Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Markers in CRC
3. Histopathology as a Disease Marker in CRC
3.1. Consensus Molecular Subtypes (CMS)
3.2. Tumor Budding (TB)
3.3. ImmunoScore®
3.4. The Circumferential Resection Margin (CRM)
3.5. The Mucinous Component
4. Immunotherapy Biomarkers in CRC
4.1. Human Leukocyte Antigen Class I (HLA-I)
4.2. Tumor Microenvironment (TME)
4.3. Transforming Growth Factor Beta (TGF-β)
4.4. Interferon Gamma (IFN-γ)
4.5. Tumor Mutational Burden (TMB)
4.6. Tumor Infiltrating Lymphocytes (TILs)
4.7. Tumor-Associated Macrophages (TAMs)
5. Markers of Response to Radiotherapy
6. Determination of Tumor Markers
6.1. Sample Types
6.1.1. Liquid Biopsy (LB)
6.1.2. cfDNA and ctDNA
6.2. Biomarker Types
6.2.1. miRNA
6.2.2. CTC
6.3. Biomarker Measurement Techniques
6.3.1. NGS
6.3.2. PCR
7. Molecular Tumor Board (MTB)
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia-Alfonso, P.; Garcia-Carbonero, R.; Garcia-Foncillas, J.; Perez-Segura, P.; Salazar, R.; Vera, R.; Ramon, Y.C.S.; Hernandez-Losa, J.; Landolfi, S.; Musulen, E.; et al. Update of the recommendations for the determination of biomarkers in colorectal carcinoma: National consensus of the spanish society of medical oncology and the spanish society of pathology. Clin. Transl. Oncol. 2020, 22, 1976–1991. [Google Scholar] [CrossRef] [PubMed]
- Venook, A.P.; Niedzwiecki, D.; Lenz, H.J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O’Neil, B.H.; Atkins, J.N.; et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with kras wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA 2017, 317, 2392–2401. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Arend, R.; Dai, Q.; Levesque, J.A.; Winokur, T.S.; Guo, R.; Heslin, M.J.; Nabell, L.; Nabors, L.B.; Limdi, N.A.; et al. Implementation and utilization of the molecular tumor board to guide precision medicine. Oncotarget 2017, 8, 57845–57854. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Lawlor, R.T.; Milella, M.; Scarpa, A. Molecular tumor boards in clinical practice. Trends Cancer 2020, 6, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Alves Martins, B.A.; de Bulhoes, G.F.; Cavalcanti, I.N.; Martins, M.M.; de Oliveira, P.G.; Martins, A.M.A. Biomarkers in colorectal cancer: The role of translational proteomics research. Front. Oncol. 2019, 9, 1284. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, L.; Yu, J.; Xiang, Y.; Shen, M.; Wasan, H.S.; Ruan, S.; Qiu, S. Identification of biomarkers in colon cancer based on bioinformatic analysis. Transl. Cancer Res. 2020, 9, 4879–4895. [Google Scholar] [CrossRef]
- Larson, K.L.; Huang, B.; Weiss, H.L.; Hull, P.; Westgate, P.M.; Miller, R.W.; Arnold, S.M.; Kolesar, J.M. Clinical outcomes of molecular tumor boards: A systematic review. JCO Precis. Oncol. 2021, 5, 1122–1132. [Google Scholar] [CrossRef]
- Hoefflin, R.; Lazarou, A.; Hess, M.E.; Reiser, M.; Wehrle, J.; Metzger, P.; Frey, A.V.; Becker, H.; Aumann, K.; Berner, K.; et al. Transitioning the molecular tumor board from proof of concept to clinical routine: A german single-center analysis. Cancers 2021, 13, 1151. [Google Scholar] [CrossRef]
- Afrasanie, V.A.; Marinca, M.V.; Alexa-Stratulat, T.; Gafton, B.; Paduraru, M.; Adavidoaiei, A.M.; Miron, L.; Rusu, C. Kras, nras, braf, her2 and microsatellite instability in metastatic colorectal cancer—Practical implications for the clinician. Radiol. Oncol. 2019, 53, 265–274. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology—Colon Cancer. Version 3.2022—27 January 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 22 February 2023).
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology—Rectal Cancer. Version 4.2022—25 January 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (accessed on 22 February 2023).
