Scholar] [CrossRef] [PubMed]
- SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=93&data_type=1&graph_type=2&compareBy=sex&chk_sex_3=3&chk_sex_2=2&hdn_rate_type=1&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (accessed on 20 April 2023).
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- International CLL-IPI working group An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [CrossRef] [PubMed]
- Baumann, T.; Delgado, J.; Santacruz, R.; Martínez-Trillos, A.; Royo, C.; Navarro, A.; Pinyol, M.; Rozman, M.; Pereira, A.; Villamor, N.; et al. Chronic lymphocytic leukemia in the elderly: Clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica 2014, 99, 1599–1604. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Rabe, K.G.; Kay, N.E.; Zent, C.S.; Jelinek, D.F.; Reinalda, M.S.; Schwager, S.M.; Bowen, D.A.; Slager, S.L.; Hanson, C.A.; et al. Age at diagnosis and the utility of prognostic testing in patients with chronic lymphocytic leukemia. Cancer 2010, 116, 4777–4787. [Google Scholar] [CrossRef]
- Strugov, V.; Stadnik, E.; Virts, Y.; Andreeva, T.; Zaritskey, A. Impact of age and comorbidities on the efficacy of FC and FCR regimens in chronic lymphocytic leukemia. Ann. Hematol. 2018, 97, 2153–2161. [Google Scholar] [CrossRef]
- Vojdeman, F.J.; Van’t Veer, M.B.; Tjønnfjord, G.E.; Itälä-Remes, M.; Kimby, E.; Polliack, A.; Wu, K.L.; Doorduijn, J.K.; Alemayehu, W.G.; Wittebol, S.; et al. The HOVON68 CLL trial revisited: Performance status and comorbidity affect survival in elderly patients with chronic lymphocytic leukemia. Leuk. Lymphoma 2017, 58, 594–600. [Google Scholar] [CrossRef]
- Satram-Hoang, S.; Reyes, C.; Hoang, K.Q.; Momin, F.; Skettino, S. Treatment practice in the elderly patient with chronic lymphocytic leukemia-analysis of the combined SEER and Medicare database. Ann. Hematol. 2014, 93, 1335–1344. [Google Scholar] [CrossRef]
- Goede, V.; Cramer, P.; Busch, R.; Bergmann, M.; Stauch, M.; Hopfinger, G.; Stilgenbauer, S.; Döhner, H.; Westermann, A.; Wendtner, C.M.; et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: Results of German Chronic Lymphocytic Leukemia Study Group trials. Haematologica 2014, 99, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Fresa, A.; Autore, F.; Galli, E.; Tomasso, A.; Stirparo, L.; Innocenti, I.; Laurenti, L. Treatment Options for Elderly/Unfit Patients with Chronic Lymphocytic Leukemia in the Era of Targeted Drugs: A Comprehensive Review. J. Clin. Med. 2021, 10, 5104. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Al-Sawaf, O.; Fink, A.-M.; Dixon, M.; Bahlo, J.; Warburton, S.; Kipps, T.J.; Weinkove, R.; Robinson, S.; Seiler, T.; et al. Venetoclax and obinutuzumab in chronic lymphocytic leukemia. Blood 2017, 129, 2702–2705. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Tedeschi, A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N.L.; Li, J.; et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015, 373, 2425–2437. [Google Scholar] [CrossRef] [PubMed]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Kozak, T.; Simkovic, M.; Kaplan, P.; Kraychok, I.; Illes, A.; de la Serna, J.; et al. ASCEND: Phase III, Randomized Trial of Acalabrutinib Versus Idelalisib Plus Rituximab or Bendamustine Plus Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 2849–2861. [Google Scholar] [CrossRef]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao, W.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.A.; et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N. Engl. J. Med. 2018, 379, 2517–2528. [Google Scholar] [CrossRef]
- Burger, J.A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Tedeschi, A.; Bairey, O.; Hillmen, P.; Coutre, S.E.; Devereux, S.; et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 2020, 34, 787–798. [Google Scholar] [CrossRef]
