Variant Characterization of a Representative Large Pedigree Suggests “Variant Risk Clusters” Convey Varying Predisposition of Risk to Lynch Syndrome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample/Data Collection
2.2. DNA Extraction and Quality Assessment
2.3. Whole Genome Sequencing (WGS)
2.4. Bioinformatic Variant Analysis (BVA)
3. Results
3.1. Clinical Characterization of the Pedigree Members
3.2. Variant Characterization of the Pedigree
3.2.1. SNPs and Indels
3.2.2. SNP and Indels with Evidence of Familial and Risk-Implicated Genes
3.2.3. Structural Variants (SVs)
3.2.4. SVs with Risk-Implicated Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillén-Ponce, C.; Lastra, E.; Lorenzo-Lorenzo, I.; Martín Gómez, T.; Morales Chamorro, R.; Sánchez-Heras, A.B.; Serrano, R.; Soriano Rodríguez, M.C.; Soto, J.L.; Robles, L. SEOM Clinical Guideline on Hereditary Colorectal Cancer (2019). Clin. Transl. Oncol. 2020, 22, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods—Ferlay—2019—International Journal of Cancer—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31937 (accessed on 17 April 2023).
- Ahnen, D.J.; Wade, S.W.; Jones, W.F.; Sifri, R.; Mendoza Silveiras, J.; Greenamyer, J.; Guiffre, S.; Axilbund, J.; Spiegel, A.; You, Y.N. The Increasing Incidence of Young-Onset Colorectal Cancer: A Call to Action. Mayo Clin. Proc. 2014, 89, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Yurgelun, M.B.; Kulke, M.H.; Fuchs, C.S.; Allen, B.A.; Uno, H.; Hornick, J.L.; Ukaegbu, C.I.; Brais, L.K.; McNamara, P.G.; Mayer, R.J.; et al. Cancer Susceptibility Gene Mutations in Individuals With Colorectal Cancer. J. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- AlDubayan, S.H.; Giannakis, M.; Moore, N.D.; Han, G.C.; Reardon, B.; Hamada, T.; Mu, X.J.; Nishihara, R.; Qian, Z.; Liu, L.; et al. Inherited DNA-Repair Defects in Colorectal Cancer. Am. J. Hum. Genet. 2018, 102, 401–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colorectal Cancer—Risk Factors and Prevention. Available online: https://www.cancer.net/cancer-types/colorectal-cancer/risk-factors-and-prevention (accessed on 17 April 2023).
- Concordant and Discordant Familial Cancer: Familial Risks, Proportions and Population Impact—Frank—2017—International Journal of Cancer—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.30583 (accessed on 17 April 2023).
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; de la Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. JNCI J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. The 2019 WHO Classification of Tumours of the Digestive System. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Medina Pabón, M.A.; Babiker, H.M. A Review Of Hereditary Colorectal Cancers. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Dominguez-Valentin, M.; Nakken, S.; Tubeuf, H.; Vodak, D.; Ekstrøm, P.O.; Nissen, A.M.; Morak, M.; Holinski-Feder, E.; Martins, A.; Møller, P.; et al. Identification of Genetic Variants for Clinical Management of Familial Colorectal Tumors. BMC Med. Genet. 2018, 19, 26. [Google Scholar] [CrossRef]
- Syngal, S.; Fox, E.A.; Li, C.; Dovidio, M.; Eng, C.; Kolodner, R.D.; Garber, J.E. Interpretation of Genetic Test Results for Hereditary Nonpolyposis Colorectal CancerImplications for Clinical Predisposition Testing. JAMA 1999, 282, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Familial Adenomatous Polyposis: Aberrant Splicing Due to Missense or Silent Mutations in the APC Gene—Aretz—2004—Human Mutation—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.20087 (accessed on 17 April 2023).
- Nolano, A.; Medugno, A.; Trombetti, S.; Liccardo, R.; De Rosa, M.; Izzo, P.; Duraturo, F. Hereditary Colorectal Cancer: State of the Art in Lynch Syndrome. Cancers 2023, 15, 75. [Google Scholar] [CrossRef]
- Association of Low-Risk MSH3 and MSH2 Variant Alleles with Lynch Syndrome: Probability of Synergistic Effects—Duraturo—2011—International Journal of Cancer—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.25824 (accessed on 17 April 2023).