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Liang, L.; Tian, J.; Yu, Y.; Wang, Z.; Peng, K.; Liu, R.; Wang, Y.; Xu, X.; Li, H.; Zhuang, R.; et al. An analysis of relationship between ras mutations and prognosis of primary tumour resection for metastatic colorectal cancer patients. Cell. Physiol. Biochem. 2018, 50, 768–782. [Google Scholar] [CrossRef]
- Rui, Y.; Wang, C.; Zhou, Z.; Zhong, X.; Yu, Y. K-ras mutation and prognosis of colorectal cancer: A meta-analysis. Hepatogastroenterology 2015, 62, 19–24. [Google Scholar]
- Lenz, H.; Niedzwiecki, D.; Innocenti, F.; Blanke, C.; Mahony, M.R.; O’Neil, B.H.; Shaw, J.E.; Polite, B.; Hochster, H.; Atkins, J.; et al. Calgb/swog 80405: Phase iii trial of irinotecan/5-fu/leucovorin (folfiri) or oxaliplatin/5-fu/leucovorin (mfolfox6) with bevacizumab (bv) or cetuximab (cet) for patients (pts) with expanded ras analyses untreated metastatic adenocarcinoma of the colon or rectum (mcrc). Ann. Oncol. 2014, 25, v1–v41. [Google Scholar]
- Ottaiano, A.; Normanno, N.; Facchini, S.; Cassata, A.; Nappi, A.; Romano, C.; Silvestro, L.; De Stefano, A.; Rachiglio, A.M.; Roma, C.; et al. Study of ras mutations’ prognostic value in metastatic colorectal cancer: Storia analysis. Cancers 2020, 12, 1919. [Google Scholar] [CrossRef]
- Tosi, F.; Magni, E.; Amatu, A.; Mauri, G.; Bencardino, K.; Truini, M.; Veronese, S.; De Carlis, L.; Ferrari, G.; Nichelatti, M.; et al. Effect of kras and braf mutations on survival of metastatic colorectal cancer after liver resection: A systematic review and meta-analysis. Clin. Colorectal Cancer 2017, 16, e153–e163. [Google Scholar] [CrossRef]
- Pikoulis, E.; Papaconstantinou, D.; Pikouli, A.; Wang, J.; Theodoridis, C.; Margonis, G.A. Reevaluating the prognostic value of ras mutation status in patients with resected liver metastases from colorectal cancer: A systematic review and meta-analysis. J. Hepatobiliary Pancreat. Sci. 2021, 28, 637–647. [Google Scholar] [CrossRef]
- Huang, J.; Zang, Q.; Wen, Y.; Pan, Z.; Yao, Z.; Huang, M.; Huang, J.; Chen, J.; Wang, R. Prognostic value of kras mutation in patients undergoing pulmonary metastasectomy for colorectal cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2021, 160, 103308. [Google Scholar] [CrossRef]
- De Renzi, G.; Gaballo, G.; Gazzaniga, P.; Nicolazzo, C. Molecular biomarkers according to primary tumor location in colorectal cancer: Current standard and new insights. Oncology 2021, 99, 135–143. [Google Scholar] [CrossRef]
- Ruiz-Banobre, J.; Goel, A. Genomic and epigenomic biomarkers in colorectal cancer: From diagnosis to therapy. Adv. Cancer Res. 2021, 151, 231–304. [Google Scholar]
- Hecht, J.R.; Douillard, J.Y.; Schwartzberg, L.; Grothey, A.; Kopetz, S.; Rong, A.; Oliner, K.S.; Sidhu, R. Extended ras analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer. Cancer Treat Rev. 2015, 41, 653–659. [Google Scholar] [CrossRef]
- Bokemeyer, C.; Bondarenko, I.; Hartmann, J.T.; de Braud, F.; Schuch, G.; Zubel, A.; Celik, I.; Schlichting, M.; Koralewski, P. Efficacy according to biomarker status of cetuximab plus folfox-4 as first-line treatment for metastatic colorectal cancer: The opus study. Ann. Oncol. 2011, 22, 1535–1546. [Google Scholar] [CrossRef]
- Bokemeyer, C.; Kohne, C.H.; Ciardiello, F.; Lenz, H.J.; Heinemann, V.; Klinkhardt, U.; Beier, F.; Duecker, K.; van Krieken, J.H.; Tejpar, S. Folfox4 plus cetuximab treatment and ras mutations in colorectal cancer. Eur. J. Cancer 2015, 51, 1243–1252. [Google Scholar] [CrossRef]
- Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Randomized, phase iii trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (folfox4) versus folfox4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The prime study. J. Clin. Oncol. 2010, 28, 4697–4705. [Google Scholar] [CrossRef]
- Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Panitumumab-folfox4 treatment and ras mutations in colorectal cancer. N. Engl. J. Med. 2013, 369, 1023–1034. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Kohne, C.H.; Hitre, E.; Zaluski, J.; Chang Chien, C.R.; Makhson, A.; D’Haens, G.; Pinter, T.; Lim, R.; Bodoky, G.; et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J Med. 2009, 360, 1408–1417. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Kohne, C.H.; Lang, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor kras and braf mutation status. J. Clin. Oncol. 2011, 29, 2011–2019. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Lenz, H.J.; Kohne, C.H.; Heinemann, V.; Tejpar, S.; Melezinek, I.; Beier, F.; Stroh, C.; Rougier, P.; van Krieken, J.H.; et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and ras mutations in colorectal cancer. J. Clin. Oncol. 2015, 33, 692–700. [Google Scholar] [CrossRef]
