Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. The Direct Effects of Midazolam, Dexmedetomidine and Ketamine Are Insufficiently Proven
3.2. The Direct Effects of Volatile Anaesthetics Are Dependent on the Type of Anaesthetic and the Biological Type of Tissue
Isoflurane | ||||
---|---|---|---|---|
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Huang H. et al. [19] | Prostate | No direct outcome | Increased HIF-1A expression (angiogenesis, glycolysis, proliferation) | HIF-1A |
Benzonana L.L. et al. [16] | Kidney |
| Increased HIF-1a and HIF- 2a expression | PI3K/Akt/mTOR pathway |
Luo X. et al. [17] | Ovary | Up-regulation of markers associated with the cell cycle, proliferation, and angiogenesis | Increased VEGF, angiopoietin-1 and MMPs expression | The IGF1/HIF signalling pathway |
Iwasaki M. et al. [18] | Ovary | Enhanced metastatic potential | Significant increase in mRNA for CXCR2, VEGF-A, MMP11 and TGF-β | CXCR2 plays crucial roll in the pathway, knockdown mitigates anaesthetics effect |
Kawarguchi Y. et al. [20] | Colon |
| Resistance against TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis via Cav-1–dependent mechanisms | Possible mechanism: Caveolins are changed in configuration due to effect on lipid membrane of volatiles |
Desflurane | ||||
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Iwasaki M. et al. [18] | Ovary | Enhanced metastatic potential | Significant increase in mRNA for CXCR2, VEGF-A, MMP11 and TGF-β (change TME) | CXCR2 plays a crucial role in the pathway, and knockdown mitigates anaesthetics |
Bundscherer A.C. et al. [21] | Colon |
| Non described | Non described |
Sevoflurane | ||||
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Ecimovic P. et al. [30] | Breast | Small increased proliferation and migration | Non described | Non described |
Deng, X. et al. [31] | Breast | Sevoflurane, but not propofol, at clinically relevant concentrations and durations:
| These findings suggest that changes in intracellular Ca2+ homeostasis play an important role in the general anesthetic-mediated enhancement of breast cancer cell survival | The TRPV1 channel is a potential site of action of sevoflurane in altering intracellular Ca2+ levels |
Iwasaki M. et al. [18] | Ovary | Enhanced metastatic potential. | Significant increase in mRNA for CXCR2, VEGF-A, MMP11 and TGF-β | CXCR2 plays a crucial role in the pathway, and knockdown mitigates anaesthetics |
Kang K. et al. [32] | Ovary | Inhibition of cell proliferation, migration and invasion, and induced apoptosis of the OC cell line | PCNA, Twist, MMP-2 and MMP9 mRNA expressions were significantly decreased while caspase-3 expression was markedly increased in sevoflurane groups compared to that in the control group | Dramatical decrease of p-p38/p38 and p-JNK/JNK expressions in OC cells of sevoflurane groups compared to that of the control group, important in p38 MAPK Signaling Pathway |
Ciechanowicz S. et al. [26] | Lung (NSCLC) |
| Unchanged levels of TGF-b1, possible homeostatic regulation/sensitization | Upregulation of Smad3 signalling |
Ciechanowicz S. et al. [26] | Renal cell carcinoma |
| TGF-b1 plays a role in cytoprotection, proliferation and migration | TGF-b and OPN upregulation. Reduced nuclear Smad3 |
Ferrell J.K. et al. [28] | Head and neck SCC | Increase in the expression of pro-oncogenic protein markers | Exact mechanism unclear | Statistically significant increases in the expression of cytoplasmic HIF-2a and nuclear p-p38 MAPK |
Yang X. et al. [22] | Colon |
| The circ-HMGCS1/miR-34a-5p/SGPP1 axis may play a role in cell viability and apoptosis | circ-HMGCS1 suppression by sevoflurane treatment in a dose-dependent manner |
He J. et al. [23] | Colon |
| The exosome-transmitted circ-HMGCS1/miR-34a-5p/SGPP1 axis might play a role in cell viability and apoptosis | Circ-HMGCS1 suppression by sevoflurane treatment in a dose-dependent manner |
Sun S.Q. et al. [24] | Colon | Inhibition of migration and invasion | Significant decrease in PCNA, Twist, MMP-2 and MMP9 mRNA expressions while caspase-3 expression was markedly increased in sevoflurane groups compared to that in the control group | Dramatical decreases of p-p38/p38 and p-JNK/JNK expressions in OC cells of sevoflurane groups compared to that of the control group, important in p38 MAPK Signaling Pathway |
Fan L. et al. [25] | Colon |
| Reduced MMP-9, which plays a role in EMT | Through regulating (inactivating) ERK pathway via regulating miR-203 and Robo1 |
Bundscherer A.C. et al. [21] | Colon |
| Non described | Non described |
Chen H. et al. [27] | Gastric | Weakening proliferative and migratory abilities | Exact mechanism unclear | Upregulation of miR-34a/TGIF2 axis |
Zhang W. et al. [29] | Cervix | Enhanced proliferation, migration, and invasion of immortalized cervical cancer cells | Increased histone deacetylase 6 expression, which leads to decreased acetylation of alpha-tubulin | Y-phosphatidylinositide 3-kinase/AKT- and ERK1/2-signaling pathway activation |
Zhao H. et al. [33] | Brain | Repressed cell migration and invasion | Upregulation of miR-34a-5p, which inhibits MMP-2 thus reducing metastasis | Non described |
Xu W. et al. [34] | Brain (glioma) |
|
|
|
Lai R.C. et al. [35] | Brain (glioblastoma) |
| Increased activity of calpains, a group of cysteine proteinases, and CD44 protein | CD 44 regulates intracellular signalling, unsure which pathway is involved |
3.3. The Direct Effects of Propofol Show a Multitude of Cellular Changes Dependent on Tissue Type
Propofol | ||||
---|---|---|---|---|
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Huang H. et al. [19] | Prostate | No direct effect | Stimulation of HIF-1a Pathway | HIF-1A |
Yang C. et al. [69] | Gastric |
| Upregulation of expression of inhibitor of growth 3 (ING3) | Non described |
Peng Z. et al. [51] | Gastric | Significant elevation of miR-451 expression levels, inhibition of cell proliferation and promotion of apoptosis | Overexpression of miR-451 inhibited MMP-2 protein expression | Stimulated expression of miR-451, exact mechanism unclear |
Liu F. et al. [53] | Gastric | Propofol treatment reduced the invaded and migrated SGC-7901 and NCI-N87 cell numbers |
| Elevated expression of miR-195-5p, pathway unclear |
Yang N. et al. [43] | Lung (NSCLC) | Decreased tumour aggressiveness |
| Propofol suppressed the LPS-induced transcriptional activity of HIF-1α |
Wu KC. et al. [47] | Lung (NSCLC) | Significant inhibition of migration and invasion of human lung cancer A549 cells (inhibited MMP-2 activity) | Suppressed MMP-2 and -9 expression and invasion of A549 cells | The downstream regulation of MAPK (p38 and JNK) pathway |
Yang N. et al. [64] | Lung (NSCLC) | Inhibited cell viability and induced cell apoptosis by upregulating miR-486 expression | Significant increase in protein levels of FOXO1, FOXO3, Bim, pro-caspase-3 and activated caspase-3, initiating growth halt and apoptosis | Possible relation between miRNA-486 upregulation and FOXO pathway |
Zheng X. et al. [66] | Lung (NSCLC) |
| Downstream regulation of apoptotic pathways, exact mechanism unclear | miR-21/PTEN/AKT pathway |
Zhao H. et al. [73] | Lung (NSCLC) | Inhibition of cell proliferation, migration, Invasion and aerobic glycolysis | All three glycolysis enzymes, HK2, PKM2, and LDHA and a Glucose transporter GLUT1 decreased by propofol treatment, suppressing aerobic glycolysis | circTADA2A/miR-455-3p/FOXM1 axis |
Cui W.Y. et al. [55] | Lung (NSCLC) | Inhibition of proliferation and induction of apoptosis in H460 cells both in vivo and in vitro | Propofol causes ER stress, leading to increased apoptosis, inflammation and reduced cell growth | Possible effect on JNK signalling pathway in H460 cells |
Sun H. et al. [68] | Lung (NSCLC) |
|
| Suppressed Wnt/β-catenin and mTOR signalling pathways by down-regulating miR-372 |
Gao J. et al. [72] | Lung (NSCLC) |
| FOXM1 (transcription factor belonging to the Forkhead box family) essential for cell cycle progression | circ-ERBB2/miR-7-5p/FOXM1 axis |
Ecimovic P. et al. [61] | Breast |
| The Neuroepithelial Cell Transforming Gene 1 (NET1) gene is associated with promoting migration in adenocarcinoma in vitro. | Propofol reduced expression of NET1 |
