Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of ITF2984
2.2. Radioligand Binding to Human SSTR
2.3. SSTR Internalization
2.3.1. HEK293 Cell Line
2.3.2. U2OS Human Cell Lines Transfected with Human Receptors (SSTR2-tGFP, SSTR3-tGFP, SSTR5-tGFP)
2.4. SSTR Phosphorylation
2.5. Membrane Potential Assay
2.6. In Vivo Efficacy Experiments
2.6.1. Magnetic Resonance Imaging (MRI)
2.6.2. RNA Extraction and Quantitative RT-PCR
2.6.3. Immunohistochemistry
2.6.4. Statistical Analysis
3. Results
3.1. Molecular Modeling
3.2. Internalization of SSTR2, SSTR3, SSTR5
3.3. SSA-Induced Activation of Human SSTR2, SSTR3 and SSTR5 Receptors Using Phosphosite-Specific Antibodies
3.4. Agonist-Mediated G Protein Signaling of SSTR3 in HEK293 Cells and in AtT20 SSTR3-Transfected Cells
3.5. Efficacy of ITF2984 In Vivo
3.5.1. Efficacy of ITF2984 against Endogenous NFPAs In Vivo
3.5.2. Effect of ITF2984 on NFPA Proliferation Rates
3.5.3. Expression of SSTRs in Rat NFPAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ntali, G.; Wass, J.A. Epidemiology, Clinical Presentation and Diagnosis of Non-Functioning Pituitary Adenomas. Pituitary 2018, 21, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.; Roncaroli, F.; Grossman, A.B.; Korbonits, M. Clinical and Pathological Aspects of Silent Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2019, 104, 2473–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Lupp, A.; Mendoza, N.; Martin, N.; Beschorner, R.; Honegger, J.; Schlegel, J.; Shively, T.; Pulz, E.; Schulz, S.; et al. SSTR3 Is a Putative Target for the Medical Treatment of Gonadotroph Adenomas of the Pituitary. Endocr. Relat. Cancer 2015, 22, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Divitiis, E.; Laws, E.R.; Giani, U.; Iuliano, S.L.; De Divitiis, O.; Apuzzo, M.L.J. The Current Status of Endoscopy in Transsphenoidal Surgery: An International Survey. World Neurosurg. 2015, 83, 447–454. [Google Scholar] [CrossRef]
- Reddy, R.; Cudlip, S.; Byrne, J.V.; Karavitaki, N.; Wass, J.A.H. Can We Ever Stop Imaging in Surgically Treated and Radiotherapy-Naive Patients with Non-Functioning Pituitary Adenoma? Eur. J. Endocrinol. 2011, 165, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Tampourlou, M.; Ntali, G.; Ahmed, S.; Arlt, W.; Ayuk, J.; Byrne, J.V.; Chavda, S.; Cudlip, S.; Gittoes, N.; Grossman, A.; et al. Outcome of Nonfunctioning Pituitary Adenomas That Regrow after Primary Treatment: A Study from Two Large UK Centers. J. Clin. Endocrinol. Metab. 2017, 102, 1889–1897. [Google Scholar] [CrossRef] [Green Version]
- Vieira Neto, L.; Boguszewski, C.L.; de Araújo, L.A.; Bronstein, M.D.; Miranda, P.A.C.; Musolino, N.R.d.C.; Naves, L.A.; Vilar, L.; Ribeiro-Oliveira, A., Jr.; Gadelha, M.R. A Review on the Diagnosis and Treatment of Patients with Clinically Nonfunctioning Pituitary Adenoma by the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism. Arch. Endocrinol. Metab. 2016, 60, 374–390. [Google Scholar] [CrossRef] [Green Version]
- Ilie, M.D.; Raverot, G. Treatment Options for Gonadotroph Tumors: Current State and Perspectives. J. Clin. Endocrinol. Metab. 2020, 105, 3507–3518. [Google Scholar] [CrossRef]
- Luo, M.; Tan, Y.; Chen, W.; Hu, B.; Wang, Z.; Zhu, D.; Jiao, H.; Duan, C.; Zhu, Y.; Wang, H. Clinical Efficacy of Temozolomide and Its Predictors in Aggressive Pituitary Tumors and Pituitary Carcinomas: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 700007. [Google Scholar] [CrossRef]