- Qin, S.; Li, J.; Wang, L.; Xu, J.; Cheng, Y.; Bai, Y.; Li, W.; Xu, N.; Lin, L.Z.; Wu, Q.; et al. Efficacy and tolerability of first-line cetuximab plus leucovorin, fluorouracil, and oxaliplatin (folfox-4) versus folfox-4 in patients with ras wild-type metastatic colorectal cancer: The open-label, randomized, phase iii tailor trial. J. Clin. Oncol. 2018, 36, 3031–3039. [Google Scholar] [CrossRef]
- Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.E.; Heintges, T.; Lerchenmuller, C.; Kahl, C.; Seipelt, G.; et al. Folfiri plus cetuximab or bevacizumab for advanced colorectal cancer: Final survival and per-protocol analysis of fire-3, a randomised clinical trial. Br. J. Cancer 2021, 124, 587–594. [Google Scholar] [CrossRef]
- Rivera, F.; Karthaus, M.; Hecht, J.R.; Sevilla, I.; Forget, F.; Fasola, G.; Canon, J.L.; Guan, X.; Demonty, G.; Schwartzberg, L.S. Final analysis of the randomised peak trial: Overall survival and tumour responses during first-line treatment with mfolfox6 plus either panitumumab or bevacizumab in patients with metastatic colorectal carcinoma. Int. J. Colorectal Dis. 2017, 32, 1179–1190. [Google Scholar] [CrossRef]
- Cremolini, C.; Rossini, D.; Dell’Aquila, E.; Lonardi, S.; Conca, E.; Del Re, M.; Busico, A.; Pietrantonio, F.; Danesi, R.; Aprile, G.; et al. Rechallenge for patients with ras and braf wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: A phase 2 single-arm clinical trial. JAM.A Oncol. 2019, 5, 343–350. [Google Scholar] [CrossRef]
- Sepulveda, A.R.; Hamilton, S.R.; Allegra, C.J.; Grody, W.; Cushman-Vokoun, A.M.; Funkhouser, W.K.; Kopetz, S.E.; Lieu, C.; Lindor, N.M.; Minsky, B.D.; et al. Molecular biomarkers for the evaluation of colorectal cancer: Guideline from the american society for clinical pathology, college of american pathologists, association for molecular pathology, and the american society of clinical oncology. J. Clin. Oncol. 2017, 35, 1453–1486. [Google Scholar] [CrossRef]
- Angerilli, V.; Sabella, G.; Centonze, G.; Lonardi, S.; Bergamo, F.; Mangogna, A.; Pietrantonio, F.; Fassan, M.; Milione, M. Braf-mutated colorectal adenocarcinomas: Pathological heterogeneity and clinical implications. Crit. Rev. Oncol. Hematol. 2022, 172, 103647. [Google Scholar] [CrossRef]
- Grothey, A.; Fakih, M.; Tabernero, J. Management of braf-mutant metastatic colorectal cancer: A review of treatment options and evidence-based guidelines. Ann. Oncol. 2021, 32, 959–967. [Google Scholar] [CrossRef]
- Kopetz, S.; Guthrie, K.A.; Morris, V.K.; Lenz, H.J.; Magliocco, A.M.; Maru, D.; Yan, Y.; Lanman, R.; Manyam, G.; Hong, D.S.; et al. Randomized trial of irinotecan and cetuximab with or without vemurafenib in braf-mutant metastatic colorectal cancer (swog s1406). J. Clin. Oncol. 2021, 39, 285–294. [Google Scholar] [CrossRef]
- Heald, B.; Hampel, H.; Church, J.; Dudley, B.; Hall, M.J.; Mork, M.E.; Singh, A.; Stoffel, E.; Stoll, J.; You, Y.N.; et al. Collaborative group of the americas on inherited gastrointestinal cancer position statement on multigene panel testing for patients with colorectal cancer and/or polyposis. FAm. Cancer 2020, 19, 223–239. [Google Scholar] [CrossRef]
- Diaz, L.A., Jr.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (keynote-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022, 23, 659–670. [Google Scholar] [CrossRef]
- Baxter, N.N.; Kennedy, E.B.; Bergsland, E.; Berlin, J.; George, T.J.; Gill, S.; Gold, P.J.; Hantel, A.; Jones, L.; Lieu, C.; et al. Adjuvant therapy for stage ii colon cancer: Asco guideline update. J. Clin. Oncol. 2022, 40, 892–910. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, B.; Wang, Y.; Li, M.; Liu, X.; Cao, J.; Li, C.; Hu, J. Clinicopathological and prognostic significance of pd-l1 expression in colorectal cancer: A meta-analysis. Int. J. Colorectal Dis. 2021, 36, 117–130. [Google Scholar] [CrossRef]
- Shen, Z.; Gu, L.; Mao, D.; Chen, M.; Jin, R. Clinicopathological and prognostic significance of pd-l1 expression in colorectal cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 17, 4. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Q.; Gao, Z.; Yu, Z.; Wu, Y.; Lu, Q. Programmed death-ligand 1 and survival in colorectal cancers: A meta-analysis. Int. J. Biol. Mark. 2019, 34, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.H.; Cavalcanti, M.S.; Segal, N.H.; Hechtman, J.F.; Weiser, M.R.; Smith, J.J.; Garcia-Aguilar, J.; Sadot, E.; Ntiamoah, P.; Markowitz, A.J.; et al. Patterns and prognostic relevance of pd-1 and pd-l1 expression in colorectal carcinoma. Mod. Pathol. 2016, 29, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Overman, M.J.; Ernstoff, M.S.; Morse, M.A. Where we stand with immunotherapy in colorectal cancer: Deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Grothey, A.; Arnold, D.; de Gramont, A.; Ducreux, M.; O’Dwyer, P.; Tahiri, A.; Gilberg, F.; Irahara, N.; Schmoll, H.J.; et al. Modul cohort 2: An adaptable, randomized, signal-seeking trial of fluoropyrimidine plus bevacizumab with or without atezolizumab maintenance therapy for braf(wt) metastatic colorectal cancer. ESMO Open 2022, 7, 100559. [Google Scholar] [CrossRef] [PubMed]