- Isaac, K.; Mato, A.R. Acalabrutinib and Its Therapeutic Potential in the Treatment of Chronic Lymphocytic Leukemia: A Short Review on Emerging Data. Cancer Manag. Res. 2020, 12, 2079–2085. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.-M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef]
- Kater, A.P.; Owen, C.; Moreno, C.; Follows, G.; Munir, T.; Levin, M.-D.; Benjamini, O.; Janssens, A.; Osterborg, A.; Robak, T.; et al. Fixed-Duration Ibrutinib-Venetoclax in Patients with Chronic Lymphocytic Leukemia and Comorbidities. NEJM Evid. 2022, 1, EVIDoa2200006. [Google Scholar] [CrossRef]
- Tam, C.S.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Jurczak, W.; Šimkovič, M.; Shadman, M.; Österborg, A.; Laurenti, L.; et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): A randomised, controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Simon, F.; Giza, A.; Robrecht, S.; Fink, A.-M.; Cramer, P.; von Tresckow, J.; Fürstenau, M.; Goede, V.; Tausch, E.; Schneider, C.; et al. Pooled analysis of first-line treatment with targeted agents in patients with chronic lymphocytic leukemia aged 80 years and older. Leuk. Lymphoma 2022, 63, 3299–3306. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Liu, M.; Fang, X.; Zhou, X.; Li, P.; Li, Y.; Zhang, L.; Liu, F.; Zhang, Y.; Wang, X. Distinct Age-Related Clinical Features and Risk Assessment in Chinese with Chronic Lymphocytic Leukemia. Front. Oncol. 2022, 12, 885150. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.B. p53 mutations associated with aging-related rise in cancer incidence rates. Cell Cycle 2013, 12, 2468–2478. [Google Scholar] [CrossRef] [PubMed]
- Strati, P.; Parikh, S.A.; Chaffee, K.G.; Kay, N.E.; Call, T.G.; Achenbach, S.J.; Cerhan, J.R.; Slager, S.L.; Shanafelt, T.D. Relationship between co-morbidities at diagnosis, survival and ultimate cause of death in patients with chronic lymphocytic leukaemia (CLL): A prospective cohort study. Br. J. Haematol. 2017, 178, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, C.; Mato, A.; Flowers, C.R.; Grinblatt, D.L.; Lamanna, N.; Weiss, M.A.; Davids, M.S.; Swern, A.S.; Bhushan, S.; Sullivan, K.; et al. Characterizing and prognosticating chronic lymphocytic leukemia in the elderly: Prospective evaluation on 455 patients treated in the United States. BMC Cancer 2017, 17, 198. [Google Scholar] [CrossRef]
- Steingrímsson, V.; Lund, S.H.; Dickman, P.W.; Weibull, C.E.; Björkholm, M.; Landgren, O.; Kristinsson, S.Y. Survival, causes of death, and the prognostic role of comorbidities in chronic lymphocytic leukemia in the pre-ibrutinib era: A population-based study. Eur. J. Haematol. 2022, 108, 145–153. [Google Scholar] [CrossRef]
- Rotbain, E.C.; Niemann, C.U.; Rostgaard, K.; da Cunha-Bang, C.; Hjalgrim, H.; Frederiksen, H. Mapping comorbidity in chronic lymphocytic leukemia: Impact of individual comorbidities on treatment, mortality, and causes of death. Leukemia 2021, 35, 2570–2580. [Google Scholar] [CrossRef]
- da Cunha-Bang, C.; Simonsen, J.; Rostgaard, K.; Geisler, C.; Hjalgrim, H.; Niemann, C.U. Improved survival for patients diagnosed with chronic lymphocytic leukemia in the era of chemo-immunotherapy: A Danish population-based study of 10455 patients. Blood Cancer J. 2016, 6, e499. [Google Scholar] [CrossRef]
- Binet, J.L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48, 198–206. [Google Scholar] [CrossRef]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical staging of chronic lymphocytic leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Shanafelt, T.D.; Giannarelli, D.; Gentile, M.; Mirabelli, R.; Cutrona, G.; Levato, L.; Di Renzo, N.; Di Raimondo, F.; Musolino, C.; et al. The chronic lymphocytic leukemia international prognostic index predicts time to first treatment in early CLL: Independent validation in a prospective cohort of early stage patients. Am. J. Hematol. 2016, 91, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Giannarelli, D.; Levato, L.; Mirabelli, R.; Gentile, M.; Morabito, F. Assessing time to first treatment in early chronic lymphocytic leukemia (CLL): A comparative performance analysis of five prognostic models with inclusion of CLL-international prognostic index (CLL-IPI). Leuk. Lymphoma 2017, 58, 1736–1739. [Google Scholar] [CrossRef] [PubMed]