- Greenman, Y.; Bronstein, M.D. Cabergoline Should Be Attempted in Progressing Non-Functioning Pituitary Macroadenoma. Eur. J. Endocrinol. 2021, 185, D11–D20. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin Receptors: From Signaling to Clinical Practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Ben-Shlomo, A.; Melmed, S. Somatostatin Agonists for Treatment of Acromegaly. Mol. Cell. Endocrinol. 2008, 286, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Grozinsky-Glasberg, S.; Shimon, I.; Korbonits, M.; Grossman, A.B. Somatostatin Analogues in the Control of Neuroendocrine Tumours: Efficacy and Mechanisms. Endocr. Relat. Cancer 2008, 15, 701–720. [Google Scholar] [CrossRef] [Green Version]
- Petersenn, S. Medical Therapy of Aggressive Pituitary Tumors. Exp. Clin. Endocrinol. Diabetes 2021, 129, 186–193. [Google Scholar] [CrossRef]
- Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. [Google Scholar] [CrossRef] [Green Version]
- Zatelli, M.C.; Piccin, D.; Vignali, C.; Tagliati, F.; Ambrosio, M.R.; Bondanelli, M.; Cimino, V.; Bianchi, A.; Schmid, H.A.; Scanarini, M.; et al. Pasireotide, a Multiple Somatostatin Receptor Subtypes Ligand, Reduces Cell Viability in Non-Functioning Pituitary Adenomas by Inhibiting Vascular Endothelial Growth Factor Secretion. Endocr. Relat. Cancer 2007, 14, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Marinoni, I.; Irmler, M.; Psaras, T.; Honegger, J.B.; Beschorner, R.; Anastasov, N.; Beckers, J.; Theodoropoulou, M.; Roncaroli, F.; et al. Transcriptome Analysis of MENX-Associated Rat Pituitary Adenomas Identifies Novel Molecular Mechanisms Involved in the Pathogenesis of Human Pituitary Gonadotroph Adenomas. Acta Neuropathol. 2013, 126, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef] [Green Version]
- Oystese, K.A.; Casar-Borota, O.; Normann, K.R.; Zucknick, M.; Berg, J.P.; Bollerslev, J. Estrogen Receptor a, a Sex-Dependent Predictor of Aggressiveness in Nonfunctioning Pituitary Adenomas: Sstr and Sex Hormone Receptor Distribution in NFPA. J. Clin. Endocrinol. Metab. 2017, 102, 3581–3590. [Google Scholar] [CrossRef] [Green Version]
- Diana Ilie, M.; Vasiljevic, A.; Louvet, C.; Jouanneau, E.; Raverot, G. Gonadotroph Tumors Show Subtype Differences That Might Have Implications for Therapy. Cancers 2020, 12, 1012. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Ruliang, F.; Xu, Z.; Benjia, L.; Cong, W.; Zhaobin, H.; Jun, N. MRNA Expression of Somatostatin Receptor Subtypes SSTR-2, SSTR-3, and SSTR-5 and Its Significance in Pancreatic Cancer. World J. Surg. Oncol. 2015, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elston, M.S.; Meyer-Rochow, G.Y.; Conaglen, H.M.; Clarkson, A.; Clifton-Bligh, R.J.; Conaglen, J.V.; Gill, A.J. Increased SSTR2A and SSTR3 Expression in Succinate Dehydrogenase-Deficient Pheochromocytomas and Paragangliomas. Hum. Pathol. 2015, 46, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Kanakis, G.; Grimelius, L.; Spathis, A.; Tringidou, R.; Rassidakis, G.Z.; Öberg, K.; Kaltsas, G.; Tsolakis, A.V. Expression of Somatostatin Receptors 1–5 and Dopamine Receptor 2 in Lung Carcinoids: Implications for a Therapeutic Role. Neuroendocrinology 2015, 101, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Frati, A.; Rouzier, R.; Lesieur, B.; Werkoff, G.; Antoine, M.; Rodenas, A.; Darai, E.; Chereau, E. Expression of Somatostatin Type-2 and -4 Receptor and Correlation with Histological Type in Breast Cancer. Anticancer Res. 2014, 34, 3997–4004. [Google Scholar] [PubMed]
