Minimally Invasive Surgery for Perihilar Cholangiocarcinoma: A Systematic Review of the Short- and Long-Term Results
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
- Studies reporting minimally invasive resections for PHCs. Robotic, laparoscopic, single-site, hand-assisted, or hybrid techniques were considered minimally invasive and included in the study.
- Studies reporting at least one short-term and/or long-term outcome.
- If more than one study was reported by the same institution, only the highest quality study was included.
- Original studies not reporting outcomes of patients undergoing MIS for PHC.
- Review articles, letters, comments, and case reports.
- Studies from which it was impossible to retrieve or calculate data of interest.
2.3. Data Extraction
2.4. Risk of Bias
3. Results
3.1. Laparoscopic Surgery
3.2. Robotic Surgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banales, J.M.; Marin, J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, V. Classifications and misclassification in cholangiocarcinoma. Liver Int. 2019, 39, 260–262. [Google Scholar] [CrossRef] [Green Version]
- Klatskin, G. Adenocarcinoma of the hepatic duct at its bifurcation within the porta hepatis. An unusual tumor with distinctive clinical and pathological features. Am. J. Med. 1965, 38, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Dageforde, L.A. Cholangiocarcinoma. Surg. Clin. N. Am. 2019, 99, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Van Keulen, A.M.; Franssen S., S.; van der Geest, L.G.; De Boer, M.T.; Coenraad, M.; van Driel, L.M.J.W.; Erdmann, J.I.; Haj Mohammad, N.; Heij, L.; Klümpen, H.J.; et al. Nationwide treatment and outcomes of perihilar cholangiocarcinoma. Liver Int. 2021, 41, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Akashi, K.; Ebata, T.; Mizuno, T.; Yokoyama, Y.; Igami, T.; Yamaguchi, J.; Onoe, S.; Nagino, M. Surgery for perihilar cholangiocarcinoma from a viewpoint of age: Is it beneficial to octogenarians in an aging society? Surgery 2018, 164, 1023–1029. [Google Scholar] [CrossRef]
- Nagino, M.; Ebata, T.; Yokoyama, Y.; Igami, T.; Sugawara, G.; Takahashi, Y.; Nimura, Y. Evolution of surgical treatment for perihilar cholangiocarcinoma: A single-center 34-year review of 574 consecutive resections. Ann. Surg. 2013, 258, 129–140. [Google Scholar] [CrossRef]
- De Vreede, I.; Steers, J.L.; Burch, P.A.; Rosen, C.B.; Gunderson, L.L.; Haddock, M.G.; Burgart, L.; Gores, G.J. Prolonged disease-free survival after orthotopic liver transplantation plus adjuvant chemoirradiation for cholangiocarcinoma. Liver Transplant. 2000, 6, 309–316. [Google Scholar] [CrossRef]
- Sudan, D.; DeRoover, A.; Chinnakotla, S.; Fox, I.; Shaw, B.; McCashland, T.; Sorrell, M.; Tempero, M.; Langnas, A. Radiochemotherapy and transplantation allow long-term survival for nonresectable hilar cholangiocarcinoma. Am. J. Transplant. 2002, 2, 774–779. [Google Scholar] [CrossRef]
- Primrose, J.N.; Neoptolemos, J.; Palmer, D.; Malik, H.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef] [Green Version]