- González-Gascón-Y-Marín, I.; Muñoz-Novas, C.; Figueroa, I.; Hernández-Sánchez, M.; Rodríguez-Vicente, A.-E.; Quijada-Álamo, M.; Pérez-Carretero, C.; Moreno, C.; Collado, R.; Espinet, B.; et al. Prognosis Assessment of Early-Stage Chronic Lymphocytic Leukemia: Are We Ready to Predict Clinical Evolution Without a Crystal Ball? Clin. Lymphoma Myeloma Leuk. 2020, 20, 548–555.e4. [Google Scholar] [CrossRef]
- Molica, S.; Giannarelli, D.; Mirabelli, R.; Levato, L.; Shanafelt, T.D. Chronic lymphocytic leukemia international prognostic index (CLL-IPI) in patients receiving chemoimmuno or targeted therapy: A systematic review and meta-analysis. Ann. Hematol. 2018, 97, 2005–2008. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Bahlo, J.; Kutsch, N.; Fischer, K.; Fink, A.M.; Fingerle-Rowson, G.; Stilgenbauer, S.; Bergmann, M.A.; Eichhorst, B.F.; Hallek, M. Evaluation of the International Prognostic Index for Chronic Lymphocytic Leukemia (CLL-IPI) in Elderly Patients with Comorbidities: Analysis of the CLL11 Study Population. Blood 2016, 128, 4401. [Google Scholar] [CrossRef]
- González-Gascón-y-Marín, I.; Muñoz-Novas, C.; Rodríguez-Vicente, A.-E.; Quijada-Álamo, M.; Hernández-Sánchez, M.; Pérez-Carretero, C.; Ramos-Ascanio, V.; Hernández-Rivas, J.-Á. From Biomarkers to Models in the Changing Landscape of Chronic Lymphocytic Leukemia: Evolve or Become Extinct. Cancers 2021, 13, 1782. [Google Scholar] [CrossRef] [PubMed]
- Kutsch, N. CLL-IPI: Valid in the era of oral inhibitors? Blood 2021, 138, 106–107. [Google Scholar] [CrossRef] [PubMed]
- Condoluci, A.; Terzi di Bergamo, L.; Langerbeins, P.; Hoechstetter, M.A.; Herling, C.D.; De Paoli, L.; Delgado, J.; Rabe, K.G.; Gentile, M.; Doubek, M.; et al. International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia. Blood 2020, 135, 1859–1869. [Google Scholar] [CrossRef]
- Wierda, W.G.; O’Brien, S.; Wang, X.; Faderl, S.; Ferrajoli, A.; Do, K.-A.; Garcia-Manero, G.; Cortes, J.; Thomas, D.; Koller, C.A.; et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J. Clin. Oncol. 2011, 29, 4088–4095. [Google Scholar] [CrossRef]
- Delgado, J.; Doubek, M.; Baumann, T.; Kotaskova, J.; Molica, S.; Mozas, P.; Rivas-Delgado, A.; Morabito, F.; Pospisilova, S.; Montserrat, E. Chronic lymphocytic leukemia: A prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI. Am. J. Hematol. 2017, 92, 375–380. [Google Scholar] [CrossRef]
- Hoechstetter, M.A.; Busch, R.; Eichhorst, B.; Bühler, A.; Winkler, D.; Bahlo, J.; Robrecht, S.; Eckart, M.J.; Vehling-Kaiser, U.; Jacobs, G.; et al. Prognostic model for newly diagnosed CLL patients in Binet stage A: Results of the multicenter, prospective CLL1 trial of the German CLL study group. Leukemia 2020, 34, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Meiseles, A.; Paley, D.; Ziv, M.; Hadid, Y.; Rokach, L.; Tadmor, T. Explainable machine learning for chronic lymphocytic leukemia treatment prediction using only inexpensive tests. Comput. Biol. Med. 2022, 145, 105490. [Google Scholar] [CrossRef] [PubMed]
- Cuturello, F.; Pozzo, F.; Villegas Garcia, E.N.; Rossi, F.M.; Degan, M.; Nanni, P.; Cattarossi, I.; Zaina, E.; Varaschin, P.; Braida, A.; et al. An Unsupervised Machine Learning Method Stratifies Chronic Lymphocytic Leukemia Patients in Novel Categories with Different Risk of Early Treatment. Blood 2022, 140, 4111–4112. [Google Scholar] [CrossRef]
- ePrognosis—About. Available online: https://eprognosis.ucsf.edu/about.php (accessed on 3 July 2023).
