Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Monoclonal Antibodies
2.1. Anti-CD20 mAb
2.2. Anti-CD33 mAb
2.3. Anti-PD-1 mAb
3. Bi-Specific T-Cell Engagers (BiTEs)
4. Tyrosine Kinase Inhibitors (TKIs)
4.1. Imatinib
4.2. Dasatinib
4.3. Nilotinib
4.4. Crizotinib
4.5. Entrectinib
4.6. Larotrectinib
5. Chimeric Antigen Receptor T-Cells (CAR T-Cells)
Tisagenlecleucel
6. Other Targeted Therapies with Off-Label Use
6.1. Inotuzumab Ozogamicin
6.2. Brentuximab Vedotin
6.3. Bortezomib
6.4. Venetoclax
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Martens, U. Small Molecules in Hematology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lejman, M.; Kuśmierczuk, K.; Bednarz, K.; Ostapińska, K.; Zawitkowska, J. Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia—Therapy and Toxicity Mechanisms. Int. J. Mol. Sci. 2021, 22, 9827. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Vasileiou, E.; Rossig, C.; Roilides, E.; Groll, A.; Tragiannidis, A. Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. J. Fungi 2021, 7, 186. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Tragiannidis, A.; Zündorf, I.; Groll, A.H. Invasive fungal infections in paediatric patients treated with macromolecular immunomodulators other than tumour necrosis alpha inhibitors. Mycoses 2017, 60, 493–507. [Google Scholar] [CrossRef] [PubMed]
- MabThera. Summary of Product Characteristics. European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/mabthera-epar-product-information_en.pdf (accessed on 8 October 2022).
- Mylotarg. Summary of Product Characteristics. European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/mylotarg-epar-product-information_en.pdf (accessed on 8 October 2022).
- Keytruda. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 8 October 2022).
- Blincyto. Summary of Product Characteristics. European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/blincyto-epar-product-information_en.pdf (accessed on 8 October 2022).
- Gleevec. Highlights of prescribing information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/021588s062lbl.pdf (accessed on 8 October 2022).
- Sprycel. Highlights of prescribing information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021986s025lbl.pdf (accessed on 8 October 2022).
- Tasigna. Highlight of prescribing information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022068s035s036lbl.pdf (accessed on 8 October 2022).
- Xalkori. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/202570s030lbl.pdf (accessed on 8 October 2022).
- Rozlytrek. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212725s000lbl.pdf (accessed on 8 October 2022).
- Vitrakvi. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 8 October 2022).
- Kymriah. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 8 October 2022).
- Mikulska, M.; Lanini, S.; Gudiol, C.; Drgona, L.; Ippolito, G.; Fernández-Ruiz, M.; Salzberger, B. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin. Microbiol. Infect. 2018, 24, S71–S82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, N.; Arnold, D.M. The effect of rituximab on humoral and cell mediated immunity and infection in the treatment of autoimmune diseases. Br. J. Haematol. 2010, 149, 3–13. [Google Scholar] [CrossRef]
- Casulo, C.; Maragulia, J.; Zelenetz, A.D. Incidence of Hypogammaglobulinemia in Patients Receiving Rituximab and the Use of Intravenous Immunoglobulin for Recurrent Infections. Clin. Lymphoma Myeloma Leuk. 2013, 13, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Gupta, D.; Almasan, A. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response. J. Cancer Sci. Ther. 2015, 7, 347–358. [Google Scholar] [CrossRef]
- Sandova, V.; Pavlasova, G.M.; Seda, V.; Cerna, K.A.; Sharma, S.; Palusova, V.; Brychtova, Y.; Pospisilova, S.; Fernandes, S.M.; Panovska, A.; et al. IL4-STAT6 signaling induces CD20 in chronic lymphocytic leukemia and this axis is repressed by PI3Kδ inhibitor idelalisib. Haematologica 2021, 106, 2995. [Google Scholar] [CrossRef]
- Pavlasova, G.; Borsky, M.; Svobodova, V.; Oppelt, J.; Cerna, K.; Novotna, J.; Seda, V.; Fojtova, M.; Fajkus, J.; Brychtova, Y.; et al. Rituximab primarily targets an intra-clonal BCR signaling proficient CLL subpopulation characterized by high CD20 levels. Leukemia 2018, 329, 2028–2031. [Google Scholar] [CrossRef]