Yu B. et al. [62] | Breast | Significantly induces apoptosis. | Downregulation of miR-24, upregulation of p27 expression and cleaved caspase-3 expression | Inactivation of miR-24/p27 signal pathway |
Meng C. et al. [42] | Breast |
|
|
|
Garib V. et al. [74] | Breast | Activation of GABA-A receptor correlated with an increased migration of MDA-MB-468 breast carcinoma cells | Mediated by calcium influx and reorganization of the actin cytoskeleton | GABA-A receptor activation results in activation of voltage-gated L-type calcium channels |
Li Q. et al. [49] | Breast | Inhibition of the invasion and migration of breast cancer cells | Down-regulation of MMP-2 and MMP-9 | Reduction phosphorylation of IKKb (Ser180), which is an important upstream kinase for IkB degradation and subsequent NF-kB activation |
Liu Y.P. et al. [59] | Breast | Reduced invasion and migration ability of breast cancer cells | Inhibition of circNOLC1 by repressing STAT3 in a feedback mechanism | Targeting miR-365a-3p/STAT3 axis. |
Huang X. et al. [48] | Ovary |
| Role of miR-9 is not well understood, inhibition of MMP-9 | Upregulation of miR-9 expression and inhibition of NF-kB activation |
Su Z. et al. [70] | Ovary | Inhibition of proliferation and induction of apoptosis | Exact mechanism unclear | Increased expression of miR-let-7i, no pathway described |
Lu H. et al. [71] | Ovary |
| Up-regulating miR-145 via down-regulating circVPS13C | Inhibited the activation of MEK/ERK signalling |
Liu Z. et al. [63] | Pancreas |
| Increase in PUMA induces apoptosis and increase in E-cadherin prevents epithelial to mesenchymal transition | Inhibition miR-21 levels and decrease in Slug expression, resulting in an increase in Slug-dependent PUMA and E-cadherin expression in PANC-1 cells |
Wang Z.T. et al. [82] | Pancreas |
| The antitumor effect on pancreatic cancer cells may be partly due to the upregulation of miR-133a | No pathway described |
Wang H. et al. [67] | Pancreas | Induction of apoptosis and inhibited cell migration PANC-1 cells in vitro |
| No clear pathway described |
Chen X. et al. [76] | Pancreas | Inhibition of VEGF expression, cell migration and tumour growth | Inhibition of NMDA receptor, attenuated intracellular Ca2+ concentration, thus suppressing VEGF expression. Relation to tumour suppression unclear | Via inhibiting CaMK II activity, attenuated AKT, ERK phosphorylation and HIF-1α expression |
Miao Y. et al. [50] | Colon | Inhibition of cancer cell invasion | Through activation of GABA A receptors. MMP’s are crucial proteinases for invasion and metastasis | Inhibition of MAPK pathway. Especially deactivation of ERK1/2 suppressed MMP production |
Zhang Y.F. et al. [54] | Colon |
| HOTAIR regulates E-cadherin, MMP-9 and vimentin expressions. STAT 3 can also regulate HOTAIR | Regulating STAT3/HOTAIR by activating WIF-1 and suppressing Wnt pathway |
Takabuchi S. et al. [83] | Hepatocellular | Suppression of HIF-1a protein expression was significant at 20%and 5% O2 but not at 1% O2 | Suppression of the translation of HIF-1amRNA into protein | Possible role of MAPK pathway |
Zhang J. et al. [65] | Hepatocellular |
| Induction of apoptosis and activation of caspase-8 and caspase-9 in a dose-dependent manner | Stimulation of miR-199a expression in HepG2 cells |
Song F. et al. [75] | Hepatocellular |
| Downregulation of HOXA11-AS and upregulation of miR-4458 in HCC. This may serve a tumour suppressive effect | Exact mechanism unclear |
Gong T. et al. [56] | Hepatocellular |
| Reversal of EMT transition | Upregulated expression levels of the candidate tumour suppressor miR-219-5p. miR-219-5p inhibits HCC cell progression by targeting glypican-3 and subsequently results in the inhibition of Wnt/β-catenin signalling |
Zhang J. et al. [60] | Hepatocellular | Inhibition of the invasiveness of HepG2 cells |
| Exact mechanism unclear, possible role of miR-199a |
Du Q. et al. [44] | Endometrium | Propofol inhibits proliferation, migration, invasion and promotes apoptosis. | Downregulation of SOX4 gene expression. | Propofol inhibited Sox4 expression via inactivation of Wnt/b-catenin signal pathway |
Zhang D. et al. [80] | Cervix |
| Decreased HOTAIR expression of cervical cancer cells in a dose-dependent manner. HOTAIR is an lncRNA which is noticeably increased in multiple carcinomas. | HOTAIR activates mTOR/p70S6K pathway leading to cell growth |
Ye Z. et al. [46] | Osteosarcoma |
| Decreased protein expression of matrix metalloproteinase 13 (MMP-13) | Elevated expression of miR-143, which decreases expression of MMP-13 |
Xu J. et al. [52] | Glioma | Effective suppression of proliferation and invasion, and induction of apoptosis of glioma cells | Increase in caspase 3, reduction in MMP | Increased miR-218 expression, no clear pathway described |
Zhang L. et al. [84] | Glioma | Repression of cell growth and metastasis in glioma cells in vitro and in vivo | Exact mechanism unclear | Mediated by the circNCAPG/miR-200a-3p/RAB5A axis |
Zhou C. et al. [45] | Esophagus | Inhibition of migration and invasion |
| Decreased expression SOX4. No other pathways described |
Xu Y.B. et al. [58] | Esophagus | Significant promotion of cell apoptosis and inhibition of proliferation, invasion and angiogenesis in a dose and time-dependent manner | Down regulation gene expression and protein production of VEGF and MMP-9 | ERK/VEGF and ERK/MMP-9 signalling pathways |
Du Y. et al. [57] | Bladder |
|
| Induced miR-145-5p expression in a time-dependent manner. Topoisomerase II α (TOP2A) was a direct target of miR-145-5p |
3.4. The Direct Effects of µ-Receptor Opioids on Cancer Cells Remain Uncertain and Are Difficult to Explore
µ-Opioid Receptor Agonists | ||||
---|---|---|---|---|
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Nguyen J. et al. [85] | Breast |
| µ-opioid receptors on large tumours, possibly stimulated by VEGF and cytokines | Stimulation of MAST cells in tumours, release of substance P, increased pain and inflammation |
Doornebal C. et al. [86] | Breast | Analgesic doses of morphine do not affect mammary tumour growth | Difference in effect is explained by heterogeneity of primary tumour compared to selected cell lines chosen for metastatic potential | Non described |
Afsharimani B. et al. [88] | Breast | Reduced expression of matrix-degrading enzymes in cocultures with macrophages or endothelial cells | Reduced the level of MMP-9 and increased its endogenous inhibitor, TIMP-1 | Modulation of paracrine communication between cancer cells and non-malignant cells in the tumour microenvironment |
Gupta K. et al. [91] | Breast |
|
| Stimulation of the MAPK/ERK signalling pathway and activation of the cell survival signal Akt and increasing cell cycle protein cyclin D1 |
Tegeder I. et al. [89] | Breast | Morphine significantly reduced the growth of MCF-7 and MDA-MB231 tumours | Inhibition of cell cycle progression in low dose, activation of apoptosis in high doses | p53 activation and up-regulation of p53-dependent genes (including CD95/Fas) |
Ecimovic P. et al. [92] | Breast | Increase in both expression of NET1 and cell migration but not when NET1 was silenced | The NET1 gene has a key role in organization of the actin cytoskeleton and thus in the ability of cancer cells to migrate and invade | Mechanism unclear |
Gach K. et al. [87] | Breast | Increase in secretion of urokinase plasminogen activator, no results on migration | Opioid agonists greatly increase the secretion of uPA from MCF-7 human breast cancer cells, as well asup-regulate the expression of uPA and uPAR genes | Through MOR increases the expression of uPA and uPAR |
Hatsukari I. et al. [90] | lung (NSCLC) and breast | A clinical concentration of morphine induced apoptosis and necrosis in human tumour cell lines | Through activation of opioid receptors, no clear arguments for different mechanisms (control group with naloxone) | Non described |
Mathew B. et al. [93] | Lung (NSCLC) |
| Knockout of MOR receptor reduces cell growth and metastasis | Direct inhibition of MOR and activation of tyrosine phosphatase activity |
Koodie L. et al. [95] | Lung/ Ovaries |