- Mohile, S.G.; Dale, W.; Somerfield, M.R.; Schonberg, M.A.; Boyd, C.M.; Burhenn, P.S.; Canin, B.; Cohen, H.J.; Holmes, H.M.; Hopkins, J.O.; et al. Practical Assessment and Management of Vulnerabilities in Older Patients Receiving Chemotherapy: ASCO Guideline for Geriatric Oncology. J. Clin. Oncol. 2018, 36, 2326–2347. [Google Scholar] [CrossRef] [PubMed]
- Koll, T.T.; Rosko, A.E. Frailty in Hematologic Malignancy. Curr. Hematol. Malig. Rep. 2018, 13, 143–154. [Google Scholar] [CrossRef]
- Okoli, G.N.; Stirling, M.; Racovitan, F.; Lam, O.L.; Reddy, V.K.; Copstein, L.; Hsu, T.; Abou-Setta, A.M.; Dawe, D.E. Integration of geriatric assessment into clinical oncology practice: A scoping review. Curr. Probl. Cancer 2021, 45, 100699. [Google Scholar] [CrossRef]
- Klepin, H.D. Ready for prime time: Role for geriatric assessment to improve quality of care in hematology practice. Blood 2019, 134, 2005–2012. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, K.-I. Assessing frailty using comprehensive geriatric assessment in older patients with hematologic malignancy. Blood Res. 2022, 57, 1–5. [Google Scholar] [CrossRef]
- DuMontier, C.; Uno, H.; Hshieh, T.; Zhou, G.; Chen, R.; Magnavita, E.S.; Mozessohn, L.; Javedan, H.; Stone, R.M.; Soiffer, R.J.; et al. Randomized controlled trial of geriatric consultation versus standard care in older adults with hematologic malignancies. Haematologica 2022, 107, 1172–1180. [Google Scholar] [CrossRef]
- Goede, V.; Neuendorff, N.R.; Schulz, R.-J.; Hormigo, A.-I.; Martinez-Peromingo, F.J.; Cordoba, R. Frailty assessment in the care of older people with haematological malignancies. Lancet Healthy Longev. 2021, 2, e736–e745. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, R.; Eyre, T.A.; Klepin, H.D.; Wildes, T.M.; Goede, V. A comprehensive approach to therapy of haematological malignancies in older patients. Lancet Haematol. 2021, 8, e840–e852. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Stauder, R. Multidisciplinary care in the hematology clinic: Implementation of geriatric oncology. J. Geriatr. Oncol. 2019, 10, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.R.; Hopkins, J.O.; Klepin, H.D.; Lowenstein, L.M.; Mackenzie, A.; Mohile, S.G.; Somerfield, M.R.; Dale, W. Practical Assessment and Management of Vulnerabilities in Older Patients Receiving Systemic Cancer Therapy: ASCO Guideline Questions and Answers. JCO Oncol. Pr. 2023, online ahead of print, OP2300263. [Google Scholar] [CrossRef]
- Extermann, M.; Boler, I.; Reich, R.R.; Lyman, G.H.; Brown, R.H.; DeFelice, J.; Levine, R.M.; Lubiner, E.T.; Reyes, P.; Schreiber, F.J.; et al. Predicting the risk of chemotherapy toxicity in older patients: The Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer 2012, 118, 3377–3386. [Google Scholar] [CrossRef]
- Hurria, A.; Mohile, S.; Gajra, A.; Klepin, H.; Muss, H.; Chapman, A.; Feng, T.; Smith, D.; Sun, C.-L.; De Glas, N.; et al. Validation of a Prediction Tool for Chemotherapy Toxicity in Older Adults with Cancer. J. Clin. Oncol. 2016, 34, 2366–2371. [Google Scholar] [CrossRef]
- Johnson, P.C.; Woyach, J.A.; Ulrich, A.; Marcotte, V.; Nipp, R.D.; Lage, D.E.; Nelson, A.M.; Newcomb, R.A.; Rice, J.; Lavoie, M.W.; et al. Geriatric assessment measures are predictive of outcomes in chronic lymphocytic leukemia. J. Geriatr. Oncol. 2023, 14, 101538. [Google Scholar] [CrossRef]
- Gordon, M.J.; Churnetski, M.; Alqahtani, H.; Rivera, X.; Kittai, A.; Amrock, S.M.; James, S.; Hoff, S.; Manda, S.; Spurgeon, S.E.; et al. Comorbidities predict inferior outcomes in chronic lymphocytic leukemia treated with ibrutinib. Cancer 2018, 124, 3192–3200. [Google Scholar] [CrossRef]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Novak, J.; Strugov, V.; Gill, D.; et al. First-line treatment of chronic lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: Final analysis of the randomized, phase III iLLUMINATE trial. Haematologica 2022, 107, 2108–2120. [Google Scholar] [CrossRef]