- Withycombe, J.S.; Carlson, A.; Coleman, C.; Leslie, S.L.; Skeens, M.; Tseitlin, H.; Duffy, E.A. Commonly Reported Adverse Events Associated with Pediatric Immunotherapy: A Systematic Review from the Children’s Oncology Group. J. Pediatr. Oncol. Nurs. 2021, 38, 16–25. [Google Scholar] [CrossRef]
- McAtee, C.L.; Lubega, J.; Underbrink, K.; Curry, K.; Msaouel, P.; Barrow, M.; Muscal, E.; Lotze, T.; Srivaths, P.; Forbes, L.R.; et al. Association of Rituximab Use with Adverse Events in Children, Adolescents, and Young Adults. JAMA Netw. Open 2021, 4, e2036321. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, R.; Barmettler, S.; Derfalvi, B.; Blincoe, A.; Cros, G.; Lacombe-Barrios, J.; Barsalou, J.; Yang, N.; Alrumayyan, N.; Sinclair, J.; et al. Rituximab-induced hypogammaglobulinemia and infection risk in pediatric patients. J. Allergy Clin. Immunol. 2021, 148, 523–532.e8. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Sun, F.; Wang, J.; Huang, J.; Lu, S.; Zhu, J.; Zhu, X.; Huang, H.; Xia, Z.; Que, Y.; et al. Efficacy and safety comparison between R-CHOP and modified NHL-BFM-90 regimens in children and adolescents with diffuse large B-cell lymphoma. Ann. Hematol. 2022, 101, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Osumi, T.; Mori, T.; Fujita, N.; Saito, A.M.; Nakazawa, A.; Tsurusawa, M.; Kobayashi, R. Relapsed/refractory pediatric B-cell non-Hodgkin lymphoma treated with rituximab combination therapy: A report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Pediatr. Blood Cancer 2016, 63, 1794–1799. [Google Scholar] [CrossRef]
- Kavcic, M.; Fisher, B.T.; Seif, A.E.; Li, Y.; Huang, Y.-S.; Walker, D.; Aplenc, R. Leveraging Administrative Data to Monitor Rituximab Use in 2875 Patients at 42 Freestanding Children’s Hospitals across the United States. J. Pediatr. 2013, 162, 1252–1258.e1. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, N.; Mussai, F. Enteroviral Encephalitis in a Child with CNS Relapse of Burkitt Leukemia Treated With Rituximab. J. Pediatr. Hematol. Oncol. 2019, 41, e27–e29. [Google Scholar] [CrossRef]
- Minard-Colin, V.; Aupérin, A.; Pillon, M.; Burke, G.A.; Barkauskas, D.A.; Wheatley, K.; Delgado, R.F.; Alexander, S.; Uyttebroeck, A.; Bollard, C.M.; et al. Rituximab for High-Risk, Mature B-Cell Non-Hodgkin’s Lymphoma in Children. N. Engl. J. Med. 2020, 382, 2207–2219. [Google Scholar] [CrossRef]
- Dourthe, M.E.; Phulpin, A.; Auperin, A.; Bosq, J.; Couec, M.-L.; Dartigues, P.; Ducassou, S.; Garnier, N.; Haouy, S.; Leblanc, T.; et al. Rituximab in addition to LMB-based chemotherapy regimen in children and adolescents with primary mediastinal large B-cell lymphoma: Results of the French LMB2001 prospective study. Haematologica 2022, 107, 2173–2182. [Google Scholar] [CrossRef]
- Abrahão, R.; Ribeiro, R.; Lichtensztajn, D.; Rosenberg, A.; Keegan, T. Survival after diffuse large B-cell lymphoma among children, adolescents, and young adults in California, 2001-2014: A population-based study. Pediatr. Blood Cancer 2019, 66, e27559. [Google Scholar] [CrossRef]
- Samochatova, E.V.; Maschan, A.A.; Shelikhova, L.N.; Myakova, N.V.; Belogurova, M.B.; Khlebnikova, O.P.; Shamardina, A.V.; Ryskal, O.V.; Roumiantseva, J.V.; Konovalov, D.M.; et al. Therapy of Advanced-stage Mature B-cell Lymphoma and Leukemia in Children and Adolescents with Rituximab and Reduced Intensity Induction Chemotherapy (B-NHL 2004M Protocol): The results of a multicenter study. J. Pediatr. Hematol. Oncol. 2014, 36, 395–401. [Google Scholar] [CrossRef]
- Maschan, A.; Myakova, N.; Aleinikova, O.; Abugova, Y.; Ponomareva, N.; Belogurova, M.; Fechina, L.; Fedorova, A.; Grigor’Eva, N.; Lebedev, V.; et al. Rituximab and reduced-intensity chemotherapy in children and adolescents with mature B-cell lymphoma: Interim results for 231 patients enrolled in the second Russian-Belorussian multicentre study B-NHL-2010M. Br. J. Haematol. 2019, 186, 477–483. [Google Scholar] [CrossRef]
- Meinhardt, A.; Burkhardt, B.; Zimmermann, M.; Borkhardt, A.; Kontny, U.; Klingebiel, T.; Berthold, F.; Janka-Schaub, G.; Klein, C.; Kabickova, E.; et al. Phase II Window Study on Rituximab in Newly Diagnosed Pediatric Mature B-Cell Non-Hodgkin’s Lymphoma and Burkitt Leukemia. J. Clin. Oncol. 2010, 28, 3115–3121. [Google Scholar] [CrossRef]