- Gatto, F.; Feelders, R.A.; Van Der Pas, R.; Kros, J.M.; Waaijers, M.; Sprij-Mooij, D.; Neggers, S.J.C.M.M.; Van Der Lelij, A.J.; Minuto, F.; Lamberts, S.W.J.; et al. Immunoreactivity Score Using an Anti-Sst2A Receptor Monoclonal Antibody Strongly Predicts the Biochemical Response to Adjuvant Treatment with Somatostatin Analogs in Acromegaly. J. Clin. Endocrinol. Metab. 2013, 98, E66–E71. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Borrego, M.C.; Gupta, V.; Ibañez-Costa, A.; Gahete, M.D.; Venegas-Moreno, E.; Toledano-Delgado, Á.; Cano, D.A.; Blanco-Acevedo, C.; Ortega-Salas, R.; Japon, M.A.; et al. A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors. Clin. Cancer Res. 2020, 26, 957–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinoni, I.; Lee, M.; Mountford, S.; Perren, A.; Bravi, I.; Jennen, L.; Feuchtinger, A.; Drouin, J.; Roncaroli, F.; Pellegata, N.S. Characterization of MENX-Associated Pituitary Tumours. Neuropathol. Appl. Neurobiol. 2013, 39, 256–269. [Google Scholar] [CrossRef]
- WO2009071460; New Non-Selective Somatostatin Analogues. World Intellectual Property Organization: Geneva, Switzerland, 2009.
- Bruns, C.; Raulf, F.; Hoyer, D.; Schloos, J.; Lübbert, H.; Weckbecker, G. Binding Properties of Somatostatin Receptor Subtypes. Metabolism 1996, 45, 17–20. [Google Scholar] [CrossRef]
- Siehler, S.; Seuwen, K.; Hoyer, D. Characterisation of Human Recombinant Somatostatin Receptors. 1. Radioligand Binding Studies. Naunyn. Schmiedebergs Arch. Pharmacol. 1999, 360, 488–499. [Google Scholar] [CrossRef]
- Lehmann, A.; Kliewer, A.; Günther, T.; Nagel, F.; Schulz, S. Identification of Phosphorylation Sites Regulating Sst3 Somatostatin Receptor Trafficking. Mol. Endocrinol. 2016, 30, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Pöll, F.; Lehmann, D.; Illing, S.; Ginj, M.; Jacobs, S.; Lupp, A.; Stumm, R.; Schulz, S. Pasireotide and Octreotide Stimulate Distinct Patterns of Sst2A Somatostatin Receptor Phosphorylation. Mol. Endocrinol. 2010, 24, 436–446. [Google Scholar] [CrossRef] [Green Version]
- Petrich, A.; Mann, A.; Kliewer, A.; Nagel, F.; Strigli, A.; Märtens, J.C.; Pöll, F.; Schulz, S. Phosphorylation of Threonine 333 Regulates Trafficking of the Human Sst5 Somatostatin Receptor. Mol. Endocrinol. 2013, 27, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, P.; Günther, T.; Reinscheid, R.K.; Zaveri, N.T.; Schulz, S. Rapid Assessment of G Protein Signaling of Four Opioid Receptors Using a Real-Time Fluorescence-Based Membrane Potential Assay. Eur. J. Pharmacol. 2021, 890, 173640. [Google Scholar] [CrossRef]