- Olthof, P.B.; Coelen, R.; Wiggers, J.; Besselink, M.; Busch, O.; van Gulik, T.; Olthof, P.; Coelen, R. External biliary drainage following major liver resection for perihilar cholangiocarcinoma: Impact on development of liver failure and biliary leakage. HPB 2016, 18, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farges, O.; Regimbeau, J.; Fuks, D.; Le Treut, Y.; Cherqui, D.; Bachellier, P.; Mabrut, J.; Adham, M.; Pruvot, F.; Gigot, J. Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma. Br. J. Surg. 2012, 100, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Coelen, R.J.S.; Olthof, B.; van Dieren, S.; Besselink, M.G.H.; Busch, O.R.C.; van Gulik, T.M. External Validation of the Estimation of Physiologic Ability and Surgical Stress (E-PASS) Risk Model to Predict Operative Risk in Perihilar Cholangiocarcinoma. JAMA Surg. 2016, 151, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Abraham, N.S.; Young, J.M.; Solomon, M.J. Meta-analysis of short-term outcomes after laparoscopic resection for colorectal cancer. Br. J. Surg. 2004, 91, 1111–1124. [Google Scholar] [CrossRef] [PubMed]
- De Rooij, T.; Lu, M.; Steen, M.; Gerhards, M.; Dijkgraaf, M.; Busch, O.; Lips, D.; Festen, S.; Besselink, M. Minimally Invasive Versus Open Pancreatoduodenectomy: Systematic Review and Meta-analysis of Comparative Cohort and Registry Studies. Ann. Surg. 2016, 264, 257–267. [Google Scholar] [CrossRef]
- Garbarino, G.M.; Laracca, G.; Lucarini, A.; Piccolino, G.; Mercantini, P.; Costa, A.; Tonini, G.; Canali, G.; Muttillo, E.; Costa, G. Laparoscopic versus Open Surgery for Gastric Cancer in Western Countries: A Systematic Review and Meta-Analysis of Short-and Long-Term Outcomes. J. Clin. Med. 2022, 11, 3590. [Google Scholar] [CrossRef]
- Montroni, I.; Ugolini, G.; Saur, N.; Rostoft, S.; Spinelli, A.; Van Leeuwen, B.; De Liguori Carino, N.; Ghignone, F.; Jaklitsch, M.; Somasundar, P. Quality of Life in Older Adults After Major Cancer Surgery: The GOSAFE International Study. JNCI J. Natl. Cancer Inst. 2022, 114, 969. [Google Scholar] [CrossRef]
- Montroni, I.; Rostoft, S.; Spinelli, A.; Van Leeuwen, B.; Ercolani, G.; Saur, N.; Jaklitsch, M.; Somasundar, P.; de Liguori Carino, N.; Ghignone, F.; et al. GOSAFE—Geriatric Oncology Surgical Assessment and Functional recovery after Surgery: Early analysis on 977 patients. J. Geriatr. Oncol. 2020, 11, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Fretland, A.A.; Dagenborg, V.; Bjornelv, G.; Kazaryan, A.; Kristiansen, R.; Fagerland, M.; Hausken, J.; Tonnessen, T.; Abildgaard, A.; Barkhatov, L.; et al. Laparoscopic Versus Open Resection for Colorectal Liver Metastases. Ann. Surg. 2018, 267, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Ciria, R.; Cherqui, D.; Geller, D.A.; Briceno, J.; Wakabayashi, G. Comparative short-term benefits of laparoscopic liver resection: 9000 cases and climbing. Ann. Surg. 2016, 263, 761–777. [Google Scholar] [CrossRef]
- Troisi, R.I.; Berardi, G.; Morise, Z.; Cipriani, F.; Ariizumi, S.; Sposito, C.; Panetta, V.; Simonelli, I.; Kim, S.; Goh, B.; et al. Laparoscopic and open liver resection for hepatocellular carcinoma with Child-Pugh B cirrhosis: Multicentre propensity score-matched study. Br. J. Surg. 2021, 108, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Montalti, R.; Berardi, G.; Laurent, S.; Sebastiani, S.; Ferdinande, L.; Libbrecht, L.; Smeets, P.; Brescia, A.; Rogiers, X.; De Hemptinne, B.; et al. Laparoscopic liver resection compared to open approach in patients with colorectal liver metastases improves further resectability: Oncological outcomes of a case-control matched-pairs analysis. Eur. J. Surg. Oncol. 