- Huijberts, S.; Boelens, M.C.; Bernards, R.; Opdam, F.L. Mutational profiles associated with resistance in patients with brafv600e mutant colorectal cancer treated with cetuximab and encorafenib +/− binimetinib or alpelisib. Br. J. Cancer 2021, 124, 176–182. [Google Scholar] [CrossRef]
- Li, P.; Huang, T.; Zou, Q.; Liu, D.; Wang, Y.; Tan, X.; Wei, Y.; Qiu, H. Fgfr2 promotes expression of pd-l1 in colorectal cancer via the jak/stat3 signaling pathway. J. Immunol. 2019, 202, 3065–3075. [Google Scholar] [CrossRef]
- Yonesaka, K.; Zejnullahu, K.; Okamoto, I.; Satoh, T.; Cappuzzo, F.; Souglakos, J.; Ercan, D.; Rogers, A.; Roncalli, M.; Takeda, M.; et al. Activation of erbb2 signaling causes resistance to the egfr-directed therapeutic antibody cetuximab. Sci. Transl. Med. 2011, 3, 99ra86. [Google Scholar] [CrossRef]
- Valtorta, E.; Martino, C.; Sartore-Bianchi, A.; Penaullt-Llorca, F.; Viale, G.; Risio, M.; Rugge, M.; Grigioni, W.; Bencardino, K.; Lonardi, S.; et al. Assessment of a her2 scoring system for colorectal cancer: Results from a validation study. Mod. Pathol. 2015, 28, 1481–1491. [Google Scholar] [CrossRef]
- Yagisawa, M.; Sawada, K.; Nakamura, Y.; Fujii, S.; Yuki, S.; Komatsu, Y.; Yoshino, T.; Sakamoto, N.; Taniguchi, H. Prognostic value and molecular landscape of her2 low-expressing metastatic colorectal cancer. Clin. Colorectal Cancer 2021, 20, 113–120 e111. [Google Scholar] [CrossRef]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (ngs) for patients with metastatic cancers: A report from the esmo precision medicine working group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Di Nicolantonio, F.; Schrock, A.B.; Lee, J.; Tejpar, S.; Sartore-Bianchi, A.; Hechtman, J.F.; Christiansen, J.; Novara, L.; Tebbutt, N.; et al. Alk, ros1, and ntrk rearrangements in metastatic colorectal cancer. J. Nat.l. Cancer Inst. 2017, 109, djx089. [Google Scholar] [CrossRef] [PubMed]
- Medico, E.; Russo, M.; Picco, G.; Cancelliere, C.; Valtorta, E.; Corti, G.; Buscarino, M.; Isella, C.; Lamba, S.; Martinoglio, B.; et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat. Commun. 2015, 6, 7002. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, S.Y.; He, H.L.; Weng, T.S.; Lin, C.Y.; Chao, C.M.; Huang, W.T.; Tsao, C.J. Colorectal cancer with eml4-alk fusion gene response to alectinib: A case report and review of the literature. Case Rep. Oncol. 2021, 14, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Stahler, A.; Heinemann, V.; Neumann, J.; Crispin, A.; Schalhorn, A.; Stintzing, S.; Giessen-Jung, C.; Fischer von Weikersthal, L.; Vehling-Kaiser, U.; Stauch, M.; et al. Prevalence and influence on outcome of her2/neu, her3 and nrg1 expression in patients with metastatic colorectal cancer. Anticancer Drugs 2017, 28, 717–722. [Google Scholar] [CrossRef]
- Bardelli, A.; Corso, S.; Bertotti, A.; Hobor, S.; Valtorta, E.; Siravegna, G.; Sartore-Bianchi, A.; Scala, E.; Cassingena, A.; Zecchin, D.; et al. Amplification of the met receptor drives resistance to anti-egfr therapies in colorectal cancer. Cancer Dis. 2013, 3, 658–673. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, J.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Park, Y.S.; Kim, S.T. C-met overexpression in colorectal cancer: A poor prognostic factor for survival. Clin. Colorectal Cancer 2018, 17, 165–169. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.F.; Zou, J.; Luo, Z.H. Prognostic value of c-met in colorectal cancer: A meta-analysis. World J. Gastroenterol. 2015, 21, 3706–3710. [Google Scholar] [CrossRef]
- Ge, X.C.; Wu, F.; Li, W.T.; Zhu, X.J.; Liu, J.W.; Wang, B.L. Upregulation of wee1 is a potential prognostic biomarker for patients with colorectal cancer. Oncol. Lett. 2017, 13, 4341–4348. [Google Scholar] [CrossRef]
- Seligmann, J.F.; Fisher, D.J.; Brown, L.C.; Adams, R.A.; Graham, J.; Quirke, P.; Richman, S.D.; Butler, R.; Domingo, E.; Blake, A.; et al. Inhibition of wee1 is effective in tp53- and ras-mutant metastatic colorectal cancer: A randomized trial (focus4-c) comparing adavosertib (azd1775) with active monitoring. J. Clin. Oncol. 2021, 39, 3705–3715. [Google Scholar] [CrossRef]
- Moretto, R.; Elliott, A.; Zhang, J.; Arai, H.; Germani, M.M.; Conca, V.; Xiu, J.; Stafford, P.; Oberley, M.; Abraham, J.; et al. Homologous recombination deficiency alterations in colorectal cancer: Clinical, molecular, and prognostic implications. J. Natl. Cancer Inst. 2022, 114, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Elliott, A.; Xiu, J.; Wang, J.; Battaglin, F.; Kawanishi, N.; Soni, S.; Zhang, W.; Millstein, J.; Sohal, D.; et al. The landscape of alterations in DNA damage response pathways in colorectal cancer. Clin. Cancer Res. 2021, 27, 3234–3242. [Google Scholar] [CrossRef]