- Woessmann, W.; Zimmermann, M.; Meinhardt, A.; Mueller, S.; Hauch, H.; Knörr, F.; Oschlies, I.; Klapper, W.; Niggli, F.; Kabickova, E.; et al. Progressive or Relapsed Burkitt Lymphoma or Leukemia in Children and Adolescents after BFM-type First-line Therapy. Blood 2020, 135, 1124–1132. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhu, J.; Wang, J.; Lu, S.; Sun, F.; Huang, J.; Sun, X. Rituximab is highly effective in children and adolescents with Burkitt lymphoma in Risk Groups R2 to R4. Pediatr. Hematol. Oncol. 2020, 37, 489–499. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Fang, Y.-J.; Gao, J.; Yan, J.; Yang, L.-C.; Liu, A.-G.; Ju, X.-L.; Lu, J.; Han, Y.-L.; Wang, J.; et al. A prospective multicenter study investigating rituximab combined with intensive chemotherapy in newly diagnosed pediatric patients with aggressive mature B cell non-Hodgkin lymphoma (CCCG-BNHL-2015): A report from the Chinese Children’s Cancer Group. Ann. Hematol. 2022, 101, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.; Smith, L.; Anderson, J.R.; Perkins, S.; Harrison, L.; Geyer, M.; Gross, T.G.; Weinstein, H.; Bergeron, S.; Shiramizu, B.; et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: A Children’s Oncology Group report. Leukemia 2013, 27, 1174–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, T.C.; Weitzman, S.; Weinstein, H.; Chang, M.; Cairo, M.; Hutchison, R.; Shiramizu, B.; Wiley, J.; Woods, D.; Barnich, M.; et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2009, 52, 177–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, S.; Smith, L.; Galardy, P.; Perkins, S.L.; Frazer, J.K.; Sanger, W.; Anderson, J.R.; Gross, T.G.; Weinstein, H.; Harrison, L.; et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: A Children’s Oncology Group Report. Br. J. Haematol. 2014, 167, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Jin, L.; Yang, J.; Duan, Y.-L.; Zhang, M.; Zhou, C.-J.; Zhang, Y.-H. Treatment outcome in children with central nervous system-positive Burkitt lymphoma using only intrathecal and systemic chemotherapy combined with rituximab. Chin. Med. J. 2021, 134, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, J.L.; Hsi, E.D.; Johnson, J.L.; Jung, S.-H.; Nakashima, M.O.; Grant, B.; Cheson, B.D.; Kaplan, L.D. Intensive Chemotherapy and Immunotherapy in Patients with Newly Diagnosed Primary CNS Lymphoma: CALGB 50202 (Alliance 50202). J. Clin. Oncol. 2013, 31, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Chopra, A.; Meena, J.P.; Singh, J.; Pandey, R.M.; Bakhshi, S.; Seth, R. Rituximab added to standard chemotherapy and its effect on minimal residual disease during induction in CD20 positive pediatric acute lymphoblastic leukemia: A pilot RCT. Am. J. Blood Res. 2021, 11, 571. [Google Scholar]
- Jain, H.; Sengar, M.; Goli, V.B.; Thorat, J.; Tembhare, P.; Shetty, D.; Bonda, V.N.A.; Nayak, L.; Subramanian, P.; Bagal, B.; et al. Bortezomib and rituximab in de novo adolescent/adult CD20-positive, Ph-negative pre-B-cell acute lymphoblastic leukemia. Blood Adv. 2021, 5, 3436–3444. [Google Scholar] [CrossRef]
- Thomas, D.A.; O’Brien, S.; Faderl, S.; Garcia-Manero, G.; Ferrajoli, A.; Wierda, W.; Ravandi, F.; Srdan Verstovsek, M.D.; Jorgensen, J.L.; Bueso-Ramos, C.; et al. Chemoimmunotherapy With a Modified Hyper-CVAD and Rituximab Regimen Improves Outcome in De Novo Philadelphia Chromosome–Negative Precursor B-Lineage Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2010, 28, 3880–3889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Galardy, P.J.; Dogan, A.; Rodriguez, V.; Khan, S.P. Rituximab in combination with multiagent chemotherapy for Pediatric follicular lymphoma. Pediatr. Blood Cancer 2011, 57, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, E.D.; Sharman, J.P.; Oki, Y.; Advani, R.; Winter, J.N.; Bello, C.M.; Spitzer, G.; Palanca-Wessels, M.C.; Kennedy, D.A.; Levine, P.; et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood 2015, 125, 1394–1402. [Google Scholar] [CrossRef]
- Gamis, A.S.; Alonzo, T.A.; Meshinchi, S.; Sung, L.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Kahwash, S.; Heerema-McKenney, A.; Winter, L.; et al. Gemtuzumab Ozogamicin in Children and Adolescents With De Novo Acute Myeloid Leukemia Improves Event-Free Survival by Reducing Relapse Risk: Results from the Randomized Phase III Children’s Oncology Group Trial AAML0531. J. Clin. Oncol. 2014, 32, 3021–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.S.; Aplenc, R.; Chirnomas, D.; Dugan, M.; Fazal, S.; Iyer, S.P.; Lin, T.L.; Nand, S.; Pierce, K.J.; Shami, P.J.; et al. Safety of gemtuzumab ozogamicin as monotherapy or combination therapy in an expanded-access protocol for patients with relapsed or refractory acute myeloid leukemia. Leuk. Lymphoma 2020, 61, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Hasle, H.; Abrahamsson, J.; Forestier, E.; Ha, S.