2014, 40, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Van Cleven, S.; Fretland, A.; Barkhatov, L.; Halls, M.; Cipriani, F.; Aldrighetti, L.; Abu Hilal, M.; Edwin, B.; Troisi, R.I. Evolution of Laparoscopic Liver Surgery from Innovation to Implementation to Mastery: Perioperative and Oncologic Outcomes of 2,238 Patients from 4 European Specialized Centers. J. Am. Coll. Surg. 2017, 225, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Levi Sandri, G.B.; Spoletini, G.; Mascianà, G.; Colasanti, M.; Lepiane, P.; Vennarecci, G.; D’Andrea, V.; Ettorre, G. The role of minimally invasive surgery in the treatment of cholangiocarcinoma. Eur. J. Surg. Oncol. 2017, 43, 1617–1621. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Sbrana, F.; Bianco, F.M.; Addeo, P. Robot-assisted laparoscopic extended right hepatectomy with biliary reconstruction. J. Laparoendosc. Adv. Surg. Tech. 2010, 20, 159–163. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, A.; Zhang, Z. Total laparoscopic Roux-en-Y cholangiojejunostomy for the treatment of biliary disease. JSLS 2013, 17, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Cao, X.; Liu, X.; Qin, J.; Zhang, S.; Li, Q.; Liu, J. Laparoscopic resection for Bismuth type III and IV hilar cholangiocarcinoma: How to improve the radicality without direct palpation. J. Surg. Oncol. 2019, 120, 1379–1385. [Google Scholar] [CrossRef]
- He, Y.G.; Huang, W.; Ren, Q.; Li, J.; Yang, F.; Deng, C.; Li, L.; Peng, X.; Tang, Y.; Zheng, L.; et al. Comparison of Efficacy and Safety Between Laparoscopic and Open Radical Resection for Hilar Cholangiocarcinoma—A Propensity Score-Matching Analysis. Front. Oncol. 2022, 12, 1004974. [Google Scholar] [CrossRef]
- Li, J.; Tan, X.; Zhang, X.; Zhao, G.; Hu, M.; Zhao, Z.; Liu, R. Robotic radical surgery for hilar cholangiocarcinoma: A single-centre case series. Int. J. Med. Robot. 2020, 16, e2076. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiong, Y.; Yang, G.; Zhang, L.; Riaz, M.; Xu, J.; Li, Q.; Tang, Z. Complete laparoscopic radical resection of hilar cholangiocarcinoma: Technical aspects and long-term results from a single center. Videosurgery Other Miniinvasive Tech. 2021, 16, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, L.; Zhang, J.; Li, Z.; Li, A.; Wei, Y.; Xu, J. Application of the laparoscopic technique in perihilar cholangiocarcinoma surgery. Int. J. Surg. 2017, 44, 104–109. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Li, X.; Li, O.; Yi, W.; Khan, J.; Yang, P.; Guo, C.; Peng, C.; Jiang, B. Application of Laparoscopic Radical Resection for Type III and IV Hilar Cholangiocarcinoma Treatment. Gastroenterol. Res. Pract. 2020, 2020, 1506275. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Wang, M.; Zhang, H.; Li, J.; Deng, X.; Zhang, Y.; Zhao, W.; Fan, Y.; Li, D.; Chen, X.; et al. The Long-Term Outcome of Laparoscopic Resection for Perihilar Cholangiocarcinoma Compared with the Open Approach: A Real-World Multicentric Analysis. Ann. Surg. Oncol. 2022, 30, 1366–1378. [Google Scholar] [CrossRef]