- Rotbain, E.C.; Gordon, M.J.; Vainer, N.; Frederiksen, H.; Hjalgrim, H.; Danilov, A.V.; Niemann, C.U. The CLL comorbidity index in a population-based cohort: A tool for clinical care and research. Blood Adv. 2022, 6, 2701–2706. [Google Scholar] [CrossRef]
- Gordon, M.J.; Kaempf, A.; Sitlinger, A.; Shouse, G.; Mei, M.; Brander, D.M.; Salous, T.; Hill, B.T.; Alqahtani, H.; Choi, M.; et al. The Chronic Lymphocytic Leukemia Comorbidity Index (CLL-CI): A Three-Factor Comorbidity Model. Clin. Cancer Res. 2021, 27, 4814–4824. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Sestier, M.; Hillis, C.; Fraser, G.; Leong, D. Bruton’s tyrosine kinase Inhibitors and Cardiotoxicity: More Than Just Atrial Fibrillation. Curr. Oncol. Rep. 2021, 23, 113. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, A.; Lamanna, N. Managing toxicities of Bruton tyrosine kinase inhibitors. Hematology 2020, 2020, 336–345. [Google Scholar] [CrossRef]
- Cooperative Group for the Study of Immunoglobulin in Chronic Lymphocytic Leukemia; Gale, R.P.; Chapel, H.M.; Bunch, C.; Rai, K.R.; Foon, K.; Courter, S.G.; Tait, D. Intravenous immunoglobulin for the prevention of infection in chronic lymphocytic leukemia. A randomized, controlled clinical trial. N. Engl. J. Med. 1988, 319, 902–907. [Google Scholar] [CrossRef]
- Wierda, W.G.; Tambaro, F.P. How I manage CLL with venetoclax-based treatments. Blood 2020, 135, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Bonanad, S.; De la Rubia, J.; Gironella, M.; Pérez Persona, E.; González, B.; Fernández Lago, C.; Arnan, M.; Zudaire, M.; Hernández Rivas, J.A.; Soler, A.; et al. Development and psychometric validation of a brief comprehensive health status assessment scale in older patients with hematological malignancies: The GAH Scale. J. Geriatr. Oncol. 2015, 6, 353–361. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; González, B.; de la Rubia, J.; Hernández Rivas, J.Á.; Soler, J.A.; Fernández Lago, C.; Arnao, M.; Gironella, M.; Pérez Persona, E.; Zudaire, M.T.; et al. Further psychometric validation of the GAH scale: Responsiveness and effect size. J. Geriatr. Oncol. 2017, 8, 211–215. [Google Scholar] [CrossRef]
- de la Rubia, J.; González, B.; Cruz-Jentoft, A.J.; Iglesias, L.; Jarque, I.; Persona, E.P.; Lluch, R.; Marrero, C.; Zudaire, M.; Gironella, M.; et al. Geriatric assessment in hematology scale predicts treatment tolerability in older patients diagnosed with hematological malignancies: The RETROGAH study. J. Geriatr. Oncol. 2023, 14, 101401. [Google Scholar] [CrossRef]
- Chapman, A.E.; Elias, R.; Plotkin, E.; Lowenstein, L.M.; Swartz, K. Models of Care in Geriatric Oncology. J. Clin. Oncol. 2021, 39, 2195–2204. [Google Scholar] [CrossRef]
- Loewenthal, J.; DuMontier, C.; Cooper, L.; Frain, L.; Waldman, L.S.; Streiter, S.; Cardin, K.; Tulebaev, S.; Javedan, H.; Orkaby, A.R.; et al. Adaptation of the comprehensive geriatric assessment to a virtual delivery format. Age Ageing 2020, 50, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Wildiers, H.; Heeren, P.; Puts, M.; Topinkova, E.; Janssen-Heijnen, M.L.G.; Extermann, M.; Falandry, C.; Artz, A.; Brain, E.; Colloca, G.; et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J. Clin. Oncol. 2014, 32, 2595–2603. [Google Scholar] [CrossRef] [PubMed]
- Loh, K.P.; Soto-Perez-de-Celis, E.; Hsu, T.; de Glas, N.A.; Battisti, N.M.L.; Baldini, C.; Rodrigues, M.; Lichtman, S.M.; Wildiers, H. What Every Oncologist Should Know About Geriatric Assessment for Older Patients with Cancer: Young International Society of Geriatric Oncology Position Paper. J. Oncol. Pract. 2018, 14, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Wall, S.A.; Huang, Y.; Keiter, A.; Funderburg, A.; Kloock, C.; Yuhasz, N.; Gure, T.R.; Folefac, E.; Stevens, E.; Presley, C.J.; et al. Integration of a Geriatric Assessment with Intervention in the Care of Older Adults with Hematologic Malignancies. Front. Oncol. 2021, 11, 775050. [Google Scholar] [CrossRef] [PubMed]