- Rahman, N. Realizing the Promise of Cancer Predisposition Genes. Nature 2014, 505, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Vasen, H.F.A.; Watson, P.; Mecklin, J.; Lynch, H.T. New Clinical Criteria for Hereditary Nonpolyposis Colorectal Cancer (HNPCC, Lynch Syndrome) Proposed by the International Collaborative Group on HNPCC. Gastroenterology 1999, 116, 1453–1456. [Google Scholar] [CrossRef]
- Vasen, H.F.A.; Mecklin, J.-P.; Meera Khan, P.; Lynch, H.T. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis. Colon Rectum 1991, 34, 424. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Bigas, M.A.; Boland, C.R.; Hamilton, S.R.; Henson, D.E.; Srivastava, S.; Jass, J.R.; Khan, P.M.; Lynch, H.; Smyrk, T.; Perucho, M.; et al. A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: Meeting Highlights and Bethesda Guidelines. JNCI J. Natl. Cancer Inst. 1997, 89, 1758–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, H.; Frankel, W.; Panescu, J.; Lockman, J.; Sotamaa, K.; Fix, D.; Comeras, I.; La Jeunesse, J.; Nakagawa, H.; Westman, J.A.; et al. Screening for Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer) among Endometrial Cancer Patients. Cancer Res. 2006, 66, 7810–7817. [Google Scholar] [CrossRef] [Green Version]
- Piñol, V.; Castells, A.; Andreu, M.; Castellví-Bel, S.; Alenda, C.; Llor, X.; Xicola, R.M.; Rodríguez-Moranta, F.; Payá, A.; Jover, R.; et al. Accuracy of Revised Bethesda Guidelines, Microsatellite Instability, and Immunohistochemistry for the Identification of Patients With Hereditary Nonpolyposis Colorectal Cancer. JAMA 2005, 293, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Kamau, E.; Agoti, C.N.; Ngoi, J.M.; de Laurent, Z.R.; Gitonga, J.; Cotten, M.; Phan, M.V.T.; Nokes, D.J.; Delwart, E.; Sanders, E.; et al. Complete Genome Sequences of Dengue Virus Type 2 Strains from Kilifi, Kenya. Microbiol. Resour. Announc. 2019, 8, e01566-18. [Google Scholar] [CrossRef] [Green Version]
- Barbirou, M.; Miller, A.A.; Gafni, E.; Mezlini, A.; Zidi, A.; Boley, N.; Tonellato, P.J. Evaluation of CfDNA as an Early Detection Assay for Dense Tissue Breast Cancer. Sci. Rep. 2022, 12, 8458. [Google Scholar] [CrossRef]
- Ahadova, A.; von Knebel Doeberitz, M.; Bläker, H.; Kloor, M. CTNNB1-Mutant Colorectal Carcinomas with Immediate Invasive Growth: A Model of Interval Cancers in Lynch Syndrome. Fam. Cancer 2016, 15, 579–586. [Google Scholar] [CrossRef]
- Three Molecular Pathways Model Colorectal Carcinogenesis in Lynch Syndrome—Ahadova—2018—International Journal of Cancer—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31300 (accessed on 17 April 2023).
- Binder, H.; Hopp, L.; Schweiger, M.R.; Hoffmann, S.; Jühling, F.; Kerick, M.; Timmermann, B.; Siebert, S.; Grimm, C.; Nersisyan, L.; et al. Genomic and Transcriptomic Heterogeneity of Colorectal Tumours Arising in Lynch Syndrome. J. Pathol. 2017, 243, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Win, A.K.; Jenkins, M.A.; Dowty, J.G.; Antoniou, A.C.; Lee, A.; Giles, G.G.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Ahnen, D.J.; et al. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiol Biomark Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Hesson, L.B.; Packham, D.; Kwok, C.-T.; Nunez, A.C.; Ng, B.; Schmidt, C.; Fields, M.; Wong, J.W.H.; Sloane, M.A.; Ward, R.L. Lynch Syndrome Associated with Two MLH1 Promoter Variants and Allelic Imbalance of MLH1 Expression. Hum. Mutat. 2015, 36, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.-Y.; Chang, S.-C.; Wang, M.-C.; Chen, J.-S.; Tsai, W.-S.; You, J.-F.; Chen, C.-C.; Liu, H.-L.; Chiang, J.-M. Pathogenic Germline Mutations of DNA Repair Pathway Components in Early-Onset Sporadic Colorectal Polyp and Cancer Patients. Cancers 2020, 12, 3560. [Google Scholar] [CrossRef]
- Eikenboom, E.L.; van der Werf–’t Lam, A.-S.; Rodríguez-Girondo, M.; Van Asperen, C.J.; Dinjens, W.N.M.; Hofstra, R.M.W.; Van Leerdam, M.E.; Morreau, H.; Spaander, M.C.W.; Wagner, A.; et al. Universal Immunohistochemistry for Lynch Syndrome: A Systematic Review and Meta-Analysis of 58,580 Colorectal Carcinomas. Clin. Gastroenterol. Hepatol. 2022, 20, e496–e507. [Google Scholar] [CrossRef]
- Da Silva, S.I.O.; Domingos, T.A.; Kupper, B.E.C.; De Brot, L.; Aguiar Junior, S.; Carraro, D.M.; Torrezan, G.T. Amplicon-Based NGS Test for Assessing MLH1 Promoter Methylation and Its Correlation with BRAF Mutation in Colorectal Cancer Patients. Exp. Mol. Pathol. 2023, 130, 104855. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.A.; Spurdle, A.B.; Plazzer, J.-P.; Greenblatt, M.S.; Akagi, K.; Al-Mulla, F.; Bapat, B.; Bernstein, I.; Capellá, G.; den Dunnen, J.T.; et al. Application of a 5-Tiered Scheme for Standardized Classification of 2,360 Unique Mismatch Repair Gene Variants in the InSiGHT Locus-Specific Database. Nat. Genet. 2014, 46, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Prognostic Values of Apoptosis-Stimulating P53-Binding Protein 1 and 2 and Their Relationships with Clinical Characteristics of Esophageal Squamous Cell Carcinoma Patients: A Retrospective Study|SpringerLink. Available online: https://link.springer.com/article/10.1186/s40880-016-0169-0 (accessed on 17 April 2023).
- Kloth, M.; Ruesseler, V.; Engel, C.; Koenig, K.; Peifer, M.; Mariotti, E.; Kuenstlinger, H.; Florin, A.; Rommerscheidt-Fuss, U.; Koitzsch, U.; et al. Activating ERBB2/HER2 Mutations Indicate Susceptibility to Pan-HER Inhibitors in Lynch and Lynch-like Colorectal Cancer. Gut 2016, 65, 1296–1305. [Google Scholar] [CrossRef]
- P53 Polymorphic Variants at Codon 72 Exert Different Effects on Cell Cycle Progression—Pim—2004—International Journal of Cancer—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.11548 (accessed on 17 April 2023).
