Risk of Thromboembolic Events and Major Adverse Cardiovascular Events Following Antivascular Endothelial Growth Factor Therapy in Patients with Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Identification of Patients with Stage III/IV Colorectal Cancer
2.3. Anti-VEGF Group and Matched Comparator Group
2.4. MACEs and Thromboembolic Events
2.5. Study Covariates
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. MACEs, Thromboembolic Events, and Mortality Risk between the Study Groups
3.3. Stratified Analysis and Competing Risk Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.Y.; Huang, J.Y.; Jian, Z.H.; Ho, C.C.; Lung, C.C.; Liaw, Y.P. Mortality of colorectal cancer in taiwan, 1971-2010: Temporal changes and age-period-cohort analysis. Int. J. Color. Dis. 2012, 27, 1665–1672. [Google Scholar] [CrossRef] [PubMed]
- Adjuvant chemotherapy with oxaliplatin, in combination with fluorouracil plus leucovorin prolongs disease-free survival, but causes more adverse events in people with stage ii or iii colon cancer abstracted from: Andre T, Boni C, Mounedji-Boudiaf L; et al. Multicenter international study of oxaliplatin/5-fluorouracil/leucovorin in the adjuvant treatment of colon cancer (mosaic) investigators. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N engl j med 2004;350:2343–51. Cancer Treat. Rev. 2004, 30, 711–713.
- André, T.; Boni, C.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Bonetti, A.; Clingan, P.; Bridgewater, J.; Rivera, F.; et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage ii or iii colon cancer in the mosaic trial. J. Clin. Oncol. 2009, 27, 3109–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twelves, C.; Wong, A.; Nowacki, M.P.; Abt, M.; Burris, H., 3rd; Carrato, A.; Cassidy, J.; Cervantes, A.; Fagerberg, J.; Georgoulias, V.; et al. Capecitabine as adjuvant treatment for stage iii colon cancer. N. Engl. J. Med. 2005, 352, 2696–2704. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Sobrero, A.F.; Shields, A.F.; Yoshino, T.; Paul, J.; Taieb, J.; Souglakos, J.; Shi, Q.; Kerr, R.; Labianca, R.; et al. Duration of adjuvant chemotherapy for stage iii colon cancer. N. Engl. J. Med. 2018, 378, 1177–1188. [Google Scholar] [CrossRef]
- Maindrault-Goebel, F.; de Gramont, A.; Louvet, C.; André, T.; Carola, E.; Gilles, V.; Lotz, J.P.; Tournigand, C.; Mabro, M.; Molitor, J.L.; et al. Evaluation of oxaliplatin dose intensity in bimonthly leucovorin and 48-hour 5-fluorouracil continuous infusion regimens (folfox) in pretreated metastatic colorectal cancer. Oncology multidisciplinary research group (gercor). Ann. Oncol. 2000, 11, 1477–1483. [Google Scholar] [CrossRef]
- Haller, D.G.; Tabernero, J.; Maroun, J.; de Braud, F.; Price, T.; Van Cutsem, E.; Hill, M.; Gilberg, F.; Rittweger, K.; Schmoll, H.J. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage iii colon cancer. J. Clin. Oncol. 2011, 29, 1465–1471. [Google Scholar] [CrossRef]
- Moser, C.; Lang, S.A.; Stoeltzing, O. The direct effects of anti-vascular endothelial growth factor therapy on tumor cells. Clin. Color. Cancer 2007, 6, 564–571. [Google Scholar] [CrossRef]
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef]