- Günther, T.; Culler, M.; Schulz, S. Research Resource: Real-Time Analysis of Somatostatin and Dopamine Receptor Signaling in Pituitary Cells Using a Fluorescence-Based Membrane Potential Assay. Mol. Endocrinol. 2016, 30, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulde, S.; Wiedemann, T.; Schillmaier, M.; Valença, I.; Lupp, A.; Steiger, K.; Yen, H.Y.; Bäuerle, S.; Notni, J.; Luque, R.; et al. Gender-Specific Efficacy Revealed by Head-to-Head Comparison of Pasireotide and Octreotide in a Representative in Vivo Model of Nonfunctioning Pituitary Tumors. Cancers 2021, 13, 3097. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Costa, A.; López-Sánchez, L.M.; Gahete, M.D.; Rivero-Cortés, E.; Vázquez-Borrego, M.C.; Gálvez, M.A.; De La Riva, A.; Venegas-Moreno, E.; Jiménez-Reina, L.; Moreno-Carazo, A.; et al. BIM-23A760 Influences Key Functional Endpoints in Pituitary Adenomas and Normal Pituitaries: Molecular Mechanisms Underlying the Differential Response in Adenomas. Sci. Rep. 2017, 7, 42002. [Google Scholar] [CrossRef] [Green Version]
- Händel, M.; Schulz, S.; Stanarius, A.; Schreff, M.; Erdtmann-Vourliotis, M.; Schmidt, H.; Wolf, G.; Höllt, V. Selective Targeting of Somatostatin Receptor 3 to Neuronal Cilia. Neuroscience 1999, 89, 909–926. [Google Scholar] [CrossRef]
- Kooistra, A.J.; Mordalski, S.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keser, M.; Gloriam, D.E. OUP Accepted Manuscript. Nucleic Acids Res. 2020, 49, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Bo, Q.; Yang, F.; Li, Y.; Meng, X.; Zhang, H.; Zhou, Y.; Ling, S.; Sun, D.; Lv, P.; Liu, L.; et al. Structural Insights into the Activation of Somatostatin Receptor 2 by Cyclic SST Analogues. Cell Discov. 2022, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.N.; Wang, W.W.; Dong, Y.J.; Shen, D.D.; Guo, J.; Yu, X.; Qin, J.; Ji, S.Y.; Zhang, H.; Shen, Q.; et al. Structures of the Endogenous Peptide- and Selective Non-Peptide Agonist-Bound SSTR2 Signaling Complexes. Cell Res. 2022, 32, 785–788. [Google Scholar] [CrossRef]
- Chen, S.; Teng, X.; Zheng, S. Molecular Basis for the Selective G Protein Signaling of Somatostatin Receptors. Nat. Chem. Biol. 2022, 19, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Yoon, E.; Jeon, Y.E.; Yun, J.H.; Ishimoto, N.; Woo, H.; Park, S.Y.; Song, J.J.; Lee, W. Cryo-EM Structure of the Human Somatostatin Receptor 2 Complex with Its Agonist Somatostatin Delineates the Ligand-Binding Specificity. Elife 2022, 11, e76823. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.J.; Meyerowitz, J.G.; Panova, O.; Borrelli, K.; Skiniotis, G. Plasticity in Ligand Recognition at Somatostatin Receptors. Nat. Struct. Mol. Biol. 2021, 29, 210–217. [Google Scholar] [CrossRef]
- Zhao, W.; Han, S.; Qiu, N.; Feng, W.; Lu, M.; Zhang, W.; Wang, M.; Zhou, Q.; Chen, S.; Xu, W.; et al. Structural Insights into Ligand Recognition and Selectivity of Somatostatin Receptors. Cell Res. 2022, 32, 761–772. [Google Scholar] [CrossRef]
- Pylaeva, S.; Brehm, M.; Sebastiani, D. Salt Bridge in Aqueous Solution: Strong Structural Motifs but Weak Enthalpic Effect. Sci. Rep. 2018, 8, 13626. [Google Scholar] [CrossRef] [Green Version]
- Gilli, G.; Gilli, P. Towards an Unified Hydrogen-Bond Theory. J. Mol. Struct. 2000, 552, 1–15. [Google Scholar] [CrossRef]
- Sherrill, C.D. Energy Component Analysis of π Interactions. Acc. Chem. Res. 2013, 46, 1020–1028. [Google Scholar] [CrossRef]
- Melacini, G.; Zhu, Q.; Ösapay, G.; Goodman, M. A Refined Model for the Somatostatin Pharmacophore: Conformational Analysis of Lanthionine-Sandostatin Analogs. J. Med. Chem. 1997, 40, 2252–2258. [Google Scholar] [CrossRef]