- Xiong, F.; Peng, F.; Li, X.; Chen, Y. Preliminary comparison of total laparoscopic and open radical resection for hepatic hilar cholangiocarcinoma a single center cohort study. Asian J. Surg. 2022, 46, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wu, S.D.; Chen, D.X.; Zhu, G. Laparoscopic resection of Bismuth type I and II hilar cholangiocarcinoma: An audit of 14 cases from two institutions. Dig. Surg. 2011, 28, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dou, C.; Wu, W.; Liu, J.; Jin, L.; Hu, Z.; Zhang, C.; Chen, X. Total laparoscopic versus open radical resection for hilar cholangiocarcinoma. Surg. Endosc. 2020, 34, 4382–4387. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, H.; Ji, W.; Tang, M.; Li, H.; Leng, J.; Meng, X.; Dong, J. Robotic radical resection for hilar cholangiocarcinoma: Perioperative and long-term outcomes of an initial series. Surg. Endosc. 2016, 30, 3060–3070. [Google Scholar] [CrossRef]
- Ma, D.; Wang, W.; Wang, J.; Zhang, T.; Jiang, Z.; Du, G.; Yang, .; Zhang, X.; Qin, G.; Jin, B. Laparoscopic versus open surgery for hilar cholangiocarcinoma: A retrospective cohort study on short-term and long-term outcomes. Surg. Endosc. 2022, 36, 3721–3731. [Google Scholar] [CrossRef]
- Lee, W.; Han, H.; Yoon, Y.; Cho, J.; Choi, Y.; Shin, H.; Jang, J.; Choi, H. Laparoscopic resection of hilar cholangiocarcinoma. Ann. Surg. Treat. Res. 2015, 89, 228–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cillo, U.; D’Amico, F.E.; Furlanetto, A.; Perin, L.; Gringeri, E. Robotic hepatectomy and biliary reconstruction for perihilar cholangiocarcinoma: A pioneer western case series. Updates Surg. 2021, 73, 999–1006. [Google Scholar] [CrossRef]
- Ratti, F.; Fiorentini, G.; Cipriani, F.; Catena, M.; Paganelli, M.; Aldrighetti, L. Perihilar cholangiocarcinoma: Are we ready to step towards minimally invasiveness? Updates Surg. 2020, 72, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Elmoghazy, W.; Cowan, J.; Tabchouri, N.; Tinguely, P.; Bennamoun, M.; Tubbax, C.; Sarran, A.; Lefevre, M.; Lamer, C.; Gayet, B.; et al. Liver resection for extra-pancreatic biliary cancer: What is the role of laparoscopic approach? Surg. Endosc. 2019, 33, 3711–3717. [Google Scholar] [CrossRef]
- Gumbs, A.A.; Jarufe, N.; Gayet, B. Minimally invasive approaches to extrapancreatic cholangiocarcinoma. Surg. Endosc. 2013, 27, 406–414. [Google Scholar] [CrossRef]
- Wiggers, J.K.; Grootx Koerkamp, B.; Cieslak, K.; Doussot, A.; Van Klaveren, D.; Allen, P.; Besselink, M.; Busch, O.; D’Angelica, M.; Dematteo, R.; et al. Postoperative Mortality after Liver Resection for Perihilar Cholangiocarcinoma: Development of a Risk Score and Importance of Biliary Drainage of the Future Liver Remnant. J. Am. Coll. Surg. 2016, 223, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Kambakamba, P.; Linecker, M.; Slankamenac, K.; DeOliveira, M.L. Lymph node dissection in resectable perihilar cholangiocarcinoma: A systematic review. Am. J. Surg. 2015, 210, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Bagante, F.; Tran, T.; Spolverato, G.; Ruzzenente, A.; Buttner, S.; Ethun, C.; Koerkamp, G.; Conci, S.; Idrees, K.; Isom, C.; et al. Perihilar Cholangiocarcinoma: Number of Nodes Examined and Optimal Lymph Node Prognostic Scheme. J. Am. Coll. Surg. 2016, 222, 750–759. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, F.; Ratti, F.; Fiorentini, G.; Reineke, R.; Aldrighetti, L. Systematic review of perioperative and oncologic outcomes of minimally-invasive surgery for hilar cholangiocarcinoma. Updates Surg. 2021, 73, 359–377. [Google Scholar] [CrossRef]