- Kabbinavar, F.; Hurwitz, H.I.; Fehrenbacher, L.; Meropol, N.J.; Novotny, W.F.; Lieberman, G.; Griffing, S.; Bergsland, E. Phase ii, randomized trial comparing bevacizumab plus fluorouracil (fu)/leucovorin (lv) with fu/lv alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003, 21, 60–65. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [Green Version]
- Giantonio, B.J.; Catalano, P.J.; Meropol, N.J.; O’Dwyer, P.J.; Mitchell, E.P.; Alberts, S.R.; Schwartz, M.A.; Benson, A.B., 3rd. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (folfox4) for previously treated metastatic colorectal cancer: Results from the eastern cooperative oncology group study e3200. J. Clin. Oncol. 2007, 25, 1539–1544. [Google Scholar] [CrossRef]
- Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase iii study. J. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
- Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; et al. Folfoxiri plus bevacizumab versus folfiri plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 tribe study. Lancet Oncol. 2015, 16, 1306–1315. [Google Scholar] [CrossRef]
- Chen, X.L.; Lei, Y.H.; Liu, C.F.; Yang, Q.F.; Zuo, P.Y.; Liu, C.Y.; Chen, C.Z.; Liu, Y.W. Angiogenesis inhibitor bevacizumab increases the risk of ischemic heart disease associated with chemotherapy: A meta-analysis. PLoS ONE 2013, 8, e66721. [Google Scholar] [CrossRef] [Green Version]
- Faruque, L.I.; Lin, M.; Battistella, M.; Wiebe, N.; Reiman, T.; Hemmelgarn, B.; Thomas, C.; Tonelli, M. Systematic review of the risk of adverse outcomes associated with vascular endothelial growth factor inhibitors for the treatment of cancer. PLoS ONE 2014, 9, e101145. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Qadir, H.; Ethier, J.L.; Lee, D.S.; Thavendiranathan, P.; Amir, E. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: A systematic review and meta-analysis. Cancer Treat. Rev. 2017, 53, 120–127. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Doi, S.A.; Onitilo, A.; Akhtar, S. Is there truly an increase in risk of cardiovascular and hematological adverse events with vascular endothelial growth factor receptor tyrosine kinase inhibitors? Expert Opin. Drug Saf. 2020, 19, 223–228. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Kao Yang, Y.H.; Lai, E.C. Taiwan’s national health insurance research database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Rahme, E.; Abrahamowicz, M.; Pilote, L. Survival bias associated with time-to-treatment initiation in drug effectiveness evaluation: A comparison of methods. Am. J. Epidemiol. 2005, 162, 1016–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, G.M.; Feinn, R. Using effect size-or why the p value is not enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gooley, T.A.; Leisenring, W.; Crowley, J.; Storer, B.E. Estimation of failure probabilities in the presence of competing risks: New representations of old estimators. Stat. Med. 1999, 18, 695–706. [Google Scholar] [CrossRef]
- Kozloff, M.; Yood, M.U.; Berlin, J.; Flynn, P.J.; Kabbinavar, F.F.; Purdie, D.M.; Ashby, M.A.; Dong, W.; Sugrue, M.M.; Grothey, A. Clinical outcomes associated with bevacizumab-containing treatment of metastatic colorectal cancer: The brite observational cohort study. Oncologist 2009, 14, 862–870. [Google Scholar] [CrossRef]