| Altering cell adhesion molecule expression on both the leukocyte and endothelial cells. Impairs mobilization of endothelial progenitors and neutrophils, thus decreasing inflammation and angiogenesis | The mechanism is unclear Possible mechanism: decreases the tight junction protein zonula occludens protein 1 expression. |
Lennon F.E. et al. [94] | lung (NSCLC) | The data suggest a possible direct effect of MOR on opioid and growth factor-signalling and consequent proliferation, migration and epithelial mesenchymal transition (EMT) during lung cancer progression. DAMGO, morphine and fentanyl were used as MOR agonists | MOR regulates opioid and growth factor-induced EGF receptor signalling through Grb2-associated-binding protein 1 (Gab-1) | Activation of Src, Gab-1, PI3K, Akt and STAT3 |
Tegeder I. et al. [89] | Colon | No significant effect on HT-29 tumour growth | Non described | Less expression of P53, therefore less effect |
Nylund. et al. [96] | Colon | Morphine largely fails to affect the proliferation of the HT-29 cell line, but causes a markedly increased secretion of uPa. No results on migration | uPa plays an important role in activating invasion and metastasis | Through MOR |
Harimaya Y. et al. [97] | Colon |
| Suppression of tumour cell adhesion, invasion and migration, partly through opioid receptors, partly through reducing enzymatic degradation of the ECM | Inhibition of the production of MMP-2and MMP-9 in tumour cells, no clear pathway was described |
Friesen C. et al. [103] | Leukemia (ALL) | Methadone induces apoptosis, increases doxorubicin triggered cell death, reduces tumour growth in vivo |
| Downregulation of the antiapoptotic proteins XIAP and Bcl-xL and cAMP. cAMP activates PI3K-dependent Akt |
Friesen C. et al. [107] | Glioblastoma | Activation of opioid receptors sensitizes glioblastoma cells for therapy | Opioid receptor signalling pathway is involved in apoptosis induction by chemotherapy. | Opioid receptor stimulation activates inhibitory Gi-proteins, which, in turn, block adenylyl cyclase activity, reducing cAMP. Downregulation of Bcl-x and XIAP |
3.5. Lidocaine Affects Cancer Cells Directly through Various Mechanisms
Lidocaine/Local Anaesthetics (-Ester and -Amide) | ||||
---|---|---|---|---|
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Piegeler T. et al. [117] | Lung (NSCLC) | Both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion | Attenuation of Src-dependent inflammatory signalling events | Src-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1 (Cav-1) by Src, resulting in reduced MMP-9 synthesis |
Piegeler T. et al. [118] | Lung (NSCLC) | This study indicates that amide-, but not ester-linked local anaesthetics may inhibit migration of tumour cells | Independent mechanism of voltage gated Sodium channel inhibition | The inhibition of Tumour Necrosis Factor-α-induced Src-activation and Intercellular Adhesion Molecule-1 (ICAM1) phosphorylation |
Wang H.W. et al. [108] | Lung (NSCLC) |
|
| The phosphorylation of ERK1/2 and JNK increased, suggesting that ERK1/2, JNK, and p38 MAPK may have different effects on apoptosis |
Sun H. et al. [121] | Lung (NSCLC) | Inhibition of lung cancer cell growth and metastasis possibly through regulating mitochondria-dependent and EMT-related signalling | Upregulation of miR-539, which blocked EGFR signalling by directly binding with EGFR | PI3K/AKT signalling |
Chamaraux-Tran T.N. et al. [122] | Breast |
| Non described | Non described |
Lirk P. et al. [123] | Breast | Demethylation of DNA of breast cancer cell lines in vitro (in clinical relevant concentrations) |
| Methylation of DNA changes epigenetic expression which affects expression |
Li R. et al. [124] | Breast | Significant cytotoxic effect in high concentrations(1 mM), none in physiological concentrations (10 µM). arrest of MDA-MB-231 cells in the S phase for both concentrations. Most significant effect was found in the levobupivacaine group. | Non described | Non described |
D’Agostino G. et al. [120] | Breast | Inhibition of CXCL12-induced in vitro migration of MDA-MB-231 cells |
| Exact mechanism unclear |
Jiang Y. et al. [119] | Breast, prostate and ovarium |
| The influx of calcium plays a role in invasion and migration | No described pathway for cytotoxicity, could occur partly as a result of the downregulation of TRPV6 expression, with reduced rate of calcium influx |
Xuan W. et al. [112] | Ovarium and prostate | Increased apoptosis in both cell lines after 24 h of exposure, both through intrinsic and extrinsic pathways in ovarian cells, but only intrinsic in prostate cells. |
|
|
Chang YC. et al. [113] | Thyroid | Lidocaine and bupivacaine induced apoptosis, and necrosis in high concentrations in thyroid cancer cells |
| MAPK phosphorylation influences caspase 3 release |
Xing W. et al. [114] | Hepato-cellular |
|
| Phosphorylation of ERK1/2 and P38 through the MAPK pathway |
Le Gac G. et al. [125] | Hepato-cellular | Local anaesthetics decreased viability and proliferation of HuH7 cells and HepaRG progenitor cells |
|
|
Zhao L. et al. [126] | Hepato-cellular |
| Unclear | Via regulating circ_ITCH/miR-421/CPEB3 axis. |
Liu H. et al. [127] | Hepato-cellular | Decrease in HepG2 cell viability and colony formation in a dose-dependent manner | Unclear | CPEB3 as a critical mediator of lidocaine-induced repression of HepG2 cell proliferation |
Bundscherer AC. et al. [109] | Colon |
| Cell cycle arrest, exact mechanism unclear | Unclear |
Yang W. et al. [110] | Gastric | Lidocaine and ropivacaine inhibited the proliferation of AGS and HGC-27 cells within 72 h. Especially lidocaine at doses of 10 μM or above (which is safe as the blood level for clinical use) | Significant reduction of expression of p-ERK1/2 in AGS and HGC-27 cells | MAPK pathway |
Ye L. et al. [115] | Gastric |
|
| MAPK pathway |
Sakaguchi M. et al. [131] | Tongue |
| Inhibition of EGF-stimulated tyrosine kinase activity of EGFR | Direct inhibition tyrosine kinase activity |
Chen J. et al. [111] | Melanoma |
| Arrest of cell-cycle progression in the G1 phase and inhibited Ki-67 expression in a dose-dependent manner | Inhibition of ERK signalling pathway |
Bezu L. et al. [116] | Colon, breast, cervix, osteosarcoma, fibrosarcoma | Lidocaine and other anaesthetics induced signs of cancer cell stress including inhibition of oxidative phosphorylation, and induction of autophagy as well as endoplasmic reticulum (ER) stress | Induction of ER stress, resulting in eIF2α phosphorylation, causing activation of autophagy | EIF2AK3/PERK-dependent eIF2α phosphorylation leading to ATF4 translation, IRE1-mediated XBP1 activation, as well as activation of the latent transcription factor ATF6 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heaney, A.; Buggy, D.J. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br. J. Anaesth. 2012, 109, i17–i28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.-T.; Li, Y.-W.; Zhao, B.-J.; Guo, X.-Y.; Feng, Y.; Zuo, M.-Z.; Fu, C.; Zhou, W.-J.; Li, H.-J.; Liu, Y.-F.; et al. Long-term Survival after Combined Epidural–General Anesthesia or General Anesthesia Alone: Follow-up of a Randomized Trial. Anesthesiology 2021, 135, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-Z.; Li, H.-J.; Li, M.-H.; Huang, S.-M.; Li, X.; Liu, Q.-H.; Li, J.; Wang, D.-X.; Sessler, D.I. Epidural Anesthesia–Analgesia and Recurrence-free Survival after Lung Cancer Surgery: A Randomized Trial. Anesthesiology 2021, 135, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Pei, L.; Huang, Y.; Fleischmann, E.; Marhofer, P.; Kurz, A.; Mayers, D.B.; Meyer-Treschan, T.A.; Grady, M.; Tan, E.Y.; et al. Recurrence of breast cancer after regional or general anaesthesia: A randomised controlled trial. Lancet 2019, 394, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Datoo, M.T.; Zhao, H.; Wu, M.L.; Date, M.A.; Jiang, M.C.; Sanders, M.R.D.; Wang, G.; Bevan, C.; Ma, M.D. Midazolam and Dexmedetomidine Affect Neuroglioma and Lung Carcinoma Cell Biology In Vitro and In Vivo. Anesthesiology 2018, 129, 1000–1014. [Google Scholar] [CrossRef]