-Y.; Heldrup, J.; Jahnukainen, K.; Jónsson, G.; Lausen, B.; Palle, J.; Zeller, B. Gemtuzumab ozogamicin as postconsolidation therapy does not prevent relapse in children with AML: Results from NOPHO-AML 2004. Blood 2012, 120, 978–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J.D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021, 325, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.E.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Bernhardt, M.B.; et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021, 325, 833–842. [Google Scholar] [CrossRef]
- Fuster, J.L.; Molinos-Quintana, A.; Fuentes, C.; Fernández, J.M.; Velasco, P.; Pascual, T.; Rives, S.; Dapena, J.L.; Sisinni, L.; López-Godino, O.; et al. Blinatumomab and inotuzumab for B cell precursor acute lymphoblastic leukaemia in children: A retrospective study from the Leukemia Working Group of the Spanish Society of Pediatric Hematology and Oncology (SEHOP). Br. J. Haematol. 2020, 190, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Schrappe, M.; De Lorenzo, P.; Castor, A.; Lucchini, G.; Gandemer, V.; Pieters, R.; Stary, J.; Escherich, G.; Campbell, M.; et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): A randomised, open-label, intergroup study. Lancet Oncol. 2012, 13, 936–945. [Google Scholar] [CrossRef]
- Schultz, K.R.; Bowman, W.P.; Aledo, A.; Slayton, W.B.; Sather, H.; Devidas, M.; Wang, C.; Davies, S.M.; Gaynon, P.S.; Trigg, M.; et al. Improved Early Event-Free Survival with Imatinib in Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. J. Clin. Oncol. 2009, 27, 5175–5181. [Google Scholar] [CrossRef] [Green Version]
- Rives, S.; Estella, J.; Gómez, P.; López-Duarte, M.; De Miguel, P.G.; Verdeguer, A.; Moreno, M.J.; Vivanco, J.L.; Couselo, J.M.; Fernández-Delgado, R.; et al. Intermediate dose of imatinib in combination with chemotherapy followed by allogeneic stem cell transplantation improves early outcome in paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (ALL): Results of the Spanish Cooperative Group SHOP studies ALL-94, ALL-99 and ALL-2005. Br. J. Haematol. 2011, 154, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Chen, X.; Cai, J.; Yu, J.; Gao, J.; Hu, S.; Zhai, X.; Liang, C.; Ju, X.; Jiang, H.; et al. Effect of dasatinib vs imatinib in the treatment of pediatric philadelphia chromosome-positive acute lymphoblastic leukemia: A randomized clinical trial. JAMA Oncol. 2020, 6, 358–366. [Google Scholar] [CrossRef]
- Brentuximab Vedotin or Crizotinib and Combination Chemotherapy in Treating Patients with Newly Diagnosed Stage II-IV Anaplastic Large Cell Lymphoma—Study Results—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01979536 (accessed on 28 August 2022).
- Flerlage, J.E.; Metzger, M.L.; Wu, J.; Panetta, J.C. Pharmacokinetics, immunogenicity, and safety of weekly dosing of brentuximab vedotin in pediatric patients with Hodgkin lymphoma. Cancer Chemother. Pharmacol. 2016, 78, 1217–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, E.J.; Reilly, A.F.; Lim, M.S.; Gross, T.G.; Saguilig, L.; Barkauskas, D.A.; Wu, R.; Alexander, S.; Bollard, C.M. Brentuximab vedotin in combination with chemotherapy for pediatric patients with ALK+ ALCL: Results of COG trial ANHL12P1. Blood 2021, 137, 3595–3603. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, G.; Mauguen, A.; Rosolen, A.; Reiter, A.; Williams, D.; Horibe, K.; Brugières, L.; Le Deley, M.-C. Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: Report of the ALCL99 randomised trial. Pediatr. Blood Cancer 2011, 56, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Devidas, M.; Wood, B.L.; Chen, Z.; Hayashi, R.J.; Hermiston, M.L.; Annett, R.D.; Archer, J.H.; Asselin, B.L.; August, K.J.; et al. Children’s Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. J. Clin. Oncol. 2022, 40, 2106–2118. [Google Scholar] [CrossRef]
- Drgona, L.; Gudiol, C.; Lanini, S.; Salzberger, B.; Ippolito, G.; Mikulska, M. Narrative review ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Agents targeting lymphoid or myeloid cells surface antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4). Clin. Microbiol. Infect. 2018, 24, S83–S94. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.B.; Appelbaum, F.R.; Estey, E.H.; Bernstein, I.D. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 2012, 119, 6198–6208. [Google Scholar] [CrossRef] [PubMed]