- Ben-Aharon, I.; Goshen-Lago, T.; Sternschuss, M.; Morgenstern, S.; Geva, R.; Beny, A.; Dror, Y.; Steiner, M.; Hubert, A.; Idelevich, E.; et al. Sidedness matters: Surrogate biomarkers prognosticate colorectal cancer upon anatomic location. Oncologist 2019, 24, e696–e701. [Google Scholar] [CrossRef] [PubMed]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Flejou, J.F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the international tumor budding consensus conference (itbcc) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Rebersek, M. Consensus molecular subtypes (cms) in metastatic colorectal cancer—Personalized medicine decision. Radiol. Oncol. 2020, 54, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Lugli, A.; Zlobec, I.; Berger, M.D.; Kirsch, R.; Nagtegaal, I.D. Tumour budding in solid cancers. Nat. Rev. Clin. Oncol. 2021, 18, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Haddad, T.S.; Lugli, A.; Aherne, S.; Barresi, V.; Terris, B.; Bokhorst, J.M.; Brockmoeller, S.F.; Cuatrecasas, M.; Simmer, F.; El-Zimaity, H.; et al. Improving tumor budding reporting in colorectal cancer: A delphi consensus study. Virchows Arch. 2021, 479, 459–469. [Google Scholar] [CrossRef]
- Mlecnik, B.; Bifulco, C.; Bindea, G.; Marliot, F.; Lugli, A.; Lee, J.J.; Zlobec, I.; Rau, T.T.; Berger, M.D.; Nagtegaal, I.D.; et al. Multicenter international society for immunotherapy of cancer study of the consensus immunoscore for the prediction of survival and response to chemotherapy in stage iii colon cancer. J. Clin. Oncol. 2020, 38, 3638–3651. [Google Scholar] [CrossRef]
- Loughrey, M.B.; Webster, F.; Arends, M.J.; Brown, I.; Burgart, L.J.; Cunningham, C.; Flejou, J.F.; Kakar, S.; Kirsch, R.; Kojima, M.; et al. Dataset for pathology reporting of colorectal cancer: Recommendations from the international collaboration on cancer reporting (iccr). Ann. Surg. 2022, 275, e549–e561. [Google Scholar] [CrossRef]
- Reynolds, I.S.; Cromwell, P.M.; Hoti, E. Clinicopathological characteristics and survival outcomes for patients with mucinous colorectal cancer liver metastases undergoing hepatic resection: A systematic review and meta-analysis. Am. J. Surg. 2021, 222, 529–535. [Google Scholar] [CrossRef]
- Reynolds, I.S.; Furney, S.J.; Kay, E.W.; McNamara, D.A.; Prehn, J.H.M.; Burke, J.P. Meta-analysis of the molecular associations of mucinous colorectal cancer. Br. J. Surg. 2019, 106, 682–691. [Google Scholar] [CrossRef]
- Song, I.H.; Hong, S.M.; Yu, E.; Yoon, Y.S.; Park, I.J.; Lim, S.B.; Kim, J.C.; Yu, C.S.; Kim, J. Signet ring cell component predicts aggressive behaviour in colorectal mucinous adenocarcinoma. Pathology 2019, 51, 384–391. [Google Scholar] [CrossRef]
- Benesch, M.G.K.; Mathieson, A. Epidemiology of mucinous adenocarcinomas. Cancers 2020, 12, 3193. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, X.; Gao, J.; Li, J.; Li, J.; Qi, C.; Li, Y.; Li, Z.; Shen, L. Clinicopathologic and molecular features of colorectal adenocarcinoma with signet-ring cell component. PLoS ONE 2016, 11, e0156659. [Google Scholar] [CrossRef]
- Anderson, P.; Aptsiauri, N.; Ruiz-Cabello, F.; Garrido, F. Hla class i loss in colorectal cancer: Implications for immune escape and immunotherapy. Cell. Mol. Immunol. 2021, 18, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Zaborowski, A.M.; Winter, D.C.; Lynch, L. The therapeutic and prognostic implications of immunobiology in colorectal cancer: A review. Br. J. Cancer 2021, 125, 1341–1349. [Google Scholar] [CrossRef]
- Hacking, S.M.; Chakraborty, B.; Nasim, R.; Vitkovski, T.; Thomas, R. A holistic appraisal of stromal differentiation in colorectal cancer: Biology, histopathology, computation, and genomics. Pathol. Res. Pract. 2021, 220, 153378. [Google Scholar] [CrossRef]
- Becht, E.; de Reynies, A.; Giraldo, N.A.; Pilati, C.; Buttard, B.; Lacroix, L.; Selves, J.; Sautes-Fridman, C.; Laurent-Puig, P.; Fridman, W.H. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 2016, 22, 4057–4066. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, X.; Wu, C. The role of the tumor microenvironment and treatment strategies in colorectal cancer. Front. Immunol. 2021, 12, 792691. [Google Scholar] [CrossRef]
- Ueno, H.; Kajiwara, Y.; Ajioka, Y.; Sugai, T.; Sekine, S.; Ishiguro, M.; Takashima, A.; Kanemitsu, Y. Histopathological atlas of desmoplastic reaction characterization in colorectal cancer. Jpn. J. Clin. Oncol. 2021, 51, 1004–1012. [Google Scholar] [CrossRef]
- Chen, X.L.; Chen, Z.Q.; Zhu, S.L.; Liu, T.W.; Wen, Y.; Su, Y.S.; Xi, X.J.; Hu, Y.; Lian, L.; Liu, F.B. Prognostic value of transforming growth factor-beta in patients with colorectal cancer who undergo surgery: A meta-analysis. BMC Cancer 2017, 17, 240. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Han, J.; Dong, Q.; Chai, R.; Li, N.; Lu, Q.; Xiao, Z.; Guo, Y.; Wan, Z.; Xu, Q. Tgf-beta2 is a prognostic biomarker correlated with immune cell infiltration in colorectal cancer: A strobe-compliant article. Medicine 2020, 99, e23024. [Google Scholar] [CrossRef]