- Jamshidi, M.; Mohammadi Pour, S.; Mahmoudian-Sani, M.-R. Single Nucleotide Variants Associated with Colorectal Cancer Among Iranian Patients: A Narrative Review. Pharmacogenomics Pers. Med. 2020, 13, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sharma, R.P.; Costa, R.H.; Costa, E.; Grayson, D.R. On the Epigenetic Regulation of the Human Reelin Promoter. Nucleic Acids Res. 2002, 30, 2930–2939. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Bunn, P.; Jin, C.; Little, P.; Zhabotynsky, V.; Perou, C.M.; Hayes, D.N.; Chen, M.; Lin, D.-Y. The Association between Copy Number Aberration, DNA Methylation and Gene Expression in Tumor Samples. Nucleic Acids Res. 2018, 46, 3009–3018. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Arcelus, M.; Lappalainen, T.; Montgomery, S.B.; Buil, A.; Ongen, H.; Yurovsky, A.; Bryois, J.; Giger, T.; Romano, L.; Planchon, A.; et al. Passive and Active DNA Methylation and the Interplay with Genetic Variation in Gene Regulation. eLife 2013, 2, e00523. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Radhakrishnan, S.; Wen, J.; Chen, J.Y.; Chen, J.; Lam, B.A.; Mills, R.E.; Stranger, B.E.; Lee, C.; Setlur, S.R. Association of CNVs with Methylation Variation. npj Genom. Med. 2020, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Harris, R.A.; Cheung, S.W.; Coarfa, C.; Jeong, M.; Goodell, M.A.; White, L.D.; Patel, A.; Kang, S.-H.; Shaw, C.; et al. Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome. PLoS Genet. 2012, 8, e1002692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, L.; Kucherlapati, M.; Hadjipanayis, A.; Pantazi, A.; Bristow, C.A.; Lee, E.A.; Mahadeshwar, H.S.; Tang, J.; Zhang, J.; et al. Global Impact of Somatic Structural Variation on the DNA Methylome of Human Cancers. Genome Biol. 2019, 20, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motz, G.T.; Coukos, G. The Parallel Lives of Angiogenesis and Immunosuppression: Cancer and Other Tales. Nat. Rev. Immunol. 2011, 11, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Gordiev, M.; Shigapova, L.H.; Brovkina, O.; Enikeev, R.F.; Druzhkov, M.; Nikitin, A.; Shagimardanova, E.; Gusev, O. Lynch Syndrome-Associated Hereditary Mutations Cause Breast and Ovarian Cancer: Results from Russian Heredetary Oncogenomics Project. Ann. Oncol. 2018, 29, viii77. [Google Scholar] [CrossRef]
- Brovkina, O.I.; Shigapova, L.; Chudakova, D.A.; Gordiev, M.G.; Enikeev, R.F.; Druzhkov, M.O.; Khodyrev, D.S.; Shagimardanova, E.I.; Nikitin, A.G.; Gusev, O.A. The Ethnic-Specific Spectrum of Germline Nucleotide Variants in DNA Damage Response and Repair Genes in Hereditary Breast and Ovarian Cancer Patients of Tatar Descent. Front. Oncol. 2018, 8, 421. [Google Scholar] [CrossRef]
- Is Breast Cancer a Part of Lynch Syndrome?|SpringerLink. Available online: https://link.springer.com/article/10.1186/bcr3241 (accessed on 17 April 2023).
- Nikitin, A.G.; Chudakova, D.A.; Enikeev, R.F.; Sakaeva, D.; Druzhkov, M.; Shigapova, L.H.; Brovkina, O.I.; Shagimardanova, E.I.; Gusev, O.A.; Gordiev, M.G. Lynch Syndrome Germline Mutations in Breast Cancer: Next Generation Sequencing Case-Control Study of 1,263 Participants. Front. Oncol. 2020, 10, 666. [Google Scholar] [CrossRef]
- Use of Multigene-Panel Identifies Pathogenic Variants in Several CRC-Predisposing Genes in Patients Previously Tested for Lynch Syndrome—Hansen—2017—Clinical Genetics—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/cge.12994 (accessed on 17 April 2023).
- Gordon-Weeks, A.; Lim, S.Y.; Yuzhalin, A.; Lucotti, S.; Vermeer, J.A.F.; Jones, K.; Chen, J.; Muschel, R.J. Tumour-Derived Laminin A5 (LAMA5) Promotes Colorectal Liver Metastasis Growth, Branching Angiogenesis and Notch Pathway Inhibition. Cancers 2019, 11, 630. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Lee, A.; Sitharam, R.; Kesner, J.; Rabadan, R.; Shapira, S.D. Germ-Cell-Specific Inflammasome Component NLRP14 Negatively Regulates Cytosolic Nucleic Acid Sensing to Promote Fertilization. Immunity 2017, 46, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Ellwanger, K.; Becker, E.; Kienes, I.; Sowa, A.; Postma, Y.; Gloria, Y.C.; Weber, A.N.R.; Kufer, T.A. The NLR Family Pyrin Domain–Containing 11 Protein Contributes to the Regulation of Inflammatory Signaling. J. Biol. Chem. 2018, 293, 2701–2710. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, K.; Gassmann, P.; Enns, A.; Korb, T.; Hemping-Bovenkerk, A.; Hölzen, J.; Haier, J. Organ-Specific Metastatic Tumor Cell Adhesion and Extravasation of Colon Carcinoma Cells with Different Metastatic Potential. Am. J. Pathol. 2006, 169, 1064–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, D.W.; Wang, T.-L.; Samuels, Y.; Bardelli, A.; Cummins, J.M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J.K.V.; et al. Mutations in a Signalling Pathway. Nature 2005, 436, 792. [Google Scholar] [CrossRef]
- IRS2 Is a Candidate Driver Oncogene on 13q34 in Colorectal Cancer—Day—2013—International Journal of Experimental Pathology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/iep.12021 (accessed on 17 April 2023).