- Do, T.M.C.; Franklin, J.; Gerbing, R.B.; Alonzo, T.A.; Hurwitz, C.; Raimondi, S.C.; Hirsch, B.; Smith, F.O.; Mathew, P.; Arceci, R.J.; et al. AAML03P1, a pilot study of the safety of gemtuzumab ozogamicin in combination with chemotherapy for newly diagnosed childhood acute myeloid leukemia: A report from the Children’s Oncology Group. Cancer 2012, 118, 761–769. [Google Scholar] [CrossRef]
- Niktoreh, N.; Lerius, B.; Zimmermann, M.; Gruhn, B.; Escherich, G.; Bourquin, J.-P.; Dworzak, M.; Sramkova, L.; Rossig, C.; Creutzig, U.; et al. Gemtuzumab ozogamicin in children with relapsed or refractory acute myeloid leukemia: A report by Berlin-Frankfurt-Münster study group. Haematologica 2019, 104, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwaan, C.M.; Reinhardt, D.; Corbacioglu, S.; Van Wering, E.R.; Bökkerink, J.P.M.; Tissing, W.J.E.; Samuelsson, U.; Feingold, J.; Creutzig, U.; Kaspers, G.J.L. Gemtuzumab ozogamicin: First clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate-use basis. Blood 2003, 101, 3868–3871. [Google Scholar] [CrossRef] [Green Version]
- Zwaan, C.M.; Reinhardt, D.; Zimmerman, M.; Hasle, H.; Stary, J.; Stark, B.; Dworzak, M.; Creutzig, U.; Kaspers, G.J.L.; International BFM Study Group on Paediatric AML. Salvage treatment for children with refractory first or second relapse of acute myeloid leukaemia with gemtuzumab ozogamicin: Results of a phase, I.I. study. Br. J. Haematol. 2010, 148, 768–776. [Google Scholar] [CrossRef]
- Reinhardt, D.; Diekamp, S.; Fleischhack, G.; Corbacioglu, C.; Jürgens, H.; Dworzak, M.; Kaspers, G.; Creutzig, U.; Zwaan, C. Gemtuzumab Ozogamicin (Mylotarg®) in Children with Refractory or Relapsed Acute Myeloid Leukemia. Onkologie 2004, 27, 269–272. [Google Scholar] [CrossRef]
- Brethon, B.; Auvrignon, A.; Galambrun, C.; Yakouben, K.; Leblanc, T.; Bertrand, Y.; Leverger, G.; Baruchel, A. Efficacy and tolerability of gemtuzumab ozogamicin (anti-CD33 monoclonal antibody, CMA-676, Mylotarg®) in children with relapsed/refractory myeloid leukemia. BMC Cancer 2006, 6, 172. [Google Scholar] [CrossRef] [Green Version]
- Arceci, R.J.; Sande, J.; Lange, B.; Shannon, K.; Franklin, J.; Hutchinson, R.; Vik, T.; Flowers, D.; Aplenc, R.; Berger, M.S.; et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood 2005, 106, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Brethon, B.; Yakouben, K.; Oudot, C.; Boutard, P.; Bruno, B.; Jérome, C.; Nelken, B.; De Lumley, L.; Bertrand, Y.; Dalle, J.-H.; et al. Efficacy of fractionated gemtuzumab ozogamicin combined with cytarabine in advanced childhood myeloid leukaemia. Br. J. Haematol. 2008, 143, 541–547. [Google Scholar] [CrossRef]
- Dhunputh, C.; Strullu, M.; Petit, A.; Merched, M.; Pasquet, M.; Azarnoush, S.; Leverger, G.; Ducassou, S. Single-dose (4.5 mg/m 2) gemtuzumab ozogamicin in combination with fludarabine, cytarabine and anthracycline as reinduction therapy in relapsed or refractory paediatric acute myeloid leukaemia. Br. J. Haematol. 2022, 198, 373–381. [Google Scholar] [CrossRef]
- Penel-Page, M.; Plesa, A.; Girard, S.; Marceau-Renaut, A.; Renard, C.; Bertrand, Y. Association of fludarabin, cytarabine, and fractioned gemtuzumab followed by hematopoietic stem cell transplantation for first-line refractory acute myeloid leukemia in children: A single-center experience. Pediatr. Blood Cancer 2020, 67, e28305. [Google Scholar] [CrossRef] [PubMed]
- Aplenc, R.; Alonzo, T.A.; Gerbing, R.B.; Lange, B.J.; Hurwitz, C.A.; Wells, R.J.; Bernstein, I.; Buckley, P.; Krimmel, K.; Smith, F.O.; et al. Safety and Efficacy of Gemtuzumab Ozogamicin in Combination with Chemotherapy for Pediatric Acute Myeloid Leukemia: A Report from The Children’s Oncology Group. J. Clin. Oncol. 2008, 26, 2390–2395. [Google Scholar] [CrossRef] [PubMed]
- Satwani, P.; Bhatia, M.; Garvin, J.H.; George, D.; Cruz, F.D.; Le Gall, J.; Jin, Z.; Schwartz, J.; Duffy, D.; van de Ven, C.; et al. A Phase I Study of Gemtuzumab Ozogamicin (GO) in Combination with Busulfan and Cyclophosphamide (Bu/Cy) and Allogeneic Stem Cell Transplantation in Children with Poor-Risk CD33+ AML: A New Targeted Immunochemotherapy Myeloablative Conditioning (MAC) Regimen. Biol. Blood Marrow Transplant. 2012, 18, 324–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayar, D.; Burstein, Y.; Bielorai, B.; Toren, A.; Dvir, R. Upfront use of gemtuzumab ozogamicin in young children with CD33-positive AML. Pediatr. Blood Cancer 2010, 55, 183–185. [Google Scholar] [CrossRef]