- Ni, L.; Lu, J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018, 7, 4509–4516. [Google Scholar] [CrossRef] [PubMed]
- Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In vivo crispr screening identifies ptpn2 as a cancer immunotherapy target. Nature 2017, 547, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Apizi, A.; Wang, L.; Wu, G.; Zhu, Z.; Yao, H.; Chen, G.; Shi, X.; Shi, B.; Tai, Q.; et al. Tcga database analysis of the tumor mutation burden and its clinical significance in colon cancer. J. Gastrointest. Oncol. 2021, 12, 2244–2259. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Velichinskii, R.; Lesh, R.W.; Ali, U.; Kubiak, M.; Bansal, P.; Borghaei, H.; Edelman, M.J.; Boumber, Y. Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv. Ther. 2019, 36, 2638–2678. [Google Scholar] [CrossRef]
- Fan, A.; Wang, B.; Wang, X.; Nie, Y.; Fan, D.; Zhao, X.; Lu, Y. Immunotherapy in colorectal cancer: Current achievements and future perspective. Int. J. Biol. Sci. 2021, 17, 3837–3849. [Google Scholar] [CrossRef] [PubMed]
- Kamal, Y.; Dwan, D.; Hoehn, H.J.; Sanz-Pamplona, R.; Alonso, M.H.; Moreno, V.; Cheng, C.; Schell, M.J.; Kim, Y.; Felder, S.I.; et al. Tumor immune infiltration estimated from gene expression profiles predicts colorectal cancer relapse. OncoImmunology 2021, 10, 1862529. [Google Scholar] [CrossRef]
- Kong, J.C.; Guerra, G.R.; Pham, T.; Mitchell, C.; Lynch, A.C.; Warrier, S.K.; Ramsay, R.G.; Heriot, A.G. Prognostic impact of tumor-infiltrating lymphocytes in primary and metastatic colorectal cancer: A systematic review and meta-analysis. Dis. Colon Rectum 2019, 62, 498–508. [Google Scholar] [CrossRef]
- Zhou, K.; Cheng, T.; Zhan, J.; Peng, X.; Zhang, Y.; Wen, J.; Chen, X.; Ying, M. Targeting tumor-associated macrophages in the tumor microenvironment. Oncol. Lett. 2020, 20, 234. [Google Scholar] [CrossRef]
- Wo, J.Y.; Anker, C.J.; Ashman, J.B.; Bhadkamkar, N.A.; Bradfield, L.; Chang, D.T.; Dorth, J.; Garcia-Aguilar, J.; Goff, D.; Jacqmin, D.; et al. Radiation therapy for rectal cancer: Executive summary of an astro clinical practice guideline. Pract. Radiat. Oncol. 2021, 11, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Poynter, L.; Galea, D.; Veselkov, K.; Mirnezami, A.; Kinross, J.; Nicholson, J.; Takats, Z.; Darzi, A.; Mirnezami, R. Network mapping of molecular biomarkers influencing radiation response in rectal cancer. Clin. Colorectal Cancer 2019, 18, e210–e222. [Google Scholar] [CrossRef] [PubMed]
- Situ, Y.; Chung, L.; Lee, C.S.; Ho, V. Mrn (mre11-rad50-nbs1) complex in human cancer and prognostic implications in colorectal cancer. Int. J. Mol. Sci. 2019, 20, 816. [Google Scholar] [CrossRef] [PubMed]
- Ho, V.; Chung, L.; Singh, A.; Lea, V.; Abubakar, A.; Lim, S.H.; Ng, W.; Lee, M.; de Souza, P.; Shin, J.S.; et al. Overexpression of the mre11-rad50-nbs1 (mrn) complex in rectal cancer correlates with poor response to neoadjuvant radiotherapy and prognosis. BMC Cancer 2018, 18, 869. [Google Scholar] [CrossRef] [PubMed]
- Bottarelli, L.; De’ Angelis, G.L.; Azzoni, C.; Di Mario, F.; De’ Angelis, N.; Leandro, G.; Fornaroli, F.; Gaiani, F.; Negri, F. Potential predictive biomarkers in locally advanced rectal cancer treated with preoperative chemo-radiotherapy. Acta Biomed. 2018, 89, 102–106. [Google Scholar] [PubMed]
- Appelt, A.L.; Kerkhof, E.M.; Nyvang, L.; Harderwijk, E.C.; Abbott, N.L.; Teo, M.; Peters, F.P.; Kronborg, C.J.S.; Spindler, K.G.; Sebag-Montefiore, D.; et al. Robust dose planning objectives for mesorectal radiotherapy of early stage rectal cancer—A multicentre dose planning study. Tech. Innov. Pat. Support Radiat. Oncol. 2019, 11, 14–21. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Lin, G.; Xiao, Y.; Jia, W.; Xiao, G.; Liu, Q.; Wu, B.; Wu, A.; Qiu, H.; et al. Serial circulating tumor DNA in predicting and monitoring the effect of neoadjuvant chemoradiotherapy in patients with rectal cancer: A prospective multicenter study. Clin. Cancer Res. 2021, 27, 301–310. [Google Scholar] [CrossRef]
- Diefenhardt, M.; Hofheinz, R.D.; Martin, D.; Beissbarth, T.; Arnold, D.; Hartmann, A.; von der Grun, J.; Grutzmann, R.; Liersch, T.; Strobel, P.; et al. Leukocytosis and neutrophilia as independent prognostic immunological biomarkers for clinical outcome in the cao/aro/aio-04 randomized phase 3 rectal cancer trial. Int. J. Cancer 2019, 145, 2282–2291. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Cai, Y.; Deng, R.; Yang, L.; Li, J.; Deng, Y. Reduction of circulating lymphocyte count is a predictor of good tumor response after neoadjuvant treatment for rectal cancer. Medicine 2018, 97, e11435. [Google Scholar] [CrossRef]
- Hu, H.; Huang, J.; Lan, P.; Wang, L.; Huang, M.; Wang, J.; Deng, Y. Cea clearance pattern as a predictor of tumor response to neoadjuvant treatment in rectal cancer: A post-hoc analysis of fowarc trial. BMC Cancer 2018, 18, 1145. [Google Scholar] [CrossRef]