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic Background of Taste Perception, Taste Preferences, and Its Nutritional Implications: A Systematic Review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmanov, A.A.; Beauchamp, G.K. Taste Receptor Genes. Annu. Rev. Nutr. 2007, 27, 389–414. [Google Scholar] [CrossRef] [Green Version]
- Sternini, C. Taste Receptors in the Gastrointestinal Tract. IV. Functional Implications of Bitter Taste Receptors in Gastrointestinal Chemosensing. Am. J. Physiol.-Gastrointest. Liver Physiol. 2007, 292, G457–G461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshpande, D.A.; Wang, W.C.H.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.K.; Liggett, S.B. Bitter Taste Receptors on Airway Smooth Muscle Bronchodilate by Localized Calcium Signaling and Reverse Obstruction. Nat. Med. 2010, 16, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A.; Rock, C.L. The Influence of Genetic Taste Markers on Food Acceptance. Am. J. Clin. Nutr. 1995, 62, 506–511. [Google Scholar] [CrossRef]
- Rozengurt, E. Taste Receptors in the Gastrointestinal Tract. I. Bitter Taste Receptors and α-Gustducin in the Mammalian Gut. Am. J. Physiol.-Gastrointest. Liver Physiol. 2006, 291, G171–G177. [Google Scholar] [CrossRef] [Green Version]
- Whole-Genome Sequencing of Synchronous Thyroid Carcinomas Identifies Aberrant DNA Repair in Thyroid Cancer Dedifferentiation—Paulsson—2020—The Journal of Pathology—Wiley Online Library. Available online: https://pathsocjournals.onlinelibrary.wiley.com/doi/full/10.1002/path.5359 (accessed on 17 April 2023).
- NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 2.2019 in: Journal of the National Comprehensive Cancer Network Volume 17 Issue 9 (2019). Available online: https://jnccn.org/view/journals/jnccn/17/9/article-p1032.xml (accessed on 12 June 2023).
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes. Am. J. Gastroenterol. 2015, 110, 223–263. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Kalady, M.F.; Pearlman, R.; Stanich, P.P. Hereditary Colorectal Cancer. Hematol. Oncol. Clin. 2022, 36, 429–447. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Long-Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smigielski, E.M.; Sirotkin, K.; Ward, M.; Sherry, S.T. DbSNP: A Database of Single Nucleotide Polymorphisms. Nucleic Acids Res. 2000, 28, 352–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of Protein-Coding Genetic Variation in 60,706 Humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Linderman, M.D.; Paudyal, C.; Shakeel, M.; Kelley, W.; Bashir, A.; Gelb, B.D. NPSV: A Simulation-Driven Approach to Genotyping Structural Variants in Whole-Genome Sequencing Data. GigaScience 2021, 10, giab046. [Google Scholar] [CrossRef]
- Layer, R.M.; Chiang, C.; Quinlan, A.R.; Hall, I.M. LUMPY: A Probabilistic Framework for Structural Variant Discovery. Genome Biol. 2014, 15, R84. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.; Layer, R.M.; Faust, G.G.; Lindberg, M.R.; Rose, D.B.; Garrison, E.P.; Marth, G.T.; Quinlan, A.R.; Hall, I.M. SpeedSeq: Ultra-Fast Personal Genome Analysis and Interpretation. Nat. Methods 2015, 12, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.S.; Quinlan, A.R. Duphold: Scalable, Depth-Based Annotation and Curation of High-Confidence Structural Variant Calls. GigaScience 2019, 8, giz040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An Integrated Tool for Structural Variations Annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A General Framework for Estimating the Relative Pathogenicity of Human Genetic Variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Rödelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster Evaluates Disease-Causing Potential of Sequence Alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A Method and Server for Predicting Damaging Missense Mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Chan, A.P. PROVEAN Web Server: A Tool to Predict the Functional Effect of Amino Acid Substitutions and Indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.C.; Henikoff, S. SIFT: Predicting Amino Acid Changes That Affect Protein Function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [Green Version]
- DbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs—Liu—2016—Human Mutation—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/humu.22932 (accessed on 17 April 2023).
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic Mining of Putative Causal Variants, Cell Types, Regulators and Target Genes for Human Complex Traits and Disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [Green Version]
- Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Stamatoyannopoulos, J.A.; et al. Identification and Analysis of Functional Elements in 1% of the Human Genome by the ENCODE Pilot Project. Nature 2007, 447, 799–816. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.L.; Brand, H.; Karczewski, K.J.; Zhao, X.; Alföldi, J.; Francioli, L.C.; Khera, A.V.; Lowther, C.; Gauthier, L.D.; Wang, H.; et al. A Structural Variation Reference for Medical and Population Genetics. Nature 2020, 581, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A Web Server for Functional Annotation of Human Genome Sequence Variation (2020 Update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.G.; Barnes, K.C.; Bright, T.J.; Wang, S.A. The Genetic Association Database. Nat. Genet. 2004, 36, 431–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamborero, D.; Rubio-Perez, C.; Deu-Pons, J.; Schroeder, M.P.; Vivancos, A.; Rovira, A.; Tusquets, I.; Albanell, J.; Rodon, J.; Tabernero, J.; et al. Cancer Genome Interpreter Annotates the Biological and Clinical Relevance of Tumor Alterations. Genome Med. 2018, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 2017, PO.17.00011. [Google Scholar] [CrossRef]
- Home—My Cancer Genome. Available online: https://www.mycancergenome.org/ (accessed on 12 June 2023).