- Hatake, K.; Doi, T.; Uetake, H.; Takahashi, Y.; Ishihara, Y.; Shirao, K. Bevacizumab safety in japanese patients with colorectal cancer. Jpn. J. Clin. Oncol. 2016, 46, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Beca, J.M.; Dai, W.F.; Pataky, R.E.; Tran, D.; Dvorani, E.; Isaranuwatchai, W.; Peacock, S.; Alvi, R.; Cheung, W.Y.; Earle, C.C.; et al. Real-world safety of bevacizumab with first-line combination chemotherapy in patients with metastatic colorectal cancer: Population-based retrospective cohort studies in three canadian provinces. Clin. Oncol. 2022, 34, e7–e17. [Google Scholar] [CrossRef]
- Kapelakis, I.; Toutouzas, K.; Drakopoulou, M.; Michelongona, A.; Zagouri, F.; Mpamias, A.; Pliatsika, P.; Dimopoulos, M.A.; Stefanadis, C.; Tousoulis, D. Bevacizumab increases the incidence of cardiovascular events in patients with metastatic breast or colorectal cancer. Hell. J. Cardiol. 2017, 58, 215–219. [Google Scholar] [CrossRef]
Variables | Age, Sex, Clinical Stage, and Time-Distribution Matched Groups | Propensity Score Matched Groups | ||||
---|---|---|---|---|---|---|
Comparator n = 4635 | Anti-VEGF n = 4635 | ASD | Comparator n = 3350 | Anti-VEGF n = 3350 | ASD | |
Year of diagnosis | 0.0289 | 0.0037 | ||||
2009–2012 | 1778 (38.36%) | 1713 (36.96%) | 1344 (40.12%) | 1338 (39.94%) | ||
2013–2016 | 2857 (61.64%) | 2922 (63.04%) | 2006 (59.88%) | 2012 (60.06%) | ||
Sex | 0.0000 | 0.0156 | ||||
Male | 2588 (55.84%) | 2588 (55.84%) | 1873 (55.91%) | 1899 (56.69%) | ||
Female | 2047 (44.16%) | 2047 (44.16%) | 1477 (44.09%) | 1451 (43.31%) | ||
Age | 0.0595 | 0.0697 | ||||
<40 | 246 (5.31%) | 264 (5.70%) | 195 (5.82%) | 176 (5.25%) | ||
40–49 | 490 (10.57%) | 514 (11.09%) | 387 (11.55%) | 372 (11.10%) | ||
50–59 | 1157 (24.96%) | 1146 (24.72%) | 868 (25.91%) | 845 (25.22%) | ||
60–79 | 1331 (28.72%) | 1391 (30.01%) | 968 (28.90%) | 994 (29.67%) | ||
≥80 | 1411 (30.44%) | 1320 (28.48%) | 932 (27.82%) | 963 (28.75%) | ||
Clinical Stage | 0.0000 | 0.0697 | ||||
III | 1381 (29.80%) | 1381 (29.80%) | 1094 (32.66%) | 986 (29.43%) | ||
IV | 3254 (70.20%) | 3254 (70.20%) | 2256 (67.34%) | 2364 (70.57%) | ||
Surgery | 3392 (73.18%) | 3596 (77.58%) | 0.1023 | 2626 (78.39%) | 2549 (76.09%) | 0.0548 |
Radiotherapy | 265 (5.72%) | 314 (6.77%) | 0.0437 | 224 (6.69%) | 253 (7.55%) | 0.0337 |
Chemotherapy | 3152 (68.00%) | 4367 (94.22%) | 0.7107 | 3082 (92.00%) | 3083 (92.03%) | 0.0011 |
BMI | 0.2110 | 0.0423 | ||||
Missing | 1139 (24.57%) | 894 (19.29%) | 786 (23.46%) | 787 (23.49%) | ||
<18.5 | 368 (7.94%) | 251 (5.42%) | 205 (6.12%) | 221 (6.60%) | ||
18.5–24 | 1798 (38.79%) | 1936 (41.77%) | 1328 (39.64%) | 1308 (39.04%) | ||
>24 | 1330 (28.69%) | 1554 (33.53%) | 1031 (30.78%) | 1034 (30.87%) | ||
Smoking | 0.1551 | 0.0503 | ||||
Missing | 1007 (21.73%) | 762 (16.44%) | 696 (20.78%) | 680 (20.30%) | ||
Never smoker | 2583 (55.73%) | 2829 (61.04%) | 1882 (56.18%) | 1910 (57.01%) | ||
Current smoker | 663 (14.30%) | 687 (14.82%) | 499 (14.90%) | 473 (14.12%) | ||
Former smoker | 382 (8.24%) | 357 (7.70%) | 273 (8.15%) | 287 (8.57%) | ||
Co-morbidity | ||||||