- Qi, Y.; Yao, X.; Du, X. Midazolam inhibits proliferation and accelerates apoptosis of hepatocellular carcinoma cells by elevating microRNA-124-3p and suppressing PIM-1. IUBMB Life 2019, 72, 452–464. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kang, J.-H.; Lee, C.W.; Oh, S.H.; Ryu, J.S.; Bae, Y.S.; Kim, H.M. Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Mol. Cells 2013, 36, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; He, H.; Bai, Y.; Liu, W.; Huang, L. Dexmedetomidine suppresses the progression of esophageal cancer via miR-143-3p/epidermal growth factor receptor pathway substrate 8 axis. Anti-Cancer Drugs 2020, 31, 693–701. [Google Scholar] [CrossRef]
- Xia, M.; Ji, N.N.; Duan, M.L.; Tong, J.-H.; Xu, J.-G.; Zhang, Y.-M.; Wang, S.-H. Dexmedetomidine regulate the malignancy of breast cancer cells by activating α2-adrenoceptor/ERK signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3500–3506. [Google Scholar]
- He, H.; Chen, J.; Xie, W.; Cao, S.; Hu, H.; Yang, L.; Gong, B. Ketamine used as an acesodyne in human breast cancer therapy causes an undesirable side effect, upregulating anti-apoptosis protein Bcl-2 expression. Genet. Mol. Res. 2013, 12, 1907–1915. [Google Scholar] [CrossRef]
- Lavon, H.; Matzner, P.; Benbenishty, A.; Sorski, L.; Rossene, E.; Haldar, R.; Elbaz, E.; Cata, J.; Gottumukkala, V.; Ben-Eliyahu, S. Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br. J. Anaesth. 2018, 120, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Glasner, A.; Avraham, R.; Rosenne, E.; Benish, M.; Zmora, O.; Shemer, S.; Meiboom, H.; Ben-Eliyahu, S. Improving Survival Rates in Two Models of Spontaneous Postoperative Metastasis in Mice by Combined Administration of a β-Adrenergic Antagonist and a Cyclooxygenase-2 Inhibitor. J. Immunol. 2010, 184, 2449–2457. [Google Scholar] [CrossRef] [Green Version]
- Forget, P.; Collet, V.; Lavand’homme, P.; De Kock, M. Does analgesia and condition influence immunity after surgery? Effects of fentanyl, ketamine and clonidine on natural killer activity at different ages. Eur. J. Anaesthesiol. 2010, 27, 233–240. [Google Scholar] [CrossRef]
- Forget, P.; Vandenhende, J.; Berliere, M.; Machiels, J.-P.; Nussbaum, B.; Legrand, C.; De Kock, M. Do intraoperative analgesics influence breast cancer recurrence after mastectomy? A retrospective analysis. Anesth. Analg. 2010, 110, 1630–1635. [Google Scholar] [CrossRef] [Green Version]
- Benzonana, L.L.; Perry, N.J.S.; Watts, H.R.; Yang, B.; Perry, I.A.; Coombes, C.; Takata, M.; Ma, D. Isoflurane, a Commonly Used Volatile Anesthetic, Enhances Renal Cancer Growth and Malignant Potential via the Hypoxia-inducible Factor Cellular Signaling Pathway In Vitro. Anesthesiology 2013, 119, 593–605. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, H.; Hennah, L.; Ning, J.; Liu, J.; Tu, H.; Ma, D. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br. J. Anaesth. 2015, 114, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Zhao, H.; Jaffer, T.; Unwith, S.; Benzonana, L.; Lian, Q.; Sakamoto, A.; Ma, D. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget 2016, 7, 26042–26056. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Benzonana, L.L.; Zhao, H.; Watts, H.R.; Perry, N.J.S.; Bevan, C.L.; Brown, R.; Ma, D. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br. J. Cancer 2014, 111, 1338–1349. [Google Scholar] [CrossRef] [Green Version]
- Kawaraguchi, M.Y.; Horikawa, Y.T.; Murphy, A.N.; Murray, F.; Miyanohara, A.; Ali, S.S.; Head, B.P.; Patel, M.P.M.; Roth, D.M.; Patel, H.H. Volatile Anesthetics Protect Cancer Cells against Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis via Caveolins. Anesthesiology 2011, 115, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Bundscherer, A.C.; Ullrich, V.; Malsy, M.; Gruber, M.A.; Graf, B.M.; Brockhoff, G.; Sinner, B. Effects of Volatile Anesthetics on Proliferation and Viability of SW480 Colon Cancer Cells In Vitro. Anticancer Res. 2019, 39, 6049–6055. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zheng, Y.-T.; Rong, W. Sevoflurane induces apoptosis and inhibits the growth and motility of colon cancer in vitro and in vivo via inactivating Ras/Raf/MEK/ERK signaling. Life Sci. 2019, 239, 116916. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhao, H.; Liu, X.; Wang, D.; Wang, Y.; Ai, Y.; Yang, J. Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosome-mediated circ-HMGCS1 via the miR-34a-5p/SGPP1 axis. Oncol. Rep. 2020, 44, 2429–2442. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Q.; Ren, L.J.; Liu, J.; Wang, P.; Shan, S.M. Sevoflurane inhibits migration and invasion of colorectal cancer cells by regulating microRNA-34a/ADAM10 axis. Neoplasma 2019, 66, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wu, Y.; Wang, J.; He, J.; Han, X. Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203. Eur. J. Pharmacol. 2019, 850, 43–52. [Google Scholar] [CrossRef]
- Ciechanowicz, S.; Zhao, H.; Chen, Q.; Cui, J.; Mi, E.; Lian, Q.; Ma, D. Differential effects of sevoflurane on the metastatic potential and chemosensitivity of non-small-cell lung adenocarcinoma and renal cell carcinoma in vitro. Br. J. Anaesth. 2017, 120, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhu, X.M.; Luo, Z.L.; Hu, Y.J.; Cai, X.C.; Gu, Q.H. Sevoflurane induction alleviates the progression of gastric cancer by upregulating the miR-34a/TGIF2 axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11883–11890. [Google Scholar] [CrossRef]
- Ferrell, J.K.; Cattano, D.; Brown, R.E.; Patel, C.B.; Karni, R.J. The effects of anesthesia on the morphoproteomic expression of head and neck squamous cell carcinoma: A pilot study. Transl. Res. 2015, 166, 674–682. [Google Scholar] [CrossRef]
- Zhang, M.W.; Sheng, M.B.; Chen, M.S.; Zhao, B.H.; Wu, B.L.; Sun, M.Y.; Cui, B.J.; Zhu, M.X.; Ma, M.D. Sevoflurane Enhances Proliferation, Metastatic Potential of Cervical Cancer Cells via the Histone Deacetylase 6 Modulation In Vitro. Anesthesiology 2020, 132, 1469–1481. [Google Scholar] [CrossRef]
- Ecimovic, P.; McHugh, B.; Murray, D.; Doran, P.; Buggy, D.J. Effects of sevoflurane on breast cancer cell function in vitro. Anticancer Res. 2013, 33. [Google Scholar]
- Deng, X.; Vipani, M.; Liang, G.; Gouda, D.; Wang, B.; Wei, H. Sevoflurane modulates breast cancer cell survival via modulation of intracellular calcium homeostasis. BMC Anesthesiol. 2020, 20, 253. [Google Scholar] [CrossRef]
- Kang, K.; Wang, Y. Sevoflurane Inhibits Proliferation and Invasion of Human Ovarian Cancer Cells by Regulating JNK and p38 MAPK Signaling Pathway. Drug Des. Dev. Ther. 2019, 13, 4451–4460. [Google Scholar] [CrossRef]
- Zhao, H.; Xing, F.; Yuan, J.; Li, Z.; Zhang, W. Sevoflurane inhibits migration and invasion of glioma cells via regulating miR-34a-5p/MMP-2 axis. Life Sci. 2020, 256, 117897. [Google Scholar] [CrossRef]
- Xu, W.; Xue, R.; Xia, R.; Liu, W.-W.; Zheng, J.-W.; Tang, L.; Kang, L.-Y.; Wang, W.; Wei, W.-T. Sevoflurane impedes the progression of glioma through modulating the circular RNA has_circ_0012129/miR-761/TGIF2 axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5534–5548. [Google Scholar] [CrossRef]
- Lai, R.-C.; Shan, W.-R.; Zhou, D.; Zeng, X.-Q.; Zuo, K.; Pan, D.-F.; Zeng, W.-A.; Zuo, Z.-Y. Sevoflurane promotes migration, invasion, and colony-forming ability of human glioblastoma cells possibly via increasing the expression of cell surface protein 44. Acta Pharmacol. Sin. 2019, 40, 1424–1435. [Google Scholar] [CrossRef]
- Enlund, M.; Berglund, A.; Andreasson, K.; Cicek, C.; Enlund, A.; Bergkvist, L. The choice of anaesthetic—sevoflurane or propofol—and outcome from cancer surgery: A retrospective analysis. Upsala J. Med. Sci. 2014, 119, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.K.; Kim, K.; Jheon, S.; Lee, J.; Do, S.-H.; Hwang, J.-W.; Song, I.-A. Long-Term Oncologic Outcomes for Patients Undergoing Volatile Versus Intravenous Anesthesia for Non-Small Cell Lung Cancer Surgery. Cancer Control 2018, 25. [Google Scholar] [CrossRef] [Green Version]
- Watson, S.d.L.M.; Puxty, K.; Moran, D.; Morrison, D.S.; Sloan, B.; Buggy, D.; Shelley, B. Association between Anesthetic Dose and Technique and Oncologic Outcomes after Surgical Resection of Non-Small Cell Lung Cancer. J. Cardiothorac. Vasc. Anesth. 2021, 35, 3265–3274. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, S.H.; Kim, Y.; Kim, H.-A.; Kim, B.S. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: A retrospective study. Korean J. Anesthesiol. 2016, 69, 126–132. [Google Scholar] [CrossRef]