Parameters | HRLS N = 3 (%) | IRLS N = 4 (%) | LRLS N = 4 (%) |
---|---|---|---|
Gender (Males/Females) | 1/2 | 0/4 | 2/2 |
Age (years) 1 | 48 ± 12.16 | 38.25 ± 17.63 | 35.50 ± 24.11 |
BMI 1 | 26.08 ± 3.11 | 26.77 ± 3.47 | 27.52 ± 2.64 |
Vegetable consumption | |||
High | 0 (0) | 3 (75) | 4 (100) |
Low | 3 (100) | 1(25) | 0 (0) |
Brine consumption | |||
High | 2 (66.66) | 0 (0) | 1 (25) |
Low | 1 (33.34) | 4 (100) | 3 (75) |
Meat consumption | |||
High | 2 (66.66) | 2 (50) | 3 (75) |
Low | 1 (33.34) | 2 (50) | 1 (25) |
Fat consumption | |||
High | 0 (0) | 4 (100) | 3 (75) |
Low | 3 (100) | 0 (0) | 1 (25) |
Smoking | |||
Never used | 1 (33.34) | 3 (75) | 2 (50) |
Tobacco users | 2 (66.66) | 1 (25) | 2 (50) |
Alcohol | |||
Never drink | 1 (33.34) | 4 (100) | 2 (50) |
Alcohol users | 2 (66.66) | 0 (0) | 2 (50) |
Physical activity level | |||
High | 0 (0) | 2 (50) | 4 (100) |
Low | 3 (100) | 2 (50) | 0 (0) |
Medical History | |||
Hypertension | 2 (66.66) | 3(75) | 1(25) |
Hyperglycemia | 2 (66.66) | 2(50) | 0 (0) |
Anemia | 0 (0) | 0 (0) | 0 (0) |
Variants Filtering | Variant Count | |
---|---|---|
VQSR | 9,876,341 (7,836,438 SNPs and 2,039,903 Indels) | |
<0.01 AF 1000 G ALL and non-TCGA ExAC ALL | 2,334,312 | |
CADD (SNPs) or CADD Indel (Indels) Scaled Phred Score > 10 | 80,905 | |
Variant stratification | Coding Variants | Non-Coding Variants |
Total count | 2824 | 78,081 |
Predicted deleterious by having at least three of MutationTaster, PolyPhen V2, Provean, and SIFT | 1961 | 9826 |
Shared by all samples in a group | 79 (HRLS: 37; IRLS: 27; LRLS: 15) | 9826 (HRLS: 4171; IRLS: 2820; LRLS: 2835) |
Exclusive to a particular group | 0 | 19 (HRLS: 2; IRLS: 3; LRLS: 14) |
RegulomeDB Score < 4 | NA | LRLS: 4 |
Functional annotation of noncoding variants according to ANNOVAR | ||
Variants annotation according to region hit from RefSeq | Variants shared by all subjects | Variants shared by subjects in the same group |
Intergenic | 37,412 | 10 |
Intronic | 30,344 | 7 |
ncRNA_intronic | 5072 | 0 |
3′UTR | 2169 | 0 |
Upstream and Downstream | 1825 | 2 |
5′UTR5 | 768 | 0 |
ncRNA_exonic | 447 | 0 |
Coding Variants | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genes | Detected Variants Stratified by Pedigree Groups | AF | Functional Annotation | Cancer Related | CRC Related | Oncogenic Classification | Tumor Driver | |||
SNP ID | HRLS | IRLS | LRLS | |||||||
PABPC3 | Variants Count | 5 | 5 | 4 | ||||||
rs79397892 | Yes | Yes | Yes | 0.0054 | EX | - | - | Passenger | True | |
rs78826513 | Yes | Yes | Yes | NA | EX | - | - | Driver | True | |
rs78552667 | Yes | Yes | Yes | NA | EX | - | - | Passenger | True | |
rs201411821 | Yes | Yes | - | NA | EX | - | - | Driver | True | |
rs80261016 | Yes | Yes | Yes | NA | EX | - | - | Driver | True | |
KRT18 | Variants Count | 4 | 4 | 4 | ||||||
rs78343594 | Yes | Yes | Yes | NA | EX | - | - | Passenger | False | |
rs77999286 | Yes | Yes | Yes | NA | EX | - | - | Passenger | False | |
rs75441140 | Yes | Yes | Yes | NA | EX | - | - | Passenger | False | |
NA | Yes | Yes | Yes | NA | EX | - | - | NA | NA | |
CNN2 | Variants Count | 2 | 2 | 1 | ||||||
rs77830704 | Yes | Yes | Yes | NA | EX | - | - | Passenger | False | |
rs75676484 | Yes | Yes | - | NA | EX | - | - | Passenger | False | |
SLC25A5 | Variants Count | 1 | 2 | 1 | ||||||
rs753913830 | Yes | Yes | Yes | NA | EX | - | - | Passenger | False | |
rs199707714 | - | Yes | - | NA | EX | - | - | Passenger | False | |
MYH13 | Variants Count | 1 | 1 | 1 | ||||||
rs186137259 | Yes | Yes | Yes | 0.0016 | EX | - | - | Passenger | False | |
DNAH2 | Variants Count | 1 | 1 | 1 | ||||||
rs140035206 | Yes | Yes | Yes | 0.0022 | EX | - | - | Passenger | False | |
ANP32B | Variants Count | 1 | 1 | - | ||||||
rs76167314 | Yes | Yes | - | NA | EX | - | - | Passenger | False | |
CNKSR1 | Variants Count | 1 | 1 | - | ||||||
rs140685957 | Yes | Yes | - | NA | EX | - | - | Passenger | False | |
CTNNBIP1 | Variants Count | 1 | 1 | - | ||||||