- Yoshida, N.; Sakaguchi, H.; Matsumoto, K.; Kato, K. Successful treatment with low-dose gemtuzumab ozogamicin in combination chemotherapy followed by stem cell transplantation for children with refractory acute myeloid leukaemia. Br. J. Haematol. 2012, 158, 666–668. [Google Scholar] [CrossRef]
- Sibson, K.; Steward, C.; Moppett, J.; Cornish, J.; Goulden, N. Dismal long-term prognosis for children with refractory acute myeloid leukaemia treated with gemtuzumab ozogamicin and stem cell transplantation: Where now? Br. J. Haematol. 2009, 146, 342–344. [Google Scholar] [CrossRef]
- Roman, E.; Cooney, E.; Harrison, L.; Militano, O.; Wolownik, K.; Hawks, R.; Foley, S.; Satwani, P.; Unal, E.; Bhatia, M.; et al. Preliminary Results of the Safety of Immunotherapy with Gemtuzumab Ozogamicin following Reduced Intensity Allogeneic Stem Cell Transplant in Children with CD33+ Acute Myeloid Leukemia. Clin. Cancer Res. 2005, 11, 7164s–7170s. [Google Scholar] [CrossRef] [Green Version]
- Zahler, S.; Bhatia, M.; Ricci, A.; Roy, S.; Morris, E.; Harrison, L.; van de Ven, C.; Fabricatore, S.; Wolownik, K.; Cooney-Qualter, E.; et al. A Phase I Study of Reduced-Intensity Conditioning and Allogeneic Stem Cell Transplantation Followed by Dose Escalation of Targeted Consolidation Immunotherapy with Gemtuzumab Ozogamicin in Children and Adolescents with CD33 + Acute Myeloid Leukemia. Biol. Blood Marrow Transplant. 2016, 22, 698–704. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wenzl, K.; Manske, M.K.; Asmann, Y.W.; Sarangi, V.; Greipp, P.T.; Krull, J.E.; Hartert, K.; He, R.; Feldman, A.L.; et al. Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma. Blood Cancer J. 2019, 99, 73. [Google Scholar] [CrossRef] [Green Version]
- Geoerger, B.; Kang, H.J.; Yalon-Oren, M.; Marshall, L.V.; Vezina, C.; Pappo, A.; Laetsch, T.W.; Petrilli, A.S.; Ebinger, M.; Toporski, J.; et al. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1–2 trial. Lancet Oncol. 2020, 21, 121–133. [Google Scholar] [CrossRef]
- Mauz-Korholz, C.; Kelly, K.M.; Keller, F.G.; Giulino-Roth, L.; Nahar, A.; Balakumaran, A. KEYNOTE-667: Phase 2, open-label study of pembrolizumab in children and young adults with newly diagnosed classical Hodgkin lymphoma (cHL) with slow early response (SER) to frontline chemotherapy. J. Clin. Oncol. 2018, 36, TPS7583. [Google Scholar] [CrossRef]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.R.; Buccheri, V.; et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef]
- Maertens, J.; Cesaro, S.; Maschmeyer, G.; Einsele, H.; Donnelly, J.P.; Alanio, A.; Hauser, P.M.; Lagrou, K.; Melchers, W.J.G.; Helweg-Larsen, J.; et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J. Antimicrob. Chemother. 2016, 71, 2397–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redelman-Sidi, G.; Michielin, O.; Cervera, C.; Ribi, C.; Aguado, J.M.; Fernández-Ruiz, M.; Manuel, O. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Immune checkpoint inhibitors, cell adhesion inhibitors, sphingosine-1-phosphate receptor modulators and proteasome inhibitors). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S95–S107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawinska-Wasikowska, K.; Wieczorek, A.; Balwierz, W.; Bukowska-Strakova, K.; Surman, M.; Skoczen, S. Blinatumomab as a Bridge Therapy for Hematopoietic Stem Cell Transplantation in Pediatric Refractory/Relapsed Acute Lymphoblastic Leukemia. Cancers 2022, 14, 458. [Google Scholar] [CrossRef]
- Locatelli, F.; Zugmaier, G.; Mergen, N.; Bader, P.; Jeha, S.; Schlegel, P.-G.; Bourquin, J.-P.; Handgretinger, R.; Brethon, B.; Rossig, C.; et al. Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: Results of the RIALTO trial, an expanded access study. Blood Cancer J. 2020, 10, 77. [Google Scholar] [CrossRef]
- Locatelli, F.; Zugmaier, G.; Mergen, N.; Bader, P.; Jeha, S.; Schlegel, P.-G.; Bourquin, J.-P.; Handgretinger, R.; Brethon, B.; Rössig, C.; et al. Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis. Blood Adv. 2022, 6, 1004–1014. [Google Scholar] [CrossRef]
- Horibe, K.; Morris, J.D.; Tuglus, C.A.; Dos Santos, C.; Kalabus, J.; Anderson, A.; Goto, H.; Ogawa, C. A phase 1b study of blinatumomab in Japanese children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Int. J. Hematol. 2020, 112, 223–233. [Google Scholar] [CrossRef]