- Venkatachalam, C.M. Stereochemical Criteria for Polypeptides and Proteins. V. Conformation of a system of three linked peptide units. Biopolymers 1968, 6, 1425–1436. [Google Scholar] [CrossRef] [Green Version]
- De Brevern, A.G. Extension of the Classical Classification of β-Turns. Sci. Rep. 2016, 6, 33191. [Google Scholar] [CrossRef] [Green Version]
- Melacini, G.; Zhu, Q.; Goodman, M. Multiconformational NMR Analysis of Sandostatin (Octreotide): Equilibrium between β-Sheet and Partially Helical Structures. Biochemistry 1997, 36, 1233–1241. [Google Scholar] [CrossRef]
- Schrödinger. Schrödinger Release 2023-1: Desmond Molecular Dynamics System 2023; Schrödinger, LLC: New York, NY, USA, 2023. [Google Scholar]
- Schrödinger. Schrödinger Release 2023-1: Glide; Schrödinger, LLC: New York, NY, USA, 2023. [Google Scholar]
- Maffezzoni, F.; Frara, S.; Doga, M.; Mazziotti, G.; Giustina, A. New Medical Therapies of Acromegaly. Growth Horm. IGF Res. 2016, 30–31, 58–63. [Google Scholar] [CrossRef]
- Maffezzoni, F.; Formenti, A.M.; Mazziotti, G.; Frara, S.; Giustina, A. Current and Future Medical Treatments for Patients with Acromegaly. Expert Opin. Pharmacother. 2016, 17, 1631–1642. [Google Scholar] [CrossRef]
- Barbeito, P.; Garcia-Gonzalo, F.R. HTR6 and SSTR3 Targeting to Primary Cilia. Biochem. Soc. Trans. 2021, 49, 79–91. [Google Scholar] [CrossRef]
- Guo, J.; Otis, J.M.; Higginbotham, H.; Monckton, C.; Cheng, J.G.; Asokan, A.; Mykytyn, K.; Caspary, T.; Stuber, G.D.; Anton, E.S. Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Dev. Cell 2017, 42, 286–300.e4. [Google Scholar] [CrossRef]
- Tereshko, L.; Gao, Y.; Cary, B.A.; Turrigiano, G.G.; Sengupta, P. Ciliary Neuropeptidergic Signaling Dynamically Regulates Excitatory Synapses in Postnatal Neocortical Pyramidal Neurons. Elife 2021, 10, e65427. [Google Scholar] [CrossRef] [PubMed]
- Bruining, H.; Hardstone, R.; Juarez-Martinez, E.L.; Sprengers, J.; Avramiea, A.E.; Simpraga, S.; Houtman, S.J.; Poil, S.S.; Dallares, E.; Palva, S.; et al. Measurement of Excitation-Inhibition Ratio in Autism Spectrum Disorder Using Critical Brain Dynamics. Sci. Rep. 2020, 10, 9195. [Google Scholar] [CrossRef] [PubMed]
- Einstein, E.B.; Patterson, C.A.; Hon, B.J.; Regan, K.A.; Reddi, J.; Melnikoff, D.E.; Mateer, M.J.; Schulz, S.; Johnson, B.N.; Tallent, M.K. Somatostatin Signaling in Neuronal Cilia Is Critical for Object Recognition Memory. J. Neurosci. 2010, 30, 4306–4314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vale, B.W.; Grant, G.; Burgess, C. In Vitro Pituitary Hormone Secretion Assay for Hypophysiotropic Substances Assay Method. Methods Enzymol. 1970, 61, 82–93. [Google Scholar]
- Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. SOM230: A Novel Somatostatin Peptidomimetic with Broad Somatotropin Release Inhibiting Factor (SRIF) Receptor Binding and a Unique Antisecretory Profile. Eur. J. Endocrinol. 2002, 14, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Hofland, L.J.; Van Der Hoek, J.; Van Koetsveld, P.M.; De Herder, W.W.; Waaijers, M.; Sprij-Mooij, D.; Bruns, C.; Weckbecker, G.; Feelders, R.; Van Der Lely, A.J.; et al. The Novel Somatostatin Analog SOM230 Is a Potent Inhibitor of Hormone Release by Growth Hormone- and Prolactin-Secreting Pituitary Adenomas in Vitro. J. Clin. Endocrinol. Metab. 2004, 89, 1577–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Somatostatin | Somatostatin analogue (SSA) | ||||