- Russo, A.; Li, P.; Strong, V.E. Differences in the multimodal treatment of gastric cancer: East versus west. J. Surg. Oncol. 2017, 115, 603–614. [Google Scholar] [CrossRef]
- Russo, A.E.; Strong, V.E. Gastric cancer etiology and management in Asia and the west. Annu. Rev. Med. 2019, 70, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Karthikesalingam, A.; Jackson, D.; Hanna, G.B. Long-term survival after gastrectomy for cancer in randomized, controlled oncological trials: Comparison between west and east. Ann. Surg. Oncol. 2013, 20, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Donadon, M.; Franchi, E.; Torzilli, G. Volume-Outcome Relationship in Hepatobiliary Surgery. In Volume-Outcome Relationship in Oncological Surgery; Springer: Cham, Switzerland, 2021; pp. 35–44. [Google Scholar] [CrossRef]
First Author | Country | Year | Study Design | Technique | Period of Study | Total No. of Patients | NOS Scale |
---|---|---|---|---|---|---|---|
Elmoghazy et al. [44] | France | 2019 | Case series | Laparoscopy | January 2002–January 2016 | 11 | NA |
Feng et al. [29] | China | 2019 | Case series | Laparoscopy | November 2016–November 2018 | 9 | NA |
Ratti et al. [43] | Italy | 2020 | Case-control (PSM) | Laparoscopyvs. open | January 2014–June 2019 | 48 | 8/8 |
Gumbs et al. [45] | USA | 2013 | Case series | Laparoscopy | 12/2002–June 2011 | 5 | NA |
Yu et al. [37] | China | 2011 | Case series | Laparoscopy | September 2006–December 2008 | 14 | NA |
Chen et al. [28] | China | 2013 | Case series | Laparoscopy | January 2000–November 2011 | 36 | NA |
Ma et al. [40] | China | 2022 | Case-control (PSM) | Laparoscopyvs. open | February 2017–August 2020 | 149 | 8/8 |
Zhang et al. [38] | China | 2020 | Case-control | Laparoscopyvs. open | January 2015–December 2018 | 23 | 7/8 |
Qin et al. [35] | China | 2022 | Case-control (PSM) | Laparoscopyvs. open | January 2013–October 2018 | 166 | 8/8 |
Xiong et al. [36] | China | 2022 | Case-control | Laparoscopyvs. open | January 2018–January 2020 | 64 | 7/8 |
Li et al. [33] | China | 2017 | Case series | Laparoscopy | October 2007–May 2014 | 9 | NA |
Lee et al. [41] | South Korea | 2015 | Case series | Laparoscopy | August 2014–December 2014 | 5 | NA |
He et al. [30] | China | 2022 | Case-control (PSM) | Laparoscopyvs. open | January 2018–March 2022 | 21 | 8/8 |
Liu et al. [34] | China | 2020 | Case series | Laparoscopy | April 2015–October 2018 | 6 | NA |
Li et al. [32] | China | 2021 | Case series | Laparoscopy | December 2015–November 2019 | 32 | NA |
Li et al. [31] | China | 2020 | Case series | Robotic | March 2017–February 2019 | 48 | NA |
Xu et al. [39] | China | 2016 | Case-control | Robotic vs. open | May 2009–October 2012 | 42 | 6/8 |
Cillo et al. [42] | Italy | 2021 | Case series | Robotic | March 2019–March 2020 | 4 | NA |
First Author | No of MIS | Age | Sex (M/F) | BMI | Bismuth-Corlette | Preoperative Jaundice | Preoperative Drainage | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
I | II | IIIa | IIIb | IV | |||||||
Elmoghazy et al. [44] | 11 | 62 (55–79) | 8/3 | 24 (21–33) | ND | 3 (27%) | 3 (27%) | ||||