- Von Stackelberg, A.; Locatelli, F.; Zugmaier, G.; Handgretinger, R.; Trippett, T.M.; Rizzari, C.; Bader, P.; O’Brien, M.M.; Brethon, B.; Bhojwani, D.; et al. Phase I/Phase II Study of Blinatumomab in Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2016, 34, 4381–4389. [Google Scholar] [CrossRef] [Green Version]
- Queudeville, M.; Schlegel, P.; Heinz, A.T.; Lenz, T.; Döring, M.; Holzer, U.; Hartmann, U.; Kreyenberg, H.; von Stackelberg, A.; Schrappe, M.; et al. Blinatumomab in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Eur. J. Haematol. 2021, 106, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Schober, S.; Stanchi, K.M.C.; Riecker, A.; Pfeiffer, M.; Tsiflikas, I.; Wiegand, G.; Quintanilla-Martinez, L.; Haen, S.; Ebinger, M.; Lang, P.; et al. Fulminant Rhizomucor pusillus mucormycosis during anti-leukemic treatment with blinatumomab in a child: A case report and review of the literature. Med. Mycol. Case Rep. 2020, 32, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Beneduce, G.; De Matteo, A.; Stellato, P.; Testi, A.M.; Bertorello, N.; Colombini, A.; Putti, M.C.; Rizzari, C.; Cesaro, S.; Cellini, M.; et al. Blinatumomab in Children and Adolescents with Relapsed/Refractory B Cell Precursor Acute Lymphoblastic Leukemia: A Real-Life Multicenter Retrospective Study in Seven AIEOP (Associazione Italiana di Ematologia e Oncologia Pediatrica) Centers. Cancers 2022, 14, 426. [Google Scholar] [CrossRef] [PubMed]
- Mouttet, B.; Vinti, L.; Ancliff, P.; Bodmer, N.; Brethon, B.; Cario, G.; Chen-Santel, C.; Elitzur, S.; Hazar, V.; Kunz, J.; et al. Durable remissions in TCF3-HLF positive acute lymphoblastic leukemia with blinatumomab and stem cell transplantation. Haematologica 2019, 104, e244–e247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ampatzidou, M.; Kattamis, A.; Baka, M.; Paterakis, G.; Anastasiou, T.; Tzanoudaki, M.; Kaisari, A.; Avgerinou, G.; Doganis, D.; Papadakis, V.; et al. Insights from the Greek experience of the use of Blinatumomab in pediatric relapsed and refractory acute lymphoblastic leukemia patients. Neoplasma 2020, 67, 1424–1430. [Google Scholar] [CrossRef]
- Aldoss, I.; Song, J.; Stiller, T.; Nguyen, T.; Palmer, J.; O’Donnell, M.; Stein, A.S.; Marcucci, G.; Forman, S.; Pullarkat, V. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 2017, 92, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, P.; Lang, P.; Zugmaier, G.; Ebinger, M.; Kreyenberg, H.; Witte, K.-E.; Feucht, J.; Pfeiffer, M.; Teltschik, H.-M.; Kyzirakos, C.; et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica 2014, 99, 1212–1219. [Google Scholar] [CrossRef] [Green Version]
- Handgretinger, R.; Zugmaier, G.; Henze, G.; Kreyenberg, H.; Lang, P.; Von Stackelberg, A. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia 2010, 251, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Contreras, C.F.; Higham, C.S.; Behnert, A.; Kim, K.; Stieglitz, E.; Tasian, S.K. Clinical utilization of blinatumomab and inotuzumab immunotherapy in children with relapsed or refractory B-acute lymphoblastic leukemia. Pediatr. Blood Cancer 2021, 68, e28718. [Google Scholar] [CrossRef]
- Yeoh, D.K.; Blyth, C.C.; Kotecha, R.S. Blinatumomab as bridging therapy in paediatric B-cell acute lymphoblastic leukaemia complicated by invasive fungal disease. Br. J. Haematol. 2022, 198, 887–892. [Google Scholar] [CrossRef]
- Elitzur, S.; Arad-Cohen, N.; Barzilai-Birenboim, S.; Ben-Harush, M.; Bielorai, B.; Elhasid, R.; Feuerstein, T.; Gilad, G.; Gural, A.; Kharit, M.; et al. Blinatumomab as a bridge to further therapy in cases of overwhelming toxicity in pediatric B-cell precursor acute lymphoblastic leukemia: Report from the Israeli Study Group of Childhood Leukemia. Pediatr. Blood Cancer 2019, 66, e27898. [Google Scholar] [CrossRef] [PubMed]
- Reinwald, M.; Silva, J.; Mueller, N.; Fortún, J.; Garzoni, C.; de Fijter, J.; Fernández-Ruiz, M.; Grossi, P.; Aguado, J. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Intracellular signaling pathways: Tyrosine kinase and mTOR inhibitors). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S53–S70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lavallade, H.; Khoder, A.; Hart, M.; Sarvaria, A.; Sekine, T.; Alsuliman, A.; Mielke, S.; Bazeos, A.; Stringaris, K.; Ali, S.; et al. Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling. Blood 2013, 122, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totadri, S.; Thipparapu, S.; Aggarwal, R.; Sharma, M.; Naseem, S.; Jain, R.; Trehan, A.; Malhotra, P.; Varma, N.; Bansal, D. Imatinib-Induced Hypogammaglobulinemia in Children and Adolescents with Chronic Myeloid Leukemia. Pediatr. Hematol. Oncol. 2020, 37, 539–544. [Google Scholar] [CrossRef]