- Turchan, W.T.; Pitroda, S.P.; Weichselbaum, R.R. Treatment of cancer with radio-immunotherapy: What we currently know and what the future may hold. Int. J. Mol. Sci. 2021, 22, 9573. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Jiang, T.; Xiao, Y.; Wang, Q.; Zeng, Z.; Cai, P.; Zhao, Y.; Zhao, Z.; Wu, D.; Lin, H.; et al. Good tumor response to chemoradioimmunotherapy in dmmr/msi-h advanced colorectal cancer: A case series. Front. Immunol. 2021, 12, 784336. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.R.; DuRoss, A.N.; Neufeld, M.J.; Hahn, L.; Sahay, G.; Luxenhofer, R.; Sun, C. Low dose novel parp-pi3k inhibition via nanoformulation improves colorectal cancer immunoradiotherapy. Mater. Today Bio. 2020, 8, 100082. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, M.; Vymetalkova, V.; Neves, R.P.L.; Duran-Sanchon, S.; Vedeld, H.M.; Tham, E.; van Dalum, G.; Flugen, G.; Garcia-Barberan, V.; Fijneman, R.J.; et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol. Asp. Med. 2019, 69, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.; Galindo-Pumarino, C.; Garcia-Barberan, V.; Pena, C. A snapshot of the tumor microenvironment in colorectal cancer: The liquid biopsy. Int. J. Mol. Sci. 2019, 20, 6016. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, T.; Wu, Q.; Yang, X.; Hao, J.; Deng, X.; Yang, S.; Gu, C.; Wang, Z. Diagnostic performance of various liquid biopsy methods in detecting colorectal cancer: A meta-analysis. Cancer Med. 2020, 9, 5699–5707. [Google Scholar] [CrossRef]
- Molinari, C.; Marisi, G.; Passardi, A.; Matteucci, L.; De Maio, G.; Ulivi, P. Heterogeneity in colorectal cancer: A challenge for personalized medicine? Int. J. Mol. Sci. 2018, 19, 3733. [Google Scholar] [CrossRef]
- Ding, Y.; Li, W.; Wang, K.; Xu, C.; Hao, M.; Ding, L. Perspectives of the application of liquid biopsy in colorectal cancer. BioMed Res. Int. 2020, 2020, 6843180. [Google Scholar] [CrossRef] [PubMed]
- Scripcariu, V.; Scripcariu, D.V.; Filip, B.; Gavrilescu, M.M.; Musina, A.M.; Volovat, C. “Liquid biopsy”—Is it a feasible option in colorectal cancer? Chirurgia 2019, 114, 162–166. [Google Scholar] [CrossRef]
- Baassiri, A.; Nassar, F.; Mukherji, D.; Shamseddine, A.; Nasr, R.; Temraz, S. Exosomal non coding rna in liquid biopsies as a promising biomarker for colorectal cancer. Int. J. Mol. Sci. 2020, 21, 1398. [Google Scholar] [CrossRef]
- Patelli, G.; Vaghi, C.; Tosi, F.; Mauri, G.; Amatu, A.; Massihnia, D.; Ghezzi, S.; Bonazzina, E.; Bencardino, K.; Cerea, G.; et al. Liquid biopsy for prognosis and treatment in metastatic colorectal cancer: Circulating tumor cells vs circulating tumor DNA. Target Oncol. 2021, 16, 309–324. [Google Scholar] [PubMed]
- Yamada, T.; Matsuda, A.; Koizumi, M.; Shinji, S.; Takahashi, G.; Iwai, T.; Takeda, K.; Ueda, K.; Yokoyama, Y.; Hara, K.; et al. Liquid biopsy for the management of patients with colorectal cancer. Digestion 2019, 99, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Toiyama, Y.; Okugawa, Y.; Fleshman, J.; Boland, C.R.; Goel, A. Micrornas as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 274–282. [Google Scholar]
- Cheung, A.H.; Chow, C.; To, K.F. Latest development of liquid biopsy. J. Thorac. Dis. 2018, 10, S1645–S1651. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, L.; Xu, M.; Qu, H.; Wen, M.; Melançon, C.E.; Edwards, J.; Chen, S. Ctdna sequencing for early detection of colorectal cancers: Comparative analysis of colon cancer and rectal cancer data. J. Clin. Oncol. 2018, 36, e15653. [Google Scholar] [CrossRef]
- Verbanac, D.; Ceri, A.; Hlapcic, I.; Shakibaei, M.; Brockmueller, A.; Kruslin, B.; Ljubicic, N.; Barsic, N.; Detel, D.; Baticic, L.; et al. Profiling colorectal cancer in the landscape personalized testing-advantages of liquid biopsy. Int. J. Mol. Sci. 2021, 22, 4327. [Google Scholar] [CrossRef] [PubMed]
- Vymetalkova, V.; Cervena, K.; Bartu, L.; Vodicka, P. Circulating cell-free DNA and colorectal cancer: A systematic review. Int. J. Mol. Sci. 2018, 19, 3356. [Google Scholar] [CrossRef]
- Heidrich, I.; Ackar, L.; Mossahebi Mohammadi, P.; Pantel, K. Liquid biopsies: Potential and challenges. Int. J. Cancer 2021, 148, 528–545. [Google Scholar] [CrossRef]
- Christou, N.; Meyer, J.; Popeskou, S.; David, V.; Toso, C.; Buchs, N.; Liot, E.; Robert, J.; Ris, F.; Mathonnet, M. Circulating tumour cells, circulating tumour DNA and circulating tumour mirna in blood assays in the different steps of colorectal cancer management, a review of the evidence in 2019. BioMed Res. Int. 2019, 2019, 5953036. [Google Scholar] [CrossRef]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B., 3rd; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. Ctdna applications and integration in colorectal cancer: An nci colon and rectal-anal task forces whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar]