- Enlund, M.; Berglund, A.; Ahlstrand, R.; Walldén, J.; Lundberg, J.; Wärnberg, F.; Ekman, A.; Widfeldt, N.S.; Enlund, A.; Bergkvist, L. Survival after primary breast cancer surgery following propofol or sevoflurane general anesthesia—A retrospective, multicenter, database analysis of 6305 Swedish patients. Acta Anaesthesiol. Scand. 2020, 64, 1048–1054. [Google Scholar] [CrossRef]
- Hovaguimian, F.; Braun, J.; Z’Graggen, B.R.; Schläpfer, M.; Dumrese, C.; Ewald, C.; Dedes, K.J.; Fink, D.; Rölli, U.; Seeberger, M.; et al. Anesthesia and Circulating Tumor Cells in Primary Breast Cancer Patients. Anesthesiology 2020, 133, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Song, L.; Wang, J.; Li, D.; Liu, Y.; Cui, X. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231. Oncol. Rep. 2016, 37, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Liang, Y.; Yang, P.; Ji, F. Propofol suppresses LPS-induced nuclear accumulation of HIF-1α and tumor aggressiveness in non-small cell lung cancer. Oncol. Rep. 2017, 37, 2611–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Q.; Liu, J.; Zhang, X.; Zhang, X.; Zhu, H.; Wei, M.; Wang, S. Propofol inhibits proliferation, migration, and invasion but promotes apoptosis by regulation of Sox4 in endometrial cancer cells. Braz. J. Med. Biol. Res. 2018, 51, e6803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.-L.; Li, J.-J.; Ji, P. Propofol Suppresses Esophageal Squamous Cell Carcinoma Cell Migration and Invasion by Down-Regulation of Sex-Determining Region Y-box 4 (SOX4). J. Pharmacol. Exp. Ther. 2017, 23, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Jingzhong, L.; Yangbo, L.; Lei, C.; Jiandong, Y. Propofol Inhibits Proliferation and Invasion of Osteosarcoma Cells by Regulation of MicroRNA-143 Expression. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2014, 21, 201–207. [Google Scholar] [CrossRef]
- Wu, K.-C.; Yang, S.-T.; Hsia, T.-C.; Yang, J.-S.; Chiou, S.-M.; Lu, C.-C.; Wu, R.S.-C.; Chung, J.-G. Suppression of cell invasion and migration by propofol are involved in down-regulating matrix metalloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer Res. 2012, 32, 4833–4842. [Google Scholar]
- Huang, X.; Teng, Y.; Yang, H.; Ma, J. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-κB signal. Braz. J. Med. Biol. Res. 2016, 49, e5717. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, L.; Han, Y.; Jiang, Z.; Wang, Q. Propofol reduces MMPs expression by inhibiting NF-κB activity in human MDA-MB-231 cells. Biomed. Pharmacother. 2011, 66, 52–56. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Wan, H.; Chen, L.; Wang, F. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed. Pharmacother. 2010, 64, 583–588. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Y. Propofol inhibits proliferation and accelerates apoptosis of human gastric cancer cells by regulation of microRNA-451 and MMP-2 expression. Genet. Mol. Res. 2016, 15, gmr.15027078. [Google Scholar] [CrossRef]
- Xu, J.; Xu, W.; Zhu, J. Propofol suppresses proliferation and invasion of glioma cells by upregulating microRNA-218 expression. Mol. Med. Rep. 2015, 12, 4815–4820. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Qiu, F.; Fu, M.; Chen, H.; Wang, H. Propofol Reduces Epithelial to Mesenchymal Transition, Invasion and Migration of Gastric Cancer Cells through the MicroRNA-195-5p/Snail Axis. J. Pharmacol. Exp. Ther. 2020, 26, e920981. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Zhou, Y.; Lu, X. Effects of propofol on colon cancer metastasis through STAT3/HOTAIR axis by activating WIF-1 and suppressing Wnt pathway. Cancer Med. 2020, 9, 1842–1854. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.-Y.; Liu, Y.; Zhu, Y.-Q.; Song, T.; Wang, Q.-S. Propofol induces endoplasmic reticulum (ER) stress and apoptosis in lung cancer cell H460. Tumor Biol. 2014, 35, 5213–5217. [Google Scholar] [CrossRef]
- Gong, T.; Ning, X.; Deng, Z.; Liu, M.; Zhou, B.; Chen, X.; Huang, S.; Xu, Y.; Chen, Z.; Luo, R. Propofol-induced miR-219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/β-catenin signalling activation. J. Cell. Biochem. 2019, 120, 16934–16945. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, X.; Zhang, H.; Chen, Y.; Zhu, S.; Shu, J.; Pan, H. Propofol modulates the proliferation, invasion and migration of bladder cancer cells through the miR-145-5p/TOP2A axis. Mol. Med. Rep. 2021, 23, 1–11. [Google Scholar] [CrossRef]
- Xu, Y.-B.; Du, Q.-H.; Zhang, M.-Y.; Yun, P.; He, C.-Y. Propofol suppresses proliferation, invasion and angiogenesis by down-regulating ERK-VEGF/MMP-9 signaling in Eca-109 esophageal squamous cell carcinoma cells. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2486–2494. [Google Scholar]
- Liu, Y.-P.; Heng, J.-Y.; Zhao, X.-Y.; Li, E.-Y. The inhibition of circular RNA circNOLC1 by propofol/STAT3 attenuates breast cancer stem cells function via miR-365a-3p/STAT3 signaling. J. Transl. Med. 2021, 19, 1–16. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Wu, G.-Q.; Feng, Z.-Y.; Zhu, S.-M. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat. Dis. Int. 2013, 12, 305–309. [Google Scholar] [CrossRef]
- Ecimovic, P.; Murray, D.; Doran, P.; Buggy, D.J. Propofol and bupivacaine in breast cancer cell function in vitro - role of the NET1 gene. Anticancer Res. 2014, 34. [Google Scholar]
- Yu, B.; Gao, W.; Zhou, H.; Miao, X.; Chang, Y.; Wang, L.; Xu, M.; Ni, G. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark. 2018, 21, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, J.; Hong, G.; Quan, J.; Zhang, L.; Yu, M. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. Am. J. Transl. Res. 2016, 8, 4120–4133. [Google Scholar] [PubMed]
- Yang, N.; Liang, Y.; Yang, P.; Yang, T.; Jiang, L. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating microRNA-486 expression. Braz. J. Med. Biol. Res. 2017, 50, e5794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, G.-Q.; Zhang, Y.; Feng, Z.-Y.; Zhu, S.-M. Propofol induces apoptosis of hepatocellular carcinoma cells by upregulation of microRNA-199a expression. Cell Biol. Int. 2012, 37, 227–232. [Google Scholar] [CrossRef]
- Zheng, X.; Dong, L.; Zhao, S.; Li, Q.; Liu, D.; Zhu, X.; Ge, X.; Li, R.; Wang, G. Propofol Affects Non–Small-Cell Lung Cancer Cell Biology by Regulating the miR-21/PTEN/AKT Pathway In Vitro and In Vivo. Obstet. Anesth. Dig. 2020, 131, 1270–1280. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, H.; Jiang, Z.; Chen, R. Propofol inhibits migration and induces apoptosis of pancreatic cancer PANC-1 cells through miR-34a-mediated E-cadherin and LOC285194 signals. Bioengineered 2020, 11, 510–521. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Gao, D. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372. BMC Cancer 2018, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Gao, J.; Yan, N.; Wu, B.; Ren, Y.; Li, H.; Liang, J. Propofol inhibits the growth and survival of gastric cancer cells in vitro through the upregulation of ING3. Oncol. Rep. 2016, 37, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Hou, X.K.; Wen, Q.P. Propofol induces apoptosis of epithelial ovarian cancer cells by upregulation of microRNA let-7i expression. Eur. J. Gynaecol. Oncol. 2014, 35, 688–691. [Google Scholar]
- Lu, H.; Zheng, G.; Gao, X.; Chen, C.; Zhou, M.; Zhang, L. Propofol suppresses cell viability, cell cycle progression and motility and induces cell apoptosis of ovarian cancer cells through suppressing MEK/ERK signaling via targeting circVPS13C/miR-145 axis. J. Ovarian Res. 2021, 14, 1–11. [Google Scholar] [CrossRef]
- Gao, J.; Ding, C.; Zhou, J.; Wu, G.; Han, Z.; Li, J.; Hei, F. Propofol suppresses lung cancer tumorigenesis by modulating thecirc-ERBB2/miR-7-5p/FOXM1axis. Thorac. Cancer 2021, 12, 824–834. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, H.; He, J.; Wang, D.; Li, W.; Wang, Y.; Ai, Y.; Yang, J. Propofol disrupts cell carcinogenesis and aerobic glycolysis by regulating circTADA2A/miR-455-3p/FOXM1 axis in lung cancer. Cell Cycle 2020, 19, 2538–2552. [Google Scholar] [CrossRef]
