An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Preparation
2.2. Image Classifiers v1 and v2
2.3. The Video Classifier
2.4. Outcome Measures
2.5. Statistical Methods
3. Results
3.1. Diagnostic Performance of IC v1 and v2 for Static Images
3.2. Diagnostic Performance of IC v2 and the VC for Endoscopic Videos
3.3. Diagnostic Consistency between IC v2 and the VC for Endoscopic Videos
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, S.; Tanaka, S. Artificial intelligence for the detection of gastric precancerous conditions using image-enhanced endoscopy: What kind of abilities are required for application in real-world clinical practice? Gastrointest. Endosc. 2021, 94, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Okagawa, Y.; Abe, S.; Yamada, M.; Oda, I.; Saito, Y. Artificial Intelligence in Endoscopy. Dig. Dis. Sci. 2021, 67, 1553–1572. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Kim, S.; Kim, J.H.; Keum, J.S.; Oh, S.I.; Jo, J.; Chun, J.; Youn, Y.H.; Park, H.; Kwon, I.G.; et al. A Lesion-Based Convolutional Neural Network Improves Endoscopic Detection and Depth Prediction of Early Gastric Cancer. J. Clin. Med. 2019, 8, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Takemoto, S.; Hori, K.; Nishimura, M.; Ikematsu, H.; Yano, T.; Yokota, H. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 4138–4141. [Google Scholar]
- Luo, H.; Xu, G.; Li, C.; He, L.; Luo, L.; Wang, Z.; Jing, B.; Deng, Y.; Jin, Y.; Li, Y.; et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: A multicentre, case-control, diagnostic study. Lancet Oncol. 2019, 20, 1645–1654. [Google Scholar] [CrossRef]
- Tang, D.; Wang, L.; Ling, T.; Lv, Y.; Ni, M.; Zhan, Q.; Fu, Y.; Zhuang, D.; Guo, H.; Dou, X.; et al. Development and validation of a real-time artificial intelligence-assisted system for detecting early gastric cancer: A multicentre retrospective diagnostic study. EBioMedicine 2020, 62, 103146. [Google Scholar] [CrossRef]
- Yu, H.; Singh, R.; Shin, S.H.; Ho, K.Y. Artificial intelligence in upper GI endoscopy—current status, challenges and future promise. J. Gastroenterol. Hepatol. 2021, 36, 20–24. [Google Scholar] [CrossRef]
- Kubota, K.; Kuroda, J.; Yoshida, M.; Ohta, K.; Kitajima, M. Medical image analysis: Computer-aided diagnosis of gastric cancer invasion on endoscopic images. Surg. Endosc. 2012, 26, 1485–1489. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Q.C.; Xu, M.D.; Zhang, Z.; Cheng, J.; Zhong, Y.S.; Zhang, Y.Q.; Chen, W.F.; Yao, L.Q.; Zhou, P.H.; et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest. Endosc. 2019, 89, 806–815.e1. [Google Scholar] [CrossRef]
- Cho, B.J.; Bang, C.S.; Lee, J.J.; Seo, C.W.; Kim, J.H. Prediction of Submucosal Invasion for Gastric Neoplasms in Endoscopic Images Using Deep-Learning. J. Clin. Med. 2020, 9, 1858. [Google Scholar] [CrossRef]
- Nagao, S.; Tsuji, Y.; Sakaguchi, Y.; Takahashi, Y.; Minatsuki, C.; Niimi, K.; Yamashita, H.; Yamamichi, N.; Seto, Y.; Tada, T.; et al. Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: Efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging. Gastrointest. Endosc. 2020, 92, 866–873.e1. [Google Scholar] [CrossRef]
- Nam, J.Y.; Chung, H.J.; Choi, K.S.; Lee, H.; Kim, T.J.; Soh, H.; Kang, E.A.; Cho, S.J.; Ye, J.C.; Im, J.P.; et al. Deep learning model for diagnosing gastric mucosal lesions using endoscopic images: Development, validation, and method comparison. Gastrointest. Endosc. 2022, 95, 258–268.e10. [Google Scholar] [CrossRef]
- Pannala, R.; Krishnan, K.; Melson, J.; Parsi, M.A.; Schulman, A.R.; Sullivan, S.; Trikudanathan, G.; Trindade, A.J.; Watson, R.R.; Maple, J.T.; et al. Artificial intelligence in gastrointestinal endoscopy. VideoGIE 2020, 5, 598–613. [Google Scholar] [CrossRef]
- Parasher, G.; Wong, M.; Rawat, M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J. Gastroenterol. 2020, 26, 7287–7298. [Google Scholar] [CrossRef]
- Renna, F.; Martins, M.; Neto, A.; Cunha, A.; Libânio, D.; Dinis-Ribeiro, M.; Coimbra, M. Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice. Diagnostics 2022, 12, 1278. [Google Scholar] [CrossRef]