Feng et al. [29] | 9 | 62 ± 4.92 | 5/4 | 22.98 ± 4 | 0 | 0 | 2 | 5 | 2 | 4 (44%) | 4 (44%) |
Ratti et al. [43] | 16 | 61 (48–81) | 8/8 | 25 (21.2–28.7) | 1 | 5 | 5 | 5 | 0 | 14 (87%) | 12 (75%) |
Gumbs et al. [45] | 5 | 73 (66–79) | ND | ND | 0 | 0 | 3 | 2 | 0 | ND | ND |
Yu et al. [37] | 14 | 55.7 (51–71) | ND | ND | 8 | 6 | 0 | 0 | 0 | 11 (78%) | 0 |
Chen et al. [28] | 36 | 66 ± 7.87 | 27/9 | ND | 17 | 19 | 0 | 0 | 0 | ND | ND |
Ma et al. [40] | 20 | 61.9 ± 9 | 16/4 | 22.2 ± 2.8 | 2 | 4 | 2 | 7 | 5 | 14 (70%) | 12 (60%) |
Zhang et al. [38] | 14 | 65.4 ± 8.9 | 7/7 | 23.1 ± 3.1 | 5 | 0 | 8 | 1 | 0 | ND | 7 (50%) |
Qin et al. [35] | 83 | 62.06 ± 9.44 | 44/39 | 22.65 ± 3.11 | 2 | 41 | 5 | 11 | 24 | ND | ND |
Xiong et al. [36] | 34 | 55 (39–64) | 18/16 | 22.2 (18–25.2) | 2 | 2 | 10 | 17 | 3 | 22 (65%) | 22 (65%) |
Li et al. [33] | 9 | 62.7 (50–74) | 6/3 | ND | 1 | 3 | 0 | 4 | 1 | 9 (100%) | ND |
Lee et al. [41] | 5 | 63 (43–76) | 5/0 | ND | 1 | 1 | 1 | 2 | 0 | 5 (100%) | 4 (80%) |
He et al. [30] | 16 | 64 (54–66) * | 7/9 | 23.5 ± 2.45 | 0 | 0 | 7 | 9 | 0 | 15 (94%) | 12 (75%) |
Liu et al. [34] | 6 | 53 (35–75) | 4/2 | ND | 0 | 0 | 1 | 2 | 3 | 2 (33%) | 2 (33%) |
Li et al. [32] | 32 | 60.6 (39–77) | 21/11 | <18.5: 1 18.5–24.9: 23 25–29.9: 8 | 0 | 6 | 4 | 8 | 14 | 22 (69%) | 14 (44%) |
Li et al. [31] | 48 | 62.4 ± 9 | 28/20 | 23.7 ± 3.1 | 20 | 6 | 5 | 17 | 0 | 33 (69%) | 20 (42%) |
Xu et al. [39] | 10 | 54 (36–77) | 8/2 | ND | 0 | 1 | 4 | 1 | 4 | 10 (100%) | 6 (60%) |
Cillo et al. [42] | 4 | 60.5 (44–79) | 1/3 | ND | 0 | 0 | 0 | 4 | 0 | 3 (75%) | 4 (100%) |
First Author | Operative Time (min) | Blood Loss (mL) | Conversion to Open | Type of Liver Resection | Caudate Resection | Vascular Resection | Blood Transfusion |
---|---|---|---|---|---|---|---|
Elmoghazy et al. [44] | 355 (290–420) | 250 (120–1200) | 5 (45%) | 8 MajH, 3 ER | 6 (55%) | 6 (55%) | 3 |
Feng et al. [29] | 479.6 ± 98.1 | 950 ± 800 | 0 | 4 RH, 5 LH | 9 (100%) | 0 | 4 |
Ratti et al. [43] | 360 ± 290 | 380 ± 250 | 3 (18%) | 7 RH, 9 LH | 16 (100%) | 3 PV, 3 HA | 2 |
Gumbs et al. [45] | ND | 240 (0–400) | 1 (20%) | 3 RH, 2 LH | ND | 0 | ND |
Yu et al. [37] | 305(210–445) | 386 (200–1000) | 0 | ND | 5 (36%) | 0 | 0 |
Chen et al. [28] | 205.3 ± 23.9 | 101.1 ± 13.6 | 0 | ND | ND | ND | ND |
Ma et al. [40] | 307.8 ± 90.8 | 1360 ± 809 | 7 (35%) | 2 RH, 8 LH, 1 MinH | 7 (35%) | 3 (15%) | 7 |
Zhang et al. [38] | 519.4 ± 115.4 | 821.4 ± 713.8 | 2 (14%) | ND | 14 (100%) | ND | 6 |
Qin et al. [35] | 360 (300–420) | 300 (100–500) * | 9 (11%) | 8 RH, 41 LH, 1 RS, 1 LS | 83 (100%) | 1 PV, 3 HA | 21 |
Xiong et al. [36] | 475.5 (219–630) | 300 (50–3500) | ND | 10 RH, 22 LH, 2 CH | 34 (100%) | 1 (3%) | ND |
Li et al. [33] | 450 (330–540) | 503 (150–850) | 0 | 2 LH | 4 (44%) | 0 | ND |
Lee et al. [41] | 610 (410–665) | 650 (450–1300) | 0 | 1 RH, 2 LH, 2 BDR | 3 (60%) | ND | ND |
He et al. [30] | 489.6 ± 79.1 | 300 (200–400) * | 0 | 7 RH, 9 LH | 16 (100%) | 1 PV (6%) | 8 |
Liu et al. [34] | 590 (540–660) | 400 (300–500) | 0 | 1 RH, 5 LH | 6 (100%) | 1 (17%) | 0 |
Li et al. [32] | 476.9 ± 133.8 | 568.7 ± 324 | 5 (16%) | 13 RH, 11 LH | 14 (44%) | ND | 2.5 ** |
Li et al. [31] | 276 (170–500) | 150 (20–1500) | 0 | ND | 48 (100%) | 0 | 13 |
Xu et al. [39] | 703 ± 62 | 1360 ± 809 | ND | 6 RH, 4 LH | 10 (100%) | ND | 6 |