- Tie, J.; Wang, Y.; Tomasetti, C.; Li, L.; Springer, S.; Kinde, I.; Silliman, N.; Tacey, M.; Wong, H.L.; Christie, M.; et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage ii colon cancer. Sci. Transl. Med. 2016, 8, 346ra392. [Google Scholar]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.; Wu, H.T.; Tin, A.S.; et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages i to iii colorectal cancer. JAMA Oncol. 2019, 5, 1124–1131. [Google Scholar] [PubMed]
- Hu, Y.; Ulrich, B.C.; Supplee, J.; Kuang, Y.; Lizotte, P.H.; Feeney, N.B.; Guibert, N.M.; Awad, M.M.; Wong, K.K.; Janne, P.A.; et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin. Cancer Res. 2018, 24, 4437–4443. [Google Scholar]
- Alves Dos Santos, K.; Clemente Dos Santos, I.C.; Santos Silva, C.; Gomes Ribeiro, H.; de Farias Domingos, I.; Nogueira Silbiger, V. Circulating exosomal mirnas as biomarkers for the diagnosis and prognosis of colorectal cancer. Int. J. Mol. Sci. 2020, 22, 346. [Google Scholar] [PubMed]
- Ferracin, M.; Lupini, L.; Mangolini, A.; Negrini, M. Circulating non-coding rna as biomarkers in colorectal cancer. Adv. Exp. Med. Biol. 2016, 937, 171–181. [Google Scholar]
- Yang, C.; Zou, K.; Zheng, L.; Xiong, B. Prognostic and clinicopathological significance of circulating tumor cells detected by rt-pcr in non-metastatic colorectal cancer: A meta-analysis and systematic review. BMC Cancer 2017, 17, 725. [Google Scholar]
- Micalizzi, D.S.; Maheswaran, S.; Haber, D.A. A conduit to metastasis: Circulating tumor cell biology. Genes Dev. 2017, 31, 1827–1840. [Google Scholar]
- Arechederra, M.; Ávila, M.A.; Berasain, C. La biopsia líquida en el manejo del cáncer: Una nueva herramienta revolucionaria de la medicina de precisión, aún con limitaciones. Adv. Lab. Med. Av. Med. Lab. 2020, 1, 20200038. [Google Scholar]
- Ye, P.; Cai, P.; Xie, J.; Wei, Y. The diagnostic accuracy of digital pcr, arms and ngs for detecting kras mutation in cell-free DNA of patients with colorectal cancer: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0248775. [Google Scholar]
- van der Velden, D.L.; van Herpen, C.M.L.; van Laarhoven, H.W.M.; Smit, E.F.; Groen, H.J.M.; Willems, S.M.; Nederlof, P.M.; Langenberg, M.H.G.; Cuppen, E.; Sleijfer, S.; et al. Molecular tumor boards: Current practice and future needs. Ann. Oncol. 2017, 28, 3070–3075. [Google Scholar]
- Rieke, D.T.; Lamping, M.; Schuh, M.; Le Tourneau, C.; Baste, N.; Burkard, M.E.; Metzeler, K.H.; Leyvraz, S.; Keilholz, U. Comparison of treatment recommendations by molecular tumor boards worldwide. JCO Precis Oncol. 2018, 2, 1–14. [Google Scholar] [PubMed]
- Angel, M.O.; Pupareli, C.; Soule, T.; Tsou, F.; Leiva, M.; Losco, F.; Esteso, F.; JM, O.C.; Luca, R.; Petracci, F.; et al. Implementation of a molecular tumour board in latam: The impact on treatment decisions for patients evaluated at instituto alexander fleming, argentina. Ecancermedicalscience 2021, 15, 1312. [Google Scholar] [PubMed]
Biomarker | Determination Recommendations |
---|---|
RAS | |
BRAF |
|
MSI |
|
PD-L1 |
|
PI3K |
|
FGFR |
|
HER2 |
|
NTRK |
|
RET |
|
ALK |
|
ROS1 |
|
NRG1 |
|
MET |
|
WEE1 |
|
Marker | Predictive and Prognostic Value to Radiotherapy |
---|---|
Circulating tumor-specific DNA (ctDNA) | |
Peripheral blood leukocytosis and neutrophilia |
|
Circulating lymphocyte counts |
|
Carcinoembryonic antigen (CEA) |
|
Advantages | Disadvantages |
---|---|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, C.E.; Montenegro, P.; O’Connor, J.M.; Hernando-Requejo, O.; Aranda, E.; Pinto Llerena, J.; Llontop, A.; Gallardo Escobar, J.; Díaz Romero, M.d.C.; Bautista Hernández, Y.; et al. Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer. Cancers 2023, 15, 4373. https://doi.org/10.3390/cancers15174373
Bonilla CE, Montenegro P, O’Connor JM, Hernando-Requejo O, Aranda E, Pinto Llerena J, Llontop A, Gallardo Escobar J, Díaz Romero MdC, Bautista Hernández Y, et al. Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer. Cancers. 2023; 15(17):4373. https://doi.org/10.3390/cancers15174373
Chicago/Turabian StyleBonilla, Carlos Eduardo, Paola Montenegro, Juan Manuel O’Connor, Ovidio Hernando-Requejo, Enrique Aranda, José Pinto Llerena, Alejandra Llontop, Jorge Gallardo Escobar, María del Consuelo Díaz Romero, Yicel Bautista Hernández, and et al. 2023. "Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer" Cancers 15, no. 17: 4373. https://doi.org/10.3390/cancers15174373
APA StyleBonilla, C. E., Montenegro, P., O’Connor, J. M., Hernando-Requejo, O., Aranda, E., Pinto Llerena, J., Llontop, A., Gallardo Escobar, J., Díaz Romero, M. d. C., Bautista Hernández, Y., Graña Suárez, B., Batagelj, E. J., Wali Mushtaq, A., & García-Foncillas, J. (2023). Ibero-American Consensus Review and Incorporation of New Biomarkers for Clinical Practice in Colorectal Cancer. Cancers, 15(17), 4373. https://doi.org/10.3390/cancers15174373