Hypertension | 1807 (38.99%) | 1841 (39.72%) | 0.0150 | 1257 (37.52%) | 1345 (40.15%) | 0.0539 |
Diabetes mellitus | 1023 (22.07%) | 999 (21.55%) | 0.0125 | 693 (20.69%) | 774 (23.10%) | 0.0585 |
Hyperlipidemia | 776 (16.74%) | 815 (17.58%) | 0.0223 | 549 (16.39%) | 609 (18.18%) | 0.0474 |
Chronic kidney disease | 419 (9.04%) | 258 (5.57%) | 0.1338 | 230 (6.87%) | 222 (6.63%) | 0.0095 |
Variables | Age, Sex, Clinical Stage, and Time-Distribution Matching | Propensity Score Matched Matching | ||||
---|---|---|---|---|---|---|
Comparator n = 4635 | Anti-VEGF n = 4635 | p Value | Comparator n = 3350 | Anti-VEGF n = 3350 | p Value | |
MACEs or thromboembolic events | ||||||
Observed person-months | 96,014 | 85,664 | 77,897 | 62,033 | ||
Newly diagnosed event | 231 | 197 | 172 | 154 | ||
Incidence rate (95% C.I.) | 2.41 (2.11–2.74) | 2.30 (2.00–2.64) | 0.6415 | 2.21 (1.90–2.56) | 2.48 (2.12–2.91) | 0.2909 |
Crude HR (95% C.I.) | Reference | 0.989 (0.798–1.224) | 0.9162 | |||
aHR (95% C.I.) | Reference | 1.040 (0.818–1.322) | 0.7476 | Reference | 1.046 (0.838–1.306) | 0.6881 |
MACEs | ||||||
Observed person-months | 96,164 | 85,956 | 78,042 | 62,244 | ||
Newly diagnosed event | 219 | 172 | 161 | 137 | ||
Incidence rate (95% C.I.) | 2.28 (1.99–2.60) | 2.00 (1.72–2.32) | 0.2042 | 2.06 (1.77–2.41) | 2.20 (1.86–2.60) | 0.5774 |
Crude HR (95% C.I.) | Reference | 0.919 (0.734–1.151) | 0.4622 | |||
aHR (95% C.I.) | Reference | 0.989 (0.769–1.273) | 0.9326 | Reference | 1.004 (0.796–1.267) | 0.9708 |
Thromboembolic events | ||||||
Observed person-months | 96,944 | 85,981 | 78,712 | 62,319 | ||
Newly diagnosed event | 188 | 162 | 137 | 122 | ||
Incidence rate (95% C.I.) | 1.94 (1.68–2.24) | 1.88 (1.62–2.20) | 0.7879 | 1.74 (1.47–2.06) | 1.96 (1.64–2.34) | 0.3449 |
Crude HR (95% C.I.) | Reference | 0.973 (0.769–1.231) | 0.8168 | |||
aHR (95% C.I.) | Reference | 1.028 (0.789–1.340) | 0.8364 | Reference | 1.053 (0.821–1.352) | 0.6823 |
All-cause mortality | ||||||
Observed person-months | 100,751 | 88,468 | 81,643 | 64,220 | ||
Death | 2551 | 3422 | 1666 | 2499 | ||
Mortality rate (95% C.I.) | 25.32 (24.36–26.32) | 38.68 (37.41–40.00) | <0.0001 | 20.41 (19.45–21.41) | 38.91 (37.42–40.47) | <0.0001 |
Crude HR (95% C.I.) | Reference | 1.920 (1.796–2.053) | <0.0001 | |||
aHR (95% C.I.) | Reference | 1.540 (1.431–1.658) | <0.0001 | Reference | 1.637 (1.537–1.743) | <0.0001 |
Variables | In Stage III | In Stage IV | ||||
---|---|---|---|---|---|---|
Comparator n = 1381 | Anti-VEGF n = 1381 | p Value | Comparator n = 3254 | Anti-VEGF n = 3254 | p Value | |
MACEs or thromboembolic events | ||||||
Observed person-months | 47,698 | 27,095 | 48,316 | 58,569 | ||
Newly diagnosed event | 96 | 50 | 135 | 147 | ||
Incidence rate (95% C.I.) | 2.01 (1.65–2.46) | 1.85 (1.40–2.43) | 0.6188 | 2.79 (2.36–3.31) | 2.51 (2.14–2.95) | 0.3681 |
Crude HR (95% C.I.) | Reference | 0.852 (0.595–1.219) | 0.3794 | Reference | 1.021 (0.775–1.344) | 0.8827 |
aHR (95% C.I.) | Reference | 1.131 (0.755–1.693) | 0.5500 | Reference | 0.945 (0.696–1.284) | 0.7179 |
MACEs | ||||||
Observed person-months | 47,723 | 27,171 | 48,441 | 58,785 | ||
Newly diagnosed event | 94 | 44 | 125 | 128 | ||