- Garib, V.; Lang, K.; Niggemann, B.; Zänker, K.S.; Brandt, L.; Dittmar, T. Propofol-induced calcium signalling and actin reorganization within breast carcinoma cells. Eur. J. Anaesthesiol. 2005, 22, 609–615. [Google Scholar] [CrossRef]
- Song, F.; Liu, J.; Feng, Y.; Jin, Y. Propofol-induced HOXA11-AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR-4458. Int. J. Mol. Med. 2020, 46, 1135–1145. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Q.; You, L.; Chen, S.; Zhu, M.; Miao, C. Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor. Eur. J. Pharmacol. 2017, 795, 150–159. [Google Scholar] [CrossRef]
- Oh, T.K.; Kim, H.; Jeon, Y. Retrospective analysis of 1-year mortality after gastric cancer surgery: Total intravenous anesthesia versus volatile anesthesia. Acta Anaesthesiol. Scand. 2019, 63, 1169–1177. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, H.-B.; Han, W.; Noh, D.-Y.; Park, S.-K.; Kim, W.H.; Kim, J.-T. Total Intravenous Anesthesia versus Inhalation Anesthesia for Breast Cancer Surgery. Anesthesiology 2019, 130, 31–40. [Google Scholar] [CrossRef]
- Makito, K.; Matsui, H.; Fushimi, K.; Yasunaga, H. Volatile versus Total Intravenous Anesthesia for Cancer Prognosis in Patients Having Digestive Cancer Surgery. Anesthesiology 2020, 133, 764–773. [Google Scholar] [CrossRef]
- Lai, H.-C.; Lee, M.-S.; Lin, C.; Lin, K.-T.; Huang, Y.-H.; Wong, C.-S.; Chan, S.-M.; Wu, Z.-F. Propofol-based total intravenous anaesthesia is associated with better survival than desflurane anaesthesia in hepatectomy for hepatocellular carcinoma: A retrospective cohort study. Br. J. Anaesth. 2019, 123, 151–160. [Google Scholar] [CrossRef]
- Wigmore, T.J.; Mohammed, K.; Jhanji, S. Long-term Survival for Patients Undergoing Volatile versus IV Anesthesia for Cancer Surgery. Anesthesiology 2016, 124, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gong, H.; Zheng, F.; Liu, D.; Dong, T. Propofol suppresses proliferation and invasion of pancreatic cancer cells by upregulating microRNA-133a expression. Genet. Mol. Res. 2015, 14, 7529–7537. [Google Scholar] [CrossRef] [PubMed]
- Takabuchi, S.; Hirota, K.; Nishi, K.; Oda, S.; Oda, T.; Shingu, K.; Takabayashi, A.; Adachi, T.; Semenza, G.L.; Fukuda, K. The intravenous anesthetic propofol inhibits hypoxia-inducible factor 1 activity in an oxygen tension-dependent manner. FEBS Lett. 2004, 577, 434–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Chen, H.; Tian, C.; Zheng, D. Propofol Represses Cell Growth and Metastasis by Modulating the Circular RNA Non-SMC Condensin I Complex Subunit G/MicroRNA-200a-3p/RAB5A Axis in Glioma. World Neurosurg. 2021, 153, e46–e58. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.; Luk, K.; Vang, D.; Soto, W.; Vincent, L.; Robiner, S.; Saavedra, R.; Li, Y.; Gupta, P.; Gupta, K. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer. Br. J. Anaesth. 2014, 113, i4–i13. [Google Scholar] [CrossRef] [Green Version]
- Doornebal, C.W.; Vrijland, K.; Hau, C.-S.; Coffelt, S.B.; Ciampricotti, M.; Jonkers, J.; de Visser, K.E.; Hollmann, M.W. Morphine does not facilitate breast cancer progression in two preclinical mouse models for human invasive lobular and HER2+ breast cancer. Pain 2015, 156, 1424–1432. [Google Scholar] [CrossRef]
- Gach, K.; Szemraj, J.; Fichna, J.; Piestrzeniewicz, M.; Delbro, D.S.; Janecka, A. The Influence of Opioids on Urokinase Plasminogen Activator on Protein and mRNA Level in MCF-7 Breast Cancer Cell Line. Chem. Biol. Drug Des. 2009, 74, 390–396. [Google Scholar] [CrossRef]
- Afsharimani, B.; Baran, J.; Watanabe, S.; Lindner, D.; Cabot, P.J.; Parat, M.-O. Morphine and breast tumor metastasis: The role of matrix-degrading enzymes. Clin. Exp. Metastasis 2013, 31, 149–158. [Google Scholar] [CrossRef]
- Tegeder, I.; Grösch, S.; Schmidtko, A.; Häussler, A.; Schmidt, H.; Niederberger, E.; Scholich, K.; Geisslinger, G. G protein-independent G1 cell cycle block and apoptosis with morphine in ade-nocarcinoma cells: Involvement of p53 phosphorylation. Cancer Res. 2003, 63, 1846–1852. [Google Scholar]
- Hatsukari, I.; Hitosugi, N.; Ohno, R.; Hashimoto, K.; Nakamura, S.; Satoh, K.; Nagasaka, H.; Matsumoto, I.; Sakagami, H. Induction of apoptosis by morphine in human tumor cell lines in vitro. Anticancer Res. 2007, 27, 857–864. [Google Scholar]
- Gupta, K.; Kshirsagar, S.; Chang, L.; Schwartz, R.; Law, P.-Y.; Yee, D.; Hebbel, R.P. Morphine stimulates angiogenesis by activating proangiogenic and surviv-al-promoting signaling and promotes breast tumor growth. Cancer Res. 2002, 62, 4491–4498. [Google Scholar]
- Ecimovic, P.; Murray, D.; Doran, P.; McDonald, J.; Lambert, D.; Buggy, D.J. Direct effect of morphine on breast cancer cell function in vitro: Role of the NET1 gene. Br. J. Anaesth. 2011, 107, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Mathew, B.; Lennon, F.E.; Siegler, J.; Mirzapoiazova, T.; Mambetsariev, N.; Sammani, S.; Gerhold, L.M.; LaRiviere, P.J.; Chen, C.-T.; Garcia, J.G.N.; et al. The Novel Role of the Mu Opioid Receptor in Lung Cancer Progression. Obstet. Anesth. Dig. 2011, 112, 558–567. [Google Scholar] [CrossRef] [Green Version]
- Lennon, F.E.; Mirzapoiazova, T.; Mambetsariev, B.; Poroyko, V.A.; Salgia, R.; Moss, J.; Singleton, P.A. The Mu Opioid Receptor Promotes Opioid and Growth Factor-Induced Proliferation, Migration and Epithelial Mesenchymal Transition (EMT) in Human Lung Cancer. PLoS ONE 2014, 9, e91577. [Google Scholar] [CrossRef]
- Koodie, L.; Yuan, H.; Pumper, J.A.; Yu, H.; Charboneau, R.; Ramkrishnan, S.; Roy, S. Morphine Inhibits Migration of Tumor-Infiltrating Leukocytes and Suppresses Angiogenesis Associated with Tumor Growth in Mice. Am. J. Pathol. 2014, 184, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Nylund, G.; Pettersson, A.; Bengtsson, C.; Khorram-Manesh, A.; Nordgren, S.; Delbro, D.S. Functional Expression of μ-Opioid Receptors in the Human Colon Cancer Cell Line, HT-29, and their Localization in Human Colon. Dig. Dis. Sci. 2007, 53, 461–466. [Google Scholar] [CrossRef]
- Harimaya, Y.; Koizumi, K.; Andoh, T.; Nojima, H.; Kuraishi, Y.; Saiki, I. Potential ability of morphine to inhibit the adhesion, invasion and metastasis of metastatic colon 26-L5 carcinoma cells. Cancer Lett. 2002, 187, 121–127. [Google Scholar] [CrossRef]
- Buckley, A.; McQuaid, S.; Johnson, P.; Buggy, D.J. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: A pilot study. Br. J. Anaesth. 2014, 113, i56–i62. [Google Scholar] [CrossRef] [Green Version]
- Desmond, F.; McCormack, J.; Mulligan, N.; Stokes, M.; Buggy, D.J. Effect of anaesthetic technique on immune cell infiltration in breast cancer: A follow-up pilot analysis of a prospective, randomised, investigator-masked study. Anticancer. Res. 2015, 35, 1311–1319. [Google Scholar]
- Xu, Y.J.; Li, S.Y.; Cheng, Q.; Chen, W.K.; Wang, S.L.; Ren, Y.; Miao, C. Effects of anaesthesia on proliferation, invasion and apoptosis of LoVo colon cancer cells in vitro. Anaesthesia 2015, 71, 147–154. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, M.; Zhou, D.; Gorur, A.; Sun, Z.; Zeng, W.; Cata, J.P.; Chen, W.; Miao, C. Increased mu-opioid receptor expression is associated with reduced disease-free and overall survival in laryngeal squamous cell carcinoma. Br. J. Anaesth. 2020, 125, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Zylla, D.; Gourley, B.L.; Vang, D.; Jackson, S.; Boatman, S.; Ms, B.L.; Kuskowski, M.A.; Le, C.; Gupta, K.; Gupta, P. Opioid requirement, opioid receptor expression, and clinical outcomes in patients with advanced prostate cancer. Cancer 2013, 119, 4103–4110. [Google Scholar] [CrossRef] [PubMed]