- Garric, M.; Sourdet, S.; Cabarrou, B.; Steinmeyer, Z.; Gauthier, M.; Ysebaert, L.; Beyne-Rauzy, O.; Gerard, S.; Lozano, S.; Brechemier, D.; et al. Impact of a comprehensive geriatric assessment on decision-making in older patients with hematological malignancies. Eur. J. Haematol. 2021, 106, 616–626. [Google Scholar] [CrossRef]
- Liu, M.A.; DuMontier, C.; Murillo, A.; Hshieh, T.T.; Bean, J.F.; Soiffer, R.J.; Stone, R.M.; Abel, G.A.; Driver, J.A. Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies. Blood 2019, 134, 374–382. [Google Scholar] [CrossRef]
- Soo, W.-K.; King, M.; Pope, A.; Parente, P.; Darzins, P.; Davis, I.D. Integrated geriatric assessment and treatment (INTEGERATE) in older people with cancer planned for systemic anticancer therapy. J. Clin. Oncol. 2020, 38, 12011. [Google Scholar] [CrossRef]
- Goede, V.; Bahlo, J.; Chataline, V.; Eichhorst, B.; Dürig, J.; Stilgenbauer, S.; Kolb, G.; Honecker, F.; Wedding, U.; Hallek, M. Evaluation of geriatric assessment in patients with chronic lymphocytic leukemia: Results of the CLL9 trial of the German CLL study group. Leuk. Lymphoma 2016, 57, 789–796. [Google Scholar] [CrossRef]
- Molica, S.; Giannarelli, D.; Levato, L.; Mirabelli, R.; Levato, D.; Lentini, M.; Piro, E. A simple score based on geriatric assessment predicts survival in elderly newly diagnosed chronic lymphocytic leukemia patients. Leuk. Lymphoma 2019, 60, 845–847. [Google Scholar] [CrossRef]
- Van Der Straten, L.; Stege, C.A.M.; Kersting, S.; Nasserinejad, K.; Dubois, J.; Dobber, J.A.; Mellink, C.H.M.; van der Kevie-Kersemaekers, A.-M.F.; Evers, L.M.; de Boer, F.; et al. Fixed-duration venetoclax plus obinutuzumab improves quality of life and geriatric impairments in FCR-unfit CLL patients. Blood 2023. online ahead of print, blood.2023020195. [Google Scholar] [CrossRef]
- Hallek, M.; Fischer, K.; Fingerle-Rowson, G.; Fink, A.M.; Busch, R.; Mayer, J.; Hensel, M.; Hopfinger, G.; Hess, G.; von Grünhagen, U.; et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: A randomised, open-label, phase 3 trial. Lancet 2010, 376, 1164–1174. [Google Scholar] [CrossRef]
- Eichhorst, B.; Fink, A.-M.; Bahlo, J.; Busch, R.; Kovacs, G.; Maurer, C.; Lange, E.; Köppler, H.; Kiehl, M.; Sökler, M.; et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): An international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016, 17, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.-S.; Illmer, T.; et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 2014, 370, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: First-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao, W.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.; et al. Long-Term Results of Alliance A041202 Show Continued Advantage of Ibrutinib-Based Regimens Compared with Bendamustine Plus Rituximab (BR) Chemoimmunotherapy. Blood 2021, 138, 639. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef]
- Mato, A.R.; Thompson, M.; Allan, J.N.; Brander, D.M.; Pagel, J.M.; Ujjani, C.S.; Hill, B.T.; Lamanna, N.; Lansigan, F.; Jacobs, R.; et al. Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States. Haematologica 2018, 103, 1511–1517. [Google Scholar] [CrossRef]
- Mato, A.R.; Nabhan, C.; Thompson, M.C.; Lamanna, N.; Brander, D.M.; Hill, B.; Howlett, C.; Skarbnik, A.; Cheson, B.D.; Zent, C.; et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: A real-world analysis. Haematologica 2018, 103, 874–879. [Google Scholar] [CrossRef]
- Ysebaert, L.; Aurran-Schleinitz, T.; Dartigeas, C.; Dilhuydy, M.-S.; Feugier, P.; Michallet, A.-S.; Tournilhac, O.; Dupuis, J.; Sinet, P.; Albrecht, C.; et al. Real-world results of ibrutinib in relapsed/refractory CLL in France: Early results on a large series of 428 patients. Am. J. Hematol. 2017, 92, E166–E168. [Google Scholar] [CrossRef]
- Chronische Lymphatische Leukämie (CLL). Available online: https://www.onkopedia.com/de/onkopedia/guidelines/chronische-lymphatische-leukaemie-cll (accessed on 26 July 2023).