rs138271667 | Yes | Yes | - | 0.0018 | EX | - | - | Passenger | False | |
DNAH3 | Variants Count | 1 | 1 | - | ||||||
rs147732992 | Yes | Yes | - | 0.0034 | EX | - | - | Passenger | False | |
KDM1A | Variants Count | 1 | 1 | - | ||||||
rs144822945 | Yes | Yes | - | 0.0015 | EX | - | - | Passenger | False | |
PRSS3 | Variants Count | 2 | 1 | 1 | ||||||
rs141382822 | Yes | Yes | Yes | NA | EX | - | - | Passenger | False | |
rs751456445 | Yes | - | - | NA | EX | - | - | Passenger | False | |
AATK | Variants Count | 1 | - | - | ||||||
rs61738829 | Yes | - | - | 0.0088 | EX | - | - | Passenger | False | |
ALPK3 | Variants Count | 1 | - | - | ||||||
NA | Yes | - | - | NA | EX | - | - | NA | NA | |
ANKRD34B | Variants Count | 1 | - | - | ||||||
rs145614517 | Yes | - | - | 0.0030 | EX | - | - | Passenger | False | |
ATXN2 | Variants Count | 1 | - | - | ||||||
rs374319477 | Yes | - | - | NA | EX | - | - | Passenger | False | |
CUX2 | Variants Count | 1 | - | - | ||||||
rs202242120 | Yes | - | - | 0.0040 | EX | - | - | Passenger | False | |
ERAP2 | Variants Count | 1 | - | - | ||||||
rs145045143 | Yes | - | - | 0.0010 | EX | - | - | Passenger | False | |
FAM136A | Variants Count | 1 | - | - | ||||||
rs80277652 | Yes | - | - | NA | EX | - | - | Passenger | False | |
MACF1 | Variants Count | 1 | - | - | ||||||
rs201602708 | Yes | - | - | 0.0002 | EX | - | - | Driver | True | |
MLH1 | Variants Count | 1 | - | - | ||||||
rs63750539 | Yes | - | - | NA | EX | Leukemia; Lymphoma; Melanoma; Pancreatic; Liver; Fallopian; Endometrial; Ovarian; Breast; Prostate; Bladder; Thyroid; Esophageal; Lung | Lynch syndrome; Colorectal melanoma; Microsatellite Instability; Hereditary non-polyposis; Colon; Gastric; Stomach | Driver | True | |
PCSK5 | Variants Count | 1 | - | - | ||||||
rs372055352 | Yes | - | - | NA | EX | - | - | Passenger | False | |
PLA2G6 | Variants Count | 1 | - | - | ||||||
NA | Yes | - | - | NA | EX | - | - | NA | NA | |
PPP1R13B | Variants Count | 1 | - | - | ||||||
rs373141354 | Yes | - | - | NA | EX | Melanoma | - | Passenger | False | |
RIMKLA | Variants Count | 1 | - | - | ||||||
rs34142209 | Yes | - | - | 0.0082 | EX | - | - | Passenger | False | |
RNF207 | Variants Count | 1 | - | - | ||||||
NA | Yes | - | - | NA | EX | - | - | NA | NA | |
SIPA1L3 | Variants Count | 1 | - | - | ||||||
rs201766021 | Yes | - | - | 0.0002 | EX | - | - | Passenger | False | |
XIRP1 | Variants Count | 1 | - | - | ||||||
rs147417919 | Yes | - | - | 0.0032 | EX | - | - | Passenger | False | |
CD8A | Variants Count | - | 1 | - | ||||||
rs200750291 | - | Yes | - | 0.0012 | EX | - | - | Passenger | False | |
LAMA5 | Variants Count | - | 1 | - | ||||||
rs551763507 | - | Yes | - | NA | EX | Neuroblastoma | - | Passenger | False | |
MRPL24 | Variants Count | - | 1 | - | ||||||
rs561581574 | - | Yes | - | NA | EX | - | - | Passenger | False | |
NLRP14 | Variants Count | - | 1 | - | ||||||
rs76670455 | - | Yes | - | 0.0058 | EX | Leukemia | - | Passenger | False | |
TAAR5 | Variants Count | - | 1 | - | ||||||
rs9493386 | - | Yes | - | 0.0026 | EX | - | - | Passenger | False | |
PRH1-TAS2R14 | Variants Count | - | - | 1 | ||||||
rs763119571 | - | - | Yes | NA | EX | - | Colorectal | Passenger | False | |
TMEM8B | Variants Count | - | - | 1 | ||||||
rs148540551 | - | - | Yes | 0.0014 | EX | - | - | Passenger | False | |
Noncoding variants | ||||||||||
PODN | Variants Count | - | - | 1 | ||||||
rs544153916 | - | - | Yes | 0.0002 | NA | - | - | Not protein-affecting | False | |
SCP2 | Variants Count | - | - | 1 | ||||||
rs116197074 | - | - | Yes | 0.0056 | INT | - | - | Not protein-affecting | False | |
MAML3 | Variants Count | - | - | 1 | ||||||
rs116526711 | - | - | Yes | 0.007 | INT | - | - | Not protein-affecting | False | |
FTO | Variants Count | - | - | 1 | ||||||
rs115378978 | - | - | Yes | 0.0078 | INT | Prostate | - | Not protein-affecting | False |
Variants Filtering | Variant Count | |||
---|---|---|---|---|
Deletions and duplications: duphold depth based | 4314 (4120 DEL, 194 DUP) | |||