- Friesen, C.; Roscher, M.; Hormann, I.; Fichtner, I.; Alt, A.; Hilger, R.A.; Debatin, K.-M.; Miltner, E. Cell death sensitization of leukemia cells by opioid receptor activation. Oncotarget 2013, 4, 677–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cata, J.P.; Keerty, V.; Keerty, D.; Feng, L.; Norman, P.H.; Gottumukkala, V.; Mehran, J.R.; Engle, M. A retrospective analysis of the effect of intraoperative opioid dose on cancer recurrence after non-small cell lung cancer resection. Cancer Med. 2014, 3, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.-H.; Wu, H.-L.; Chang, W.-K.; Tsou, M.-Y.; Chen, H.-H.; Chang, K.-Y. Intraoperative Fentanyl Consumption Does Not Impact Cancer Recurrence or Overall Survival after Curative Colorectal Cancer Resection. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, T.K.; Jeon, J.H.; Lee, J.M.; Kim, M.S.; Kim, J.H.; Cho, H.; Kim, S.-E.; Eom, W. Investigation of opioid use and long-term oncologic outcomes for non-small cell lung cancer patients treated with surgery. PLoS ONE 2017, 12, e0181672. [Google Scholar] [CrossRef] [Green Version]
- Friesen, C.; Hormann, I.; Roscher, M.; Fichtner, I.; Alt, A.; Hilger, R.; Debatin, K.-M.; Miltner, E. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma. Cell Cycle 2014, 13, 1560–1570. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-W.; Wang, L.-Y.; Jiang, L.; Tian, S.-M.; Zhong, T.-D.; Fang, X.-M. Amide-linked local anesthetics induce apoptosis in human non-small cell lung cancer. J. Thorac. Dis. 2016, 8, 2748–2757. [Google Scholar] [CrossRef] [Green Version]
- Bundscherer, A.C.; Malsy, M.; Bitzinger, D.I.; Wiese, C.H.; Gruber, M.A.; Graf, B.M. Effects of Lidocaine on HT-29 and SW480 Colon Cancer Cells In Vitro. Anticancer Res. 2017, 37, 1941–1945. [Google Scholar] [CrossRef]
- Yang, W.; Cai, J.; Zhang, H.; Wang, G.; Jiang, W. Effects of Lidocaine and Ropivacaine on Gastric Cancer Cells through Down-regulation of ERK1/2 Phosphorylation In Vitro. Anticancer Res. 2018, 38, 6729–6735. [Google Scholar] [CrossRef]
- Chen, J.; Jiao, Z.; Wang, A.; Zhong, W. Lidocaine inhibits melanoma cell proliferation by regulating ERK phosphorylation. J. Cell. Biochem. 2018, 120, 6402–6408. [Google Scholar] [CrossRef]
- Xuan, W.; Zhao, H.; Hankin, J.; Chen, L.; Yao, S.; Ma, D. Local anesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro. Sci. Rep. 2016, 6, 26277. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Hsu, Y.-C.; Liu, C.-L.; Huang, S.-Y.; Hu, M.-C.; Cheng, S.-P. Local Anesthetics Induce Apoptosis in Human Thyroid Cancer Cells through the Mitogen-Activated Protein Kinase Pathway. PLoS ONE 2014, 9, e89563. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Chen, D.-T.; Pan, J.-H.; Chen, Y.-H.; Yan, Y.; Li, Q.; Xue, R.-F.; Yuan, Y.-F.; Zeng, W.-A. Lidocaine Induces Apoptosis and Suppresses Tumor Growth in Human Hepatocellular Carcinoma Cells In Vitro and in a Xenograft Model In Vivo. Anesthesiology 2017, 126, 868–881. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Y.; Chen, Y.J.; Liu, Q. Anti-tumor effects of lidocaine on human gastric cancer cells in vitro. Bratisl. Med. J. 2019, 120, 212–217. [Google Scholar] [CrossRef]
- Bezu, L.; Chuang, A.W.; Sauvat, A.; Humeau, J.; Xie, W.; Cerrato, G.; Liu, P.; Zhao, L.; Zhang, S.; Le Naour, J.; et al. Local anesthetics elicit immune-dependent anticancer effects. J. Immunother. Cancer 2022, 10, e004151. [Google Scholar] [CrossRef]
- Piegeler, T.; Schläpfer, M.; Dull, R.O.; Schwartz, D.E.; Borgeat, A.; Minshall, R.D.; Beck-Schimmer, B. Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase. Br. J. Anaesth. 2015, 115, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Piegeler, M.T.; Votta-Velis, M.E.G.; Liu, G.; Place, A.T.; Schwartz, M.D.E.; Beck-Schimmer, M.B.; Minshall, R.D.; Borgeat, M.A. Antimetastatic Potential of Amide-linked Local Anesthetics. Anesthesiology 2012, 117, 548–559. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Gou, H.; Zhu, J.; Tian, S.; Yu, L. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 downregulation. Oncol. Lett. 2016, 12, 1164–1170. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, G.; Saporito, A.; Cecchinato, V.; Silvestri, Y.; Borgeat, A.; Anselmi, L.; Uguccioni, M. Lidocaine inhibits cytoskeletal remodelling and human breast cancer cell migration. Br. J. Anaesth. 2018, 121, 962–968. [Google Scholar] [CrossRef]
- Sun, H.; Sun, Y. Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2866–2874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamaraux-Tran, T.-N.; Mathelin, C.; Aprahamian, M.; Joshi, G.P.; Tomasetto, C.; Diemunsch, P.; Akladios, C. Antitumor Effects of Lidocaine on Human Breast Cancer Cells: An In Vitro and In Vivo Experimental Trial. Anticancer Res. 2018, 38, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Lirk, P.; Berger, R.; Hollmann, M.; Fiegl, H. Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br. J. Anaesth. 2012, 109, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Xiao, C.; Liu, H.; Huang, Y.; Dilger, J.P.; Lin, J. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer 2018, 18, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gac, G.; Angenard, G.; Clément, B.; Laviolle, B.; Coulouarn, C.; Beloeil, H. Local Anesthetics Inhibit the Growth of Human Hepatocellular Carcinoma Cells. Anesth. Analg. 2017, 125, 1600–1609. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, N.; Liu, G.; Mao, N.; Chen, F.; Li, J. Lidocaine Inhibits Hepatocellular Carcinoma Development by Modulating circ_ITCH/miR-421/CPEB3 Axis. Dig. Dis. Sci. 2021, 66, 4384–4397. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Chen, B.; Shen, X.; Li, W. Effects of Lidocaine-Mediated CPEB3 Upregulation in Human Hepatocellular Carcinoma Cell Proliferation In Vitro. BioMed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Zhu, X.; Zhu, M.; Sun, Z.; Cata, J.P.; Chen, W.; Miao, C. Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: A retrospective study. Br. J. Anaesth. 2020, 125, 141–148. [Google Scholar] [CrossRef]
- Freeman, J.; Crowley, P.D.; Foley, A.G.; Gallagher, H.C.; Iwasaki, M.; Ma, D.; Buggy, D.J. Effect of Perioperative Lidocaine and Cisplatin on Metastasis in a Murine Model of Breast Cancer Surgery. Anticancer Res. 2018, 38, 5599–5606. [Google Scholar] [CrossRef]
- Johnson, M.; Crowley, P.; Foley, A.; Xue, C.; Connolly, C.; Gallagher, H.; Buggy, D. Effect of perioperative lidocaine on metastasis after sevoflurane or ketamine-xylazine anaesthesia for breast tumour resection in a murine model. Br. J. Anaesth. 2018, 121, 76–85. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Kuroda, Y.; Hirose, M. The Antiproliferative Effect of Lidocaine on Human Tongue Cancer Cells with Inhibition of the Activity of Epidermal Growth Factor Receptor. Anesth. Analg. 2006, 102, 1103–1107. [Google Scholar] [CrossRef]
- Casey, S.C.; Amedei, A.; Aquilano, K.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.E.; Boosani, C.S.; Chen, S.; Ciriolo, M.R.; et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin. Cancer Biol. 2015, 35, S199–S223. [Google Scholar] [CrossRef]
- Pantel, K.; Speicher, M. The biology of circulating tumor cells. Oncogene 2015, 35, 1216–1224. [Google Scholar] [CrossRef]
- Gao, H.; Chakraborty, G.; Lee-Lim, A.P.; Mo, Q.; Decker, M.; Vonica, A.; Shen, R.; Brogi, E.; Brivanlou, A.H.; Giancotti, F.G. The BMP Inhibitor Coco Reactivates Breast Cancer Cells at Lung Metastatic Sites. Cell 2012, 150, 764–779. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Mu, E.; Wei, Y.; Riethdorf, S.; Yang, Q.; Yuan, M.; Yan, J.; Hua, Y.; Tiede, B.J.; Lu, X.; et al. VCAM-1 Promotes Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by Engaging α4β1-Positive Osteoclast Progenitors. Cancer Cell 2011, 20, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S.; et al. Identification of the tumour transition states occurring during EMT. Nature 2018, 556, 463–468. [Google Scholar] [CrossRef]
- Tabassum, D.P.; Polyak, K. Tumorigenesis: It takes a village. Nat. Rev. Cancer 2015, 15, 473–483. [Google Scholar] [CrossRef]
- Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.; Högnäs, G.; Annala, M. The evolutionary history of lethal metastatic prostate cancer. Nature 2015, 520, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Zappalà, G.; McDonald, P.G.; Cole, S.W. Tumor dormancy and the neuroendocrine system: An undisclosed connection? Cancer Metastasis Rev. 2012, 32, 189–200. [Google Scholar] [CrossRef]