Incidence rate (95% C.I.) | 1.97 (1.61–2.41) | 1.62 (1.21–2.18) | 0.2837 | 2.58(2.17–3.07) | 2.18 (1.83–2.59) | 0.1769 |
Crude HR (95% C.I.) | Reference | 0.783 (0.539–1.137) | 0.1992 | Reference | 0.972 (0.726–1.302) | 0.8508 |
aHR (95% C.I.) | Reference | 1.044 (0.688–1.583) | 0.8396 | Reference | 0.931 (0.673–1.288) | 0.6657 |
Thromboembolic events | ||||||
Observed person-months | 48,176 | 27,267 | 48,768 | 58,714 | ||
Newly diagnosed event | 83 | 36 | 105 | 126 | ||
Incidence rate (95% C.I.) | 1.72 (1.39–2.14) | 1.32 (0.95–1.83) | 0.1823 | 2.15(1.78–2.61) | 2.15 (1.80–2.56) | 0.9802 |
Crude HR (95% C.I.) | Reference | 0.716 (0.473–1.083) | 0.1138 | Reference | 1.074 (0.795–1.450) | 0.6428 |
aHR (95% C.I.) | Reference | 0.947 (0.596–1.505) | 0.8185 | Reference | 1.011 (0.723–1.416) | 0.9472 |
All-cause mortality | ||||||
Observed person-months | 50,310 | 27,961 | 50,441 | 60,507 | ||
Death | 175 | 898 | 2376 | 2524 | ||
Mortality rate (95% C.I.) | 3.48 (3.00–4.03) | 32.12 (30.08–34.29) | <0.0001 | 47.10 (45.25–49.04) | 41.71 (40.12–43.37) | <0.0001 |
Crude HR (95% C.I.) | Reference | 9.529 (8.015–11.329) | <0.0001 | Reference | 1.034 (0.960–1.115) | 0.3778 |
aHR (95% C.I.) | Reference | 8.878 (7.379–10.682) | <0.0001 | Reference | 0.974 (0.897–1.057) | 0.5265 |
Variables | aHR (95% CI) | Competing HR (95% CI) |
---|---|---|
MACEs or thromboembolic events | 1.040 (0.818–1.322) | 0.921 (0.728–1.165) |
MACEs | 0.989 (0.769–1.273) | 0.862 (0.675–1.101) |
Thromboembolic events | 1.028 (0.789–1.340) | 0.908 (0.704–1.171) |
Ischemic heart disease | 1.051 (0.732–1.508) | 0.920 (0.655–1.292) |
Heart failure | 1.111 (0.677–1.824) | 0.939 (0.566–1.556) |
Ischemic stroke | 0.813 (0.426–1.551) | 0.655 (0.362–1.185) |
Venous thromboembolism | 1.436 (0.623–3.310) | 1.557 (0.645–3.759) |
Pulmonary embolism | Not estimation | Not estimation |
Cardiac catheterization or CABG | 0.992 (0.534–1.844) | 0.941 (0.505–1.753) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Yeh, L.-T.; Yang, S.-F.; Chou, M.-C.; Huang, J.-Y.; Yeh, C.-B. Risk of Thromboembolic Events and Major Adverse Cardiovascular Events Following Antivascular Endothelial Growth Factor Therapy in Patients with Colorectal Cancer. Cancers 2023, 15, 9. https://doi.org/10.3390/cancers15010009
Chen Y-C, Yeh L-T, Yang S-F, Chou M-C, Huang J-Y, Yeh C-B. Risk of Thromboembolic Events and Major Adverse Cardiovascular Events Following Antivascular Endothelial Growth Factor Therapy in Patients with Colorectal Cancer. Cancers. 2023; 15(1):9. https://doi.org/10.3390/cancers15010009
Chicago/Turabian StyleChen, Yen-Cheng, Liang-Tsai Yeh, Shun-Fa Yang, Ming-Chih Chou, Jing-Yang Huang, and Chao-Bin Yeh. 2023. "Risk of Thromboembolic Events and Major Adverse Cardiovascular Events Following Antivascular Endothelial Growth Factor Therapy in Patients with Colorectal Cancer" Cancers 15, no. 1: 9. https://doi.org/10.3390/cancers15010009
APA StyleChen, Y. -C., Yeh, L. -T., Yang, S. -F., Chou, M. -C., Huang, J. -Y., & Yeh, C. -B. (2023). Risk of Thromboembolic Events and Major Adverse Cardiovascular Events Following Antivascular Endothelial Growth Factor Therapy in Patients with Colorectal Cancer. Cancers, 15(1), 9. https://doi.org/10.3390/cancers15010009