- Choi, S.J.; Khan, M.A.; Choi, H.S.; Choo, J.; Lee, J.M.; Kwon, S.; Keum, B.; Chun, H.J. Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy. Surg. Endosc. 2022, 36, 57–65. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J.; Zhou, W.; An, P.; Shen, L.; Liu, J.; Jiang, X.; Huang, X.; Mu, G.; Wan, X.; et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut 2019, 68, 2161–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Wu, L.; Li, Y.; Zhang, J.; Liu, J.; Huang, L.; Jiang, X.; Huang, X.; Mu, G.; Hu, S.; et al. Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: A prospective, single-blind, 3-parallel-group, randomized, single-center trial. Gastrointest. Endosc. 2020, 91, 332–339.e3. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.; Li, Y.; Chen, Q.; Cao, Y.; Liu, B.; Chen, S.; Liu, X. Gastric Location Classification During Esophagogastroduodenoscopy Using Deep Neural Networks. In Proceedings of the 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE), Kragujevac, Serbia, 25 October 2021; pp. 1–8. [Google Scholar]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunovic, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Namikawa, K.; Hirasawa, T.; Nakano, K.; Ikenoyama, Y.; Ishioka, M.; Shiroma, S.; Tokai, Y.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; et al. Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers: Comparison between the original and newly developed systems. Endoscopy 2020, 52, 1077–1083. [Google Scholar] [CrossRef]
- Samarasena, J.B. Guns, germs, and steel… and artificial intelligence. Gastrointest. Endosc. 2021, 93, 99–101. [Google Scholar] [CrossRef]
Characteristics | IC v2 (N = 714) | VC (N = 81) |
---|---|---|
Tumor size (mm, mean ± SD) | 23.7 ± 14.4 | 31.0 ± 19.3 |
Location (n, %) | ||
Upper one-third | 58 (8.2) | 9 (11.1) |
Middle one-third | 171 (23.9) | 12 (14.8) |
Lower one-third | 485 (67.9) | 60 (74.1) |
Gross type (n, %) | ||
Elevated | 111 (15.5) | 19 (23.4) |
Flat | 331 (46.4) | 37 (45.7) |
Depressed | 272 (38.1) | 25 (30.9) |
* Depth of invasion (n, %) | ||
Mucosa (T1a) | 426 (59.7) | 50 (61.7) |
Submucosa (T1b) | 288 (40.3) | 31 (38.3) |
Japanese classification (n, %) | ||
Differentiated | 419 (58.7) | 45 (55.6) |
Undifferentiated | 295 (41.3) | 36 (44.4) |
Predicting Depth | IC v1 | IC v2 |
---|---|---|
Accuracy (%) | 79.8 | 82.7 |
Sensitivity (%) | 79.2 | 82.5 |
Specificity (%) | 77.8 | 82.9 |
PPV (%) | 79.3 | 82.9 |
NPV (%) | 77.7 | 82.6 |
(A) | ||||
---|---|---|---|---|
Predicting Depth | IC v2 | VC | ||
Accuracy (%) | 56.6 | 83.7 | ||
Sensitivity (%) | 33.6 | 82.3 | ||
Specificity (%) | 85.5 | 85.8 | ||
PPV (%) | 74.4 | 88.0 | ||
NPV (%) | 50.6 | 79.4 | ||
AUC | 0.615 | 0.865 | ||
(B) | ||||
Predicting depth | Voting | Average | ||
IC v2 | VC | IC v2 | VC | |
Accuracy (%) | 50.8 | 82.1 | 50.8 | 85.1 |
Sensitivity (%) | 25.0 | 81.8 | 25.0 | 81.8 |
Specificity (%) | 100.0 | 82.6 | 100.0 | 91.3 |
PPV (%) | 100.0 | 90.0 | 100.0 | 94.7 |
NPV (%) | 41.1 | 70.4 | 41.1 | 72.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Oh, S.-I.; Han, S.-Y.; Keum, J.-S.; Kim, K.-N.; Chun, J.-Y.; Youn, Y.-H.; Park, H. An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers 2022, 14, 6000. https://doi.org/10.3390/cancers14236000
Kim J-H, Oh S-I, Han S-Y, Keum J-S, Kim K-N, Chun J-Y, Youn Y-H, Park H. An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers. 2022; 14(23):6000. https://doi.org/10.3390/cancers14236000
Chicago/Turabian StyleKim, Jie-Hyun, Sang-Il Oh, So-Young Han, Ji-Soo Keum, Kyung-Nam Kim, Jae-Young Chun, Young-Hoon Youn, and Hyojin Park. 2022. "An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer" Cancers 14, no. 23: 6000. https://doi.org/10.3390/cancers14236000
APA StyleKim, J. -H., Oh, S. -I., Han, S. -Y., Keum, J. -S., Kim, K. -N., Chun, J. -Y., Youn, Y. -H., & Park, H. (2022). An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer. Cancers, 14(23), 6000. https://doi.org/10.3390/cancers14236000