Breakends and inversions: NA | 6857 (6560 BND, 297 INV) | |||
Total count | BND | DEL | DUP | INV |
<0.01 AF 1000G ALL and <0.01 gnomAD | 5492 | 1122 | 105 | 137 |
AnnotSV ranking > 3 | 274 | 164 | 17 | 18 |
Total length >= 50 bp | NA | 140 | 17 | 18 |
Shared by all samples in a group | 154 (HRLS: 66; IRLS: 39; LRLS: 49) | 133 (HRLS: 48; IRLS: 46; LRLS: 39) | 4 (HRLS: 1; IRLS: 0; LRLS: 3) | 13 (HRLS: 4; IRLS: 4; LRLS: 5) |
Shared by all samples under a particular group | 35 (HRLS: 23; IRLS: 4; LRLS: 8) | 18 (HRLS: 7; IRLS: 4; LRLS: 7) | 2 (HRLS: 0; IRLS: 0; LRLS: 2) | 2 (HRLS: 0; IRLS: 1; LRLS: 1) |
Variant’s location according to AnnotSV | ||||
Variants annotation according to hit from RefSeq | BND | DEL | DUP | INV |
Intronic | 26 | 17 | 1 | 0 |
Exonic | 2 | 0 | 0 | 0 |
txStart-txEnd | 0 | 0 | 0 | 2 |
NA | 7 | 1 | 1 | 0 |
Structural Variants | ||||||||
---|---|---|---|---|---|---|---|---|
Genes | Detected Variants Stratified by Pedigree Groups | AF | Location | Cancer Related | CRC Related | |||
AnnotSV ID | LRLS | IRLS | HRLS | |||||
ADAM10 | Variants Count | 2 | - | - | ||||
15_58912864_58912865_BND_1 | Yes | - | - | NA | INT | - | - | |
15_58913242_58913243_BND_1 | Yes | - | - | NA | INT | |||
ATP11A | Variants Count | 1 | - | 1 | ||||
13_113518019_113519165_DEL_1 | Yes | - | - | NA | INT | - | - | |
13_113499584_113500055_DEL_1 | - | - | Yes | NA | INT | |||
GIGYF2 | Variants Count | 2 | - | - | ||||
2_233668385_233668386_BND_1 | Yes | - | - | NA | INT | - | - | |
2_233668758_233668759_BND_1 | Yes | - | - | NA | INT | |||
LINC01137 | Variants Count | 2 | - | - | ||||
1_37938257_37938258_BND_1 | Yes | - | - | NA | INT | - | - | |
1_37938376_37938377_BND_1 | Yes | - | - | NA | INT | |||
RELN | Variants Count | - | - | 1 | ||||
7_103463079_103463080_BND_1 | - | - | Yes | 0.0001 | INT | Leukemia; Lung; Hepatocellular | Gastric | |
7_103463462_103463463_BND_1 | - | - | Yes | 0.0001 | INT | |||
DIP2C | Variants Count | 1 | - | - | ||||
10_523437_523544_DEL_1 | Yes | - | - | NA | INT | - | - | |
WDR37 | Variants Count | 1 | - | - | ||||
10_1164005_1164234_DEL_1 | Yes | - | - | NA | INT | - | - | |
DCAKD | Variants Count | 1 | - | - | ||||
17_43129091_43129429_DEL_1 | Yes | - | - | NA | INT | - | - | |
CDH4 | Variants Count | 1 | - | - | ||||
20_60216779_60217071_DEL_1 | Yes | - | - | 0.0003 | INT | - | - | |
MOV10L1 | Variants Count | 1 | - | - | ||||
22_50585735_50585941_DEL_1 | Yes | - | - | NA | INT | - | - | |
DNA2 | Variants Count | 1 | - | - | ||||
10_70222778_70222779_BND_1 | Yes | - | - | NA | INT | - | - | |
SBF2 | Variants Count | 1 | - | - | ||||
11_10293916_10293917_BND_1 | Yes | - | - | NA | INT | - | - | |
ANO5 | Variants Count | 1 | - | - | ||||
11_22214883_22214884_BND_1 | Yes | - | - | NA | EX | - | - | |
CHPT1 | Variants Count | 1 | - | - | ||||
12_102107161_102107162_BND_1 | Yes | - | - | NA | INT | - | - | |
MYO5B | Variants Count | 1 | - | - | ||||
18_47698458_47698459_BND_1 | Yes | - | - | NA | INT | - | - | |
PLCB1 | Variants Count | 1 | - | - | ||||
20_8414039_8414040_BND_1 | Yes | - | - | 0.0005 | INT | - | - | |
APOL1 | Variants Count | 1 | - | - | ||||
22_36651344_36651345_BND_1 | Yes | - | - | 0.0015 | INT | - | - | |
NOP14 | Variants Count | 1 | - | - | ||||
4_2941531_2941532_BND_1 | Yes | - | - | NA | INT | - | - | |
MRPS18A | Variants Count | 1 | - | - | ||||
6_43655533_43655534_BND_1 | Yes | - | - | NA | EX | - | - | |
CNTNAP2 | Variants Count | 1 | - | - | ||||
7_147571596_147571597_BND_1 | Yes | - | - | NA | INT | - | - | |
DPP6 | Variants Count | 1 | - | - | ||||
7_153760690_153760691_BND_1 | Yes | - | - | NA | INT | - | - | |
B4GALT1 | Variants Count | 1 | - | - | ||||
9_33130549_33130550_BND_1 | Yes | - | - | NA | INT | - | - | |
IRS2 | Variants Count | - | 1 | - | ||||
13_110418067_110419056_DEL_1 | - | Yes | - | NA | INT | Esophageal | CRC; Intestinal; Stomach | |
RAP1GAP2 | Variants Count | - | 1 | - | ||||
17_2904534_2904873_DEL_1 | - | Yes | - | NA | INT | - | - | |
ASIC2 | Variants Count | - | 1 | - | ||||