- Guía de Tratamiento de la LLC. Available online: https://www.gellc.es/noticias/110-guia-de-tratamiento-de-la-llc (accessed on 28 July 2023).
- Zuccarino, S.; Monacelli, F.; Antognoli, R.; Nencioni, A.; Monzani, F.; Ferrè, F.; Seghieri, C.; Antonelli Incalzi, R. Exploring Cost-Effectiveness of the Comprehensive Geriatric Assessment in Geriatric Oncology: A Narrative Review. Cancers 2022, 14, 3235. [Google Scholar] [CrossRef] [PubMed]
Spanish Cohort [18] | p | Chinese Cohort [35] | p | Mayo Clinic Cohort [19] | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 949 | 601 | 2487 | ||||||||||
Years since diagnosis | 1990–2012 | 2010–2021 | 1995–2008 | ||||||||||
Age | <59 | 60–69 | 70–79 | >80 | <60 | ≥60 | <55 | 55–64 | 65–74 | ≥75 | |||
Sex, male (%) | 65 | 59 | 51 | 53 | 0.004 | 55.4 | 55.2 | NS | 68 | 69 | 66 | 68 | NS |
Rai (%) | |||||||||||||
0 | 48 | 66 | 62 | 63 | <0.001 | 7.5 | 7.6 | NS | 43 | 56 | 57 | 58 | <0.01 |
I/II | 47 | 29 | 29 | 19 | 51.3 | 48.3 | 53 | 38 | 38 | 31 | |||
III/IV | 5 | 5 | 9 | 18 | 41.2 | 44.2 | 4 | 6 | 6 | 12 | |||
IGHV unmutated (%) | 51 | 39 | 44 | 43 | NS | 34.3 | 32.6 | NS | 49 | 46 | 41 | 41 | NS |
FISH (%) | |||||||||||||
del 13q | 32 | 38 | 39 | 42 | NS | 39.3 | 36.3 | NS | 44 | 43 | 41 | 34 | NA |
Normal | 27 | 33 | 29 | 30 | 32.1 | 42.9 | 27 | 24 | 26 | 28 | |||
+12 | 14 | 13 | 15 | 9 | 14.3 | 15.4 | 16 | 20 | 19 | 23 | |||
del 11q | 15 | 10 | 10 | 12 | 19.6 | 9.9 | 8 | 8 | 7 | 11 | |||
del 17p | 12 | 6 | 7 | 7 | 12.5 | 14.3 | 4 | 3 | 5 | 4 |
Goede et al. 2016 [91] | Molica et al. 2019 [92] | Johnson et al. 2023 [70] | Van der Straten et al. 2023 [93] | |
---|---|---|---|---|
Study type | Phase 3 clinical trial (CLL9) | Real life | Phase 3 clinical trial (ALLIANCE) | Phase 2 trial (HOVON 139/GiVe) |
Treatments and N of patients | Fludarabine +/− darbopoetin α (N = 97) | No treatment (50) | BR (N = 113) | Ven-O (N = 67) |
Treatment (58) | Ibrutinib (N = 130) | |||
Chl (56.8%) | Ibrutinib-R (N = 126) | |||
Chl-R (8.6%) | ||||
BR (18.9%) | ||||
Ibrutinib (10.3%) | ||||
FCR (5.1%) | ||||
Baseline characteristics | ||||
Age of patients | 75 (range, 48–87) | 71 (range, 65–90) 32.7% > 75 years old | 71 (range 65–87) | 71 (IQR 68–75) 69% > 79 years old |
Comorbidities | Median CIRS 5 (0–23); CIRS > 6 36% | CIRS > 6 15.7% | Median N 2 (range 0–14) | CIRS 3 (1–5), CIRS ≥ 7 20% |
ECOG (median (range) | 1 (0–2) | 0–4 included but % NA | 0–1 --> 98%; 2 --> 2% | Only 0–1 |
GA domains | ||||
Comorbidities | CIRS | CIRS > 6 15.7% | N of comorbidities | CCI |
Functional | IADL, timed “Up & Go” | ADL, IADL | ADL, timed “Up & Go”, MOS-physical functioning score | ADL, IADL, grip strength |
Mood | Anxiety score, mood score | GDS | ||
Nutrition | MNA | Unintentional weight loss in last 6 months, BMI | MNA | |
Cognition | DEMTECT | BOMC | MMSE | |