---|---|---|---|---|---|
SST-14 | SST-28 | ITF2984 | Pasireotide | Octreotide | |
Receptor-binding mean IC50 (nM) (95% confidence intervals) | |||||
SSTR1 | nd | 0.99 (0.79–1.26) | 21.7 (14.2–33.2) | 43.9 (31.8–60.4) | nd |
SSTR2 | nd | 0.19 (0.064–0.40) | 1.8 (1.35–2.5) | 5.5 (4.58–6.66) | 0.24 (0.20–0.28) |
SSTR3 | nd | 0.22 (0.19–0.25) | 0.35 (0.30–0.42) | 2.73 (2.24–3.34) | 3.25 (2.61–4.06) |
SSTR5 | nd | 0.10 (0.056–0.18) | 0.36 (0.29–0.46) | 0.37 (0.28–0.49) | 5.03 (3.69–6.85) |
Receptor internalization in U2OS-transfected cells at 10−5 M (10−6 M) | |||||
SSTR2 | nd | 51.4 | 37.3 (35.9) | 49.2 (50.5) | 74.1 (81.0) |
SSTR3 | nd | 64.0 | 61.1 (62.5) | 41.6 (46.3) | 43.4 (55.2) |
SSTR5 | nd | 84.5 | 34.6 (42.0) | 40.5 (43.9) | 34.6 (39.3) |
Phosphorylation SSTR sites (HEK293-transfected) | |||||
SSTR2—PS341/S343 | ++++ | nd | ++ | +++ | ++++ |
SSTR2—PT535/T534 | ++++ | nd | ++++ | ||
SSTR2—PT536/T539 | ++++ | nd | ++++ | ||
SSTR3—PS337/T341 | ++++ | nd | ++++ | ++ | + |
SSTR3—PT438 | ++++ | nd | ++++ | ++ | + |
SSTR5—pT333 | ++++ | nd | nd | ++ | + |
SSTR-G protein signaling—GIRK2 channel activation in transfected HEK293 cell line (EC50 nM mean ± SEM) | |||||
SSTR2 | 0.4 (±0.03) | nd | 311.6 (±29.3) | 60.0 (±16.3) | 4.0 (±0.03) |
SSTR3 | 0.8 (±0.1) | nd | 10.7 (±1.7) | 63.0 (±7.5) | 51.9 (±10.0) |
SSTR5 | 0.5 (±0.1) | nd | 95.1 (±15.2) | 16.5 (±2.5) | 54.4 (±6.6) |
SSTR-G protein signaling—GIRK2 channel activation in AtT-20 cell line | |||||
WT | nd | nd | −8.125 | nd | −7.5 |
Transfected SSTR3 | nd | nd | −8 | nd | −7.75 |
Other characteristics | |||||
Half-time life | 2.5 min | 2.0 min | 18 h | 18 h | 2 h |
GH release (inhibition ≅ 1 nM) | nd | nd | 50% | 75% | 100% |
Opioid Receptor | ITF2984 | Pasireotide * |
---|---|---|
δ (DOP) (h) (agonist) | 79 | 80 |
κ (KOP) (agonist) | 97 | 109 |
µ (MOP) (h) (agonist) | 97 | 90 |
NOP (ORL1) (h) (agonist) | 61 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modena, D.; Moras, M.L.; Sandrone, G.; Stevenazzi, A.; Vergani, B.; Dasgupta, P.; Kliever, A.; Gulde, S.; Marangelo, A.; Schillmaier, M.; et al. Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas. Cancers 2023, 15, 3453. https://doi.org/10.3390/cancers15133453
Modena D, Moras ML, Sandrone G, Stevenazzi A, Vergani B, Dasgupta P, Kliever A, Gulde S, Marangelo A, Schillmaier M, et al. Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas. Cancers. 2023; 15(13):3453. https://doi.org/10.3390/cancers15133453
Chicago/Turabian StyleModena, Daniela, Maria Luisa Moras, Giovanni Sandrone, Andrea Stevenazzi, Barbara Vergani, Pooja Dasgupta, Andrea Kliever, Sebastian Gulde, Alessandro Marangelo, Mathias Schillmaier, and et al. 2023. "Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas" Cancers 15, no. 13: 3453. https://doi.org/10.3390/cancers15133453
APA StyleModena, D., Moras, M. L., Sandrone, G., Stevenazzi, A., Vergani, B., Dasgupta, P., Kliever, A., Gulde, S., Marangelo, A., Schillmaier, M., Luque, R. M., Bäuerle, S., Pellegata, N. S., Schulz, S., & Steinkühler, C. (2023). Identification of a Novel SSTR3 Full Agonist for the Treatment of Nonfunctioning Pituitary Adenomas. Cancers, 15(13), 3453. https://doi.org/10.3390/cancers15133453