17_31596693_31596759_DEL_1 | - | Yes | - | NA | INT | - | - | |
MMP20 | Variants Count | - | 1 | - | ||||
11_102472245_102472246_BND_1 | - | Yes | - | NA | INT | - | - | |
KCNIP4 | Variants Count | - | 1 | - | ||||
4_20933624_20933792_DEL_1 | - | Yes | - | NA | INT | - | - | |
ADGRE4P | Variants Count | - | 1 | - | ||||
19_6987869_6987870_BND_1 | - | Yes | - | 0.0007 | INT | - | - | |
DYNLRB1 | Variants Count | - | 1 | - | ||||
20_33116231_33116232_BND_1 | - | Yes | - | NA | INT | - | - | |
DTX2 | Variants Count | - | 1 | - | ||||
7_76128462_76128463_BND_1 | - | Yes | - | NA | INT | - | - | |
FIRRE | Variants Count | - | 1 | - | ||||
X_130813255_130974327_INV_1 | - | Yes | - | NA | TX | - | - | |
BCCIP | Variants Count | - | - | 1 | ||||
10_127513335_127513754_DUP_1 | - | - | Yes | NA | INT | - | - | |
MGAT5 | Variants Count | - | - | 1 | ||||
2_134966704_134970130_DEL_1 | - | - | Yes | NA | INT | - | - | |
COL18A1 | Variants Count | - | - | 1 | ||||
21_46930863_46930934_DEL_1 | - | - | Yes | NA | INT | - | - | |
FOXP1 | Variants Count | - | - | 1 | ||||
3_71242366_71242638_DEL_1 | - | - | Yes | NA | INT | Bladder; Endometrial; Lung; Salivary Gland; Breast; Skin; Hepatobiliary; Prostate; Glioma | Esophagogastric; Gastrointestinal; CRC | |
CTNND2 | Variants Count | - | - | 1 | ||||
5_11816774_11817546_DEL_1 | - | - | Yes | NA | INT | - | - | |
FSTL4 | Variants Count | - | - | 1 | ||||
5_132918980_132924990_DEL_1 | - | - | Yes | NA | INT | - | - | |
DLGAP2 | Variants Count | - | - | 1 | ||||
8_1047119_1047802_DEL_1 | - | - | Yes | 0.0001 | INT | - | - | |
PPP2R5A | Variants Count | - | - | 1 | ||||
1_212472702_212472703_BND_1 | - | - | Yes | NA | INT | - | - | |
BMS1P4 | Variants Count | - | - | 1 | ||||
10_75489277_75489278_BND_1 | - | - | Yes | NA | INT | - | - | |
IFITM3 | Variants Count | - | - | 1 | ||||
11_308031_320995_INV_1 | - | - | Yes | NA | TX | - | - | |
RRAS2 | Variants Count | - | - | 1 | ||||
11_14348706_14348707_BND_1 | - | - | Yes | NA | INT | Breast; Ovarian | - | |
PRKRA | Variants Count | - | - | 1 | ||||
2_179314967_179314968_BND_1 | - | - | Yes | NA | INT | - | - | |
Structural variants with no overlapping genes | ||||||||
NA | Variants Count | 6 | 0 | 3 | ||||
17_41438043_41440177_DEL_1 | Yes | - | - | NA | NA | NA | NA | |
11_1961293_1961294_BND_1 | Yes | - | - | NA | NA | |||
17_38679442_38679443_BND_1 | Yes | - | - | NA | NA | |||
19_17459958_17459959_BND_1 | Yes | - | - | NA | NA | |||
6_28863601_28863602_BND_1 | Yes | - | - | 0.0002 | NA | |||
6_28863898_28863899_BND_1 | Yes | - | - | 0.0002 | NA | |||
17_41436517_41442619_DUP_1 | - | - | Yes | NA | NA | |||
9_107816642_107816643_BND_1 | - | - | Yes | NA | NA | |||
9_107817348_107817349_BND_1 | - | - | Yes | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbirou, M.; Miller, A.A.; Mezlini, A.; Bouhaouala-Zahar, B.; Tonellato, P.J. Variant Characterization of a Representative Large Pedigree Suggests “Variant Risk Clusters” Convey Varying Predisposition of Risk to Lynch Syndrome. Cancers 2023, 15, 4074. https://doi.org/10.3390/cancers15164074
Barbirou M, Miller AA, Mezlini A, Bouhaouala-Zahar B, Tonellato PJ. Variant Characterization of a Representative Large Pedigree Suggests “Variant Risk Clusters” Convey Varying Predisposition of Risk to Lynch Syndrome. Cancers. 2023; 15(16):4074. https://doi.org/10.3390/cancers15164074
Chicago/Turabian StyleBarbirou, Mouadh, Amanda A. Miller, Amel Mezlini, Balkiss Bouhaouala-Zahar, and Peter J. Tonellato. 2023. "Variant Characterization of a Representative Large Pedigree Suggests “Variant Risk Clusters” Convey Varying Predisposition of Risk to Lynch Syndrome" Cancers 15, no. 16: 4074. https://doi.org/10.3390/cancers15164074
APA StyleBarbirou, M., Miller, A. A., Mezlini, A., Bouhaouala-Zahar, B., & Tonellato, P. J. (2023). Variant Characterization of a Representative Large Pedigree Suggests “Variant Risk Clusters” Convey Varying Predisposition of Risk to Lynch Syndrome. Cancers, 15(16), 4074. https://doi.org/10.3390/cancers15164074