Social | MOS-SSS, social scores | |||
Geriatric syndromes | Falls | Sarcopenia EWGSOP1 and 2, muscle mass (SMI) and quality (MRA) | ||
Toxicity scale | CARG | |||
HRQoL | EORTC-QLC &C30 and CLL17 | |||
Moment of GA | Prior to treatment initiation | NA | Prior to therapy | Prior to therapy |
After 6 months | After 12 months | |||
After 2 years or at discontinuation | After 15 months | |||
Median follow-up time | NA | 66 months (range, 3–330) | NA | 44 months |
Most common impairments | Comorbidities | NA | Social, nutritional, functional | Comorbidities, gait speed, and nutrition |
Association of GA domains and outcomes | Analyzed N of impairments. Did not analyze each geriatric domain | |||
Toxicity | Treatment delays associated with functional impairment | None | Toxicity if ≥2 impairments | |
PFS | Cognition | Social support, nutritional | No impact | |
OS | Functional and cognition | Age (>75), CIRS > 4, ADL < 5 | Social support | No impact |
Evolution over time | NA | NA | Improvements in performance status and weight; reduction in anxiety | Improvement of HRQoL over time irrespective of N of geriatric impairments |
Others | Made a frailty score that divided patients into 3 groups (fit, intermediate-fit, and frail) able to predict OS | CARG did not predict toxicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Gascón-y-Marín, I.; Ballesteros-Andrés, M.; Martínez-Flores, S.; Rodríguez-Vicente, A.-E.; Pérez-Carretero, C.; Quijada-Álamo, M.; Rodríguez-Sánchez, A.; Hernández-Rivas, J.-Á. The Five “Ws” of Frailty Assessment and Chronic Lymphocytic Leukemia: Who, What, Where, Why, and When. Cancers 2023, 15, 4391. https://doi.org/10.3390/cancers15174391
González-Gascón-y-Marín I, Ballesteros-Andrés M, Martínez-Flores S, Rodríguez-Vicente A-E, Pérez-Carretero C, Quijada-Álamo M, Rodríguez-Sánchez A, Hernández-Rivas J-Á. The Five “Ws” of Frailty Assessment and Chronic Lymphocytic Leukemia: Who, What, Where, Why, and When. Cancers. 2023; 15(17):4391. https://doi.org/10.3390/cancers15174391
Chicago/Turabian StyleGonzález-Gascón-y-Marín, Isabel, Mónica Ballesteros-Andrés, Sara Martínez-Flores, Ana-E Rodríguez-Vicente, Claudia Pérez-Carretero, Miguel Quijada-Álamo, Alberto Rodríguez-Sánchez, and José-Ángel Hernández-Rivas. 2023. "The Five “Ws” of Frailty Assessment and Chronic Lymphocytic Leukemia: Who, What, Where, Why, and When" Cancers 15, no. 17: 4391. https://doi.org/10.3390/cancers15174391
APA StyleGonzález-Gascón-y-Marín, I., Ballesteros-Andrés, M., Martínez-Flores, S., Rodríguez-Vicente, A. -E., Pérez-Carretero, C., Quijada-Álamo, M., Rodríguez-Sánchez, A., & Hernández-Rivas, J. -Á. (2023). The Five “Ws” of Frailty Assessment and Chronic Lymphocytic Leukemia: Who, What, Where, Why, and When. Cancers, 15(17), 4391. https://doi.org/10.3390/cancers15174391