- Sood, A.K.; Bhatty, R.; Kamat, A.A.; Landen, C.N.; Han, L.; Thaker, P.H.; Li, Y.; Gershenson, D.M.; Lutgendorf, S.; Cole, S.W. Stress Hormone–Mediated Invasion of Ovarian Cancer Cells. Clin. Cancer Res. 2006, 12, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, H.P.; Ho, J.W.; Koo, M.W.; Yu, L.; Wu, W.K.; Lam, E.K.; Tai, E.K.; Ko, J.K.; Shin, V.Y.; Chu, K.M.; et al. Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci. 2011, 88, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Bernabé, D.G.; Tamae, A.C.; Biasoli, .R.; Oliveira, S.H. Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain Behav. Immun. 2011, 25, 574–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, E.V.; Kim, S.; Donovan, E.L.; Chen, M.; Gross, A.C.; Webster Marketon, J.I.; Barsky, S.H.; Glaser, R. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: Implications for stress-related enhancement of tumor progression. Brain Behav. Immun. 2009, 23, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottschalk, A.; Sharma, S.; Ford, J.; Durieux, M.E.; Tiouririne, M. The Role of the Perioperative Period in Recurrence after Cancer Surgery. Obstet. Anesth. Dig. 2010, 110, 1636–1643. [Google Scholar] [CrossRef]
- Lutgendorf, S.K.; Cole, S.; Costanzo, E.; Bradley, S.; Coffin, J.; Jabbari, S.; Rainwater, K.; Ritchie, J.M.; Yang, M.; Sood, A.K. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin. Cancer Res. 2003, 9, 4514–4521. [Google Scholar]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Carlos-Reyes, A.; Lopez-Camarillo, C.; de la Cruz, O.N.H.; Lopez-Gonzalez, J.S. Contribution of Angiogenesis to Inflammation and Cancer. Front. Oncol. 2019, 9, 1399. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, Y.; Ben-Eliyahu, S. Surgery as a Risk Factor for Breast Cancer Recurrence and Metastasis: Mediating Mechanisms and Clinical Prophylactic Approaches. Breast Dis. 2007, 26, 99–114. [Google Scholar] [CrossRef]
- Sacerdote, P.; Manfredi, B.; Bianchi, M.; Panerai, A. Intermittent but Not Continuous Inescapable Footshock Stress Affects Immune Responses and Immunocyte Beta-Endorphin Concentrations in the Rat. Brain Behav. Immun. 1994, 8, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Shavit, Y.; Martin, F.; Yirmiya, R.; Ben-Eliyahu, S.; Terman, G.; Weiner, H.; Gale, R.; Liebeskind, J. Effects of a single administration of morphine or footshock stress on natural killer cell cytotoxicity. Brain Behav. Immun. 1987, 1, 318–328. [Google Scholar] [CrossRef]
- Bryant, H.U.; Roudebush, R.E. Suppressive effects of morphine pellet implants on in vivo parameters of immune function. J. Pharmacol. Exp. Ther. 1990, 255. [Google Scholar]
- Jaeger, K.; Scheinichen, D.; Heine, J.; André, M.; Bund, M.; Piepenbrock, S.; Leuwer, M. Remifentanil, fentanyl, and alfentanil have no influence on the respiratory burst of human neutrophilsin vitro. Acta Anaesthesiol. Scand. 1998, 42, 1110–1113. [Google Scholar] [CrossRef]
- Krumholz, W.; Endrass, J.; Hempelmann, G. Inhibition of phagocytosis and killing of bacteria by anaesthetic agents in vitro. Br. J. Anaesth. 1995, 75, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Lysle, D.T.; Coussons, M.E.; Watts, V.J.; Bennett, E.H.; Dykstra, L.A. Morphine-induced alterations of immune status: Dose dependency, compartment specificity and antagonism by naltrexone. J. Pharmacol. Exp. Ther. 1993, 265, 1071–1078. [Google Scholar]
- Welters, I.; Menzebach, A.; Goumon, Y.; Langefeld, T.; Teschemacher, H.; Hempelmann, G.; Stefano, G. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and μ3 opiate receptor-dependent mechanism. J. Neuroimmunol. 2000, 111, 139–145. [Google Scholar] [CrossRef]
- Cui, J.-H.; Jiang, W.-W.; Liao, Y.-J.; Wang, Q.-H.; Xu, M.; Li, Y. Effects of oxycodone on immune function in patients undergoing radical resection of rectal cancer under general anesthesia. Medicine 2017, 96, e7519. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, M.; Zhu, Y.; Zhou, D. The effect of propofol and sevoflurane on the perioperative immunity in patients un-der laparoscopic radical resection of colorectal cancer. Zhonghua Yi Xue Za Zhi 2015, 95, 3440–3444. [Google Scholar]
- Liu, S.; Gu, X.; Zhu, L.; Wu, G.; Zhou, H.; Song, Y.; Wu, C. Effects of propofol and sevoflurane on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer. Medicine 2016, 95, e5479. [Google Scholar] [CrossRef]
- Eochagáin, A.N.; Burns, D.; Riedel, B.; Sessler, D.I.; Buggy, D.J. The effect of anaesthetic technique during primary breast cancer surgery on neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and return to intended oncological therapy. Anaesthesia 2018, 73, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Oh, C.-S.; Lee, J.; Yoon, T.-G.; Seo, E.-H.; Park, H.-J.; Piao, L.; Lee, S.-H.; Kim, S.-H. Effect of Equipotent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesiology 2018, 129, 921–931. [Google Scholar] [CrossRef]
- Hiller, J.G.; Perry, N.J.; Poulogiannis, G.; Riedel, B.; Sloan, E.K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 2018, 15, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Menezes, M.; Das, S.; Minn, I.; Emdad, L.; Wang, X.-Y.; Sarkar, D.; Pomper, M.; Fisher, P. Detecting Tumor Metastases. Adv. Cancer Res. 2016, 132, 1–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, B.; Zu, Y. Detecting Circulating Tumor Cells: Current Challenges and New Trends. Theranostics 2013, 3, 377–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhou, X.-H.; Zhang, J.; Zhou, Y.-X.; Ying, J.; Wu, G.-Q.; Qian, J.-H. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem. Biophys. Res. Commun. 2015, 468, 561–567. [Google Scholar] [CrossRef]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of Natural Killer Cell Activity and Promotion of Tumor Metastasis by Ketamine, Thiopental, and Halothane, but Not by Propofol: Mediating Mechanisms and Prophylactic Measures. Obstet. Anesth. Dig. 2003, 97, 1331–1339. [Google Scholar] [CrossRef]
Midazolam | ||||
---|---|---|---|---|
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Wang C. et al. [6] | Glioma, Lung |
| Peripheral Benzodiazepine Receptor (PBR) on mitochondria resulting in reduction tumour burden, Ki67 expression and cyclin D expression | Intrinsic apoptotic pathway (exact mechanism unclear) |
Qi Y. et al. [7] | Hepato-cellular |
| Overexpression of miR-124-3p and subsequent inhibition of PIM-1 resulting in cell cycle arrest and increased apoptosis | miR-124-3p/PIM- axis |
Mishra SK. et al. [8] | Colon, leukemia |
| Activation of caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis | Inhibition of pERK1/2 signalling leading to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid |
Dexmedetomidine | ||||
Study | Type of cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
Wang C. et al. [6] | Glioma, Lung |
| Increased Ki67 and cyclin D expression leading to cell proliferation | Via α2–adrenergic signalling and upregulation of antiapoptotic proteins Bcl-2 and Bcl-xL |
Zhang P. et al. [9] | Esophagus | Suppressed tumour growth and metastasis | Increased apoptosis of esophageal cancer cells in vivo and in vitro | Upregulation of miR-143-3p and reducing the level of EPS8 |
Xia M. et al. [10] | Breast | Increased proliferation, migration and invasion ability of MDA-MB-231 cells in a dose-dependent manner in vitro |
| ERK Pathway. |
Ketamine | ||||
Study | Type of Cancer | Effect on Cancer | Mechanism of Action | Pathway Described |
He H. et al. [11] | Breast | Decreased apoptosis | Upregulation of Bcl-2 expression | Non described |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debel, W.; Ramadhan, A.; Vanpeteghem, C.; Forsyth, R.G. Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice. Cancers 2023, 15, 209. https://doi.org/10.3390/cancers15010209
Debel W, Ramadhan A, Vanpeteghem C, Forsyth RG. Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice. Cancers. 2023; 15(1):209. https://doi.org/10.3390/cancers15010209
Chicago/Turabian StyleDebel, Wiebrecht, Ali Ramadhan, Caroline Vanpeteghem, and Ramses G. Forsyth. 2023. "Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice" Cancers 15, no. 1: 209. https://doi.org/10.3390/cancers15010209
APA StyleDebel, W., Ramadhan, A., Vanpeteghem, C., & Forsyth, R. G. (2023). Does the Choice of Anaesthesia Affect Cancer? A Molecular Crosstalk between Theory and Practice. Cancers, 15(1), 209. https://doi.org/10.3390/cancers15010209