Cillo et al. [42] | 840 (770–890) | 700 (600–800) | 1 (25%) | 4 LH | 0 | 0 | 0 |
First Author | Length of Stay (Days) | R0 Resection | Lymph Node Retrieved | Positive Lymph Node | Morbidity (C.D.) | Bile Leak | Mortality | |
---|---|---|---|---|---|---|---|---|
I-II | III-IV | |||||||
Elmoghazy et al. [44] | 21 (10–57) | 8 (73%) | 9 (0–19) | 5 (45%) | 4 | 3 | 4 (36%) | 2 (18%) |
Feng et al. [29] | 36.2 ± 9.5 | 9 (100%) | ND | ND | 1 | 1 | 1 (11%) | 1 (11%) |
Ratti et al. [43] | 10 (7–15) | 13 (81%) | 12 (8–16) | 6 (37%) | 5 | 2 | 3 (18%) | 0 |
Gumbs et al. [45] | 15 (11–21) | 4 (80%) | ND | ND | ND | ND | 0 | |
Yu et al. [37] | Type I: 9 (6–22) | 10 (71%) | ND | ND | ND | 0 | 5 (36%) | |
Type II: 19 (9–25) | ||||||||
Chen et al. [28] | 5.9 ± 2.1 | ND | ND | ND | 1 | 0 | 1 (2.7%) | 0 |
Ma et al. [40] | 14.5 ± 5 | 14 (70%) | ND | 4 (20%) | ND | 4 | 1 (5%) | 1 (5%) |
Zhang et al. [38] | 17.8 ± 7.1 | 7 (50%) | 9.7 ± 6.7 | ND | 3 | 5 | 5 (36%) | 1 (7%) |
Qin et al. [35] | 14 (10–19) * | 78 (94%) | 8 (5–10) * | 17 (20%) | ND | 10 | 8 (10%) | 7 (8%) |
Xiong et al. [36] | 20 (10–44) | 32 (94%) | 9.50 (6–15) | 11 (32%) | 31 | 3 | 8 (23%) | 0 |
Li et al. [33] | 15.7 (10–27) | 9 (100%) | ND | 9 (100%) | ND | ND | 2 (22%) | |
Lee et al. [41] | 12 (9–21) | 4 (80%) | 4 (3–12) | 0 | 0 | 1 | 1 (20%) | 0 |
He et al. [30] | 11.5 (10–17.7) * | 15 (94%) | 7 (5–8) * | 7 (44%) | 14 | 2 | 0 | 0 |
Liu et al. [34] | 16 (13–24) | 4 (66%) | ND | ND | 0 | 1 | 1 (17%) | 0 |
Li et al. [32] | 23.3 ± 11.7 | 19 (59%) | 8.93 ± 5.26 | ND | 15 | 4 | 4 (17%) | 1 (3%) |
Li et al. [31] | 9 (4–52) | 35 (73%) | ND | 11 (23%) | 23 | 5 | 2 (4%) | 0 |
Xu et al. [39] | 16 (9–58) | 7 (70%) | ND | 3 (30%) | 6 | 3 | 4 (40%) | 1 (10%) |
Cillo et al. [42] | 9 (7–11) | 3 (75%) | ND | 2 (50%) | 3 | 0 | 1 (25%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berardi, G.; Lucarini, A.; Colasanti, M.; Mariano, G.; Ferretti, S.; Meniconi, R.L.; Guglielmo, N.; Angrisani, M.; Usai, S.; Borcea, M.C.; et al. Minimally Invasive Surgery for Perihilar Cholangiocarcinoma: A Systematic Review of the Short- and Long-Term Results. Cancers 2023, 15, 3048. https://doi.org/10.3390/cancers15113048
Berardi G, Lucarini A, Colasanti M, Mariano G, Ferretti S, Meniconi RL, Guglielmo N, Angrisani M, Usai S, Borcea MC, et al. Minimally Invasive Surgery for Perihilar Cholangiocarcinoma: A Systematic Review of the Short- and Long-Term Results. Cancers. 2023; 15(11):3048. https://doi.org/10.3390/cancers15113048
Chicago/Turabian StyleBerardi, Giammauro, Alessio Lucarini, Marco Colasanti, Germano Mariano, Stefano Ferretti, Roberto Luca Meniconi, Nicola Guglielmo, Marco Angrisani, Sofia Usai, Maria Carola Borcea, and et al. 2023. "Minimally Invasive Surgery for Perihilar Cholangiocarcinoma: A Systematic Review of the Short- and Long-Term Results" Cancers 15, no. 11: 3048. https://doi.org/10.3390/cancers15113048
APA StyleBerardi, G., Lucarini, A., Colasanti, M., Mariano, G., Ferretti, S., Meniconi, R. L., Guglielmo, N., Angrisani, M., Usai, S., Borcea, M. C., Canali, G., Moschetta, G., & Ettorre, G. M. (2023). Minimally Invasive Surgery for Perihilar Cholangiocarcinoma: A Systematic Review of the Short- and Long-Term Results. Cancers, 15(11), 3048. https://doi.org/10.3390/cancers15113048