- Millot, F.; Baruchel, A.; Guilhot, J.; Petit, A.; Leblanc, T.; Bertrand, Y.; Mazingue, F.; Lutz, P.; Vérité, C.; Berthou, C.; et al. Imatinib Is Effective in Children with Previously Untreated Chronic Myelogenous Leukemia in Early Chronic Phase: Results of the French National Phase IV Trial. J. Clin. Oncol. 2011, 29, 2827–2832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suttorp, M.; Schulze, P.; Glauche, I.; Göhring, G.; von Neuhoff, N.; Metzler, M.; Sedlacek, P.; de Bont, E.S.J.M.; Balduzzi, A.; Lausen, B.; et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: Results from a phase III trial. Leukemia 2018, 32, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Millot, F.; Guilhot, J.; Nelken, B.; Leblanc, T.; De Bont, E.S.; Békassy, A.N.; Gadner, H.; Sufliarska, S.; Stary, J.; Gschaidmeier, H.; et al. Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation. Leukemia 2006, 20, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Champagne, M.A.; Fu, C.H.; Chang, M.; Chen, H.; Gerbing, R.B.; Alonzo, T.A.; Cooley, L.D.; Heerema, N.A.; Oehler, V.; Wood, C.; et al. Higher dose imatinib for children with de novo chronic phase chronic myelogenous leukemia: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2011, 57, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champagne, M.A.; Capdeville, R.; Krailo, M.; Qu, W.; Peng, B.; Rosamilia, M.; Therrien, M.; Zoellner, U.; Blaney, S.M.; Bernstein, M. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: Results from a Children’s Oncology Group phase 1 study. Blood 2004, 104, 2655–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biondi, A.; Gandemer, V.; De Lorenzo, P.; Cario, G.; Campbell, M.; Castor, A.; Pieters, R.; Baruchel, A.; Vora, A.; Leoni, V.; et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): A prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol. 2018, 5, e641–e652. [Google Scholar] [CrossRef] [Green Version]
- Giona, F.; Putti, M.C.; Micalizzi, C.; Menna, G.; Moleti, M.L.; Santoro, N.; Iaria, G.; Ladogana, S.; Burnelli, R.; Consarino, C.; et al. Long-term results of high-dose imatinib in children and adolescents with chronic myeloid leukaemia in chronic phase: The Italian experience. Br. J. Haematol. 2015, 170, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Lakshmaiah, K.C.; Bhise, R.; Purohit, S.; Abraham, L.J.; Lokanatha, D.; Suresh, T.M.; Appaji, L.; Arunakumari, B.S.; Govindbabu, K. Chronic myeloid leukemia in children and adolescents: Results of treatment with imatinib mesylate. Leuk. Lymphoma 2012, 53, 2430–2433. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.K.; Anand, A.; Panchal, H.; Patel, A.; Shah, S.; Prajapati, K.; Modi, G.; Joshi, N. A retrospective Study of Clinical Profile and Long Term Outcome to imatinib Mesylate Alone in Childhood Chronic Myeloid leukemia in Chronic Phase. Gulf J. Oncol. 2017, 1, 15–20. [Google Scholar]
- Linga, V.G.; Ganta, R.R.; Kalpathi, K.I.; Gundeti, S.; Rajappa, S.J.; Digumarti, R.; Paul, T.R.; Tandon, A. Response to imatinib mesylate in childhood chronic myeloid leukemia in chronic phase. South Asian J. Cancer 2014, 3, 203–205. [Google Scholar] [CrossRef]
- Raut, L.; Bohara, V.V.; Ray, S.S.; Chakrabarti, P.; Chaudhuri, U. Chronic myeloid leukemia in children and adolescents: A single center experience from Eastern India. South Asian J. Cancer 2013, 2, 260–264. [Google Scholar] [CrossRef]
- Oh, H.J.; Cho, M.S.; Lee, J.W.; Jang, P.-S.; Chung, N.-G.; Cho, B.; Kim, H.-K. Efficacy of imatinib mesylate-based front-line therapy in pediatric chronic myelogenous leukemia. Korean J. Pediatr. 2013, 56, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, C.; Guo, Y.; Chen, X.; Zhang, L.; Chen, Y.; Zou, Y.; Yang, W.; Zhu, X. Long-term safety and efficacy of imatinib in pediatric patients with chronic myeloid leukemia: Single-center experience from China. Int. J. Hematol. 2021, 113, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Egan, G.; Athale, U.; Johnston, D.; Pole, J.D.; Silva, M.; Zorzi, A.; Alexander, S. Outcomes of children with chronic myeloid leukemia: A population-based cohort study. Pediatr. Blood Cancer 2020, 67, e28491. [Google Scholar] [CrossRef]
- Madabhavi, I.; Patel, A.; Modi, G.; Anand, A.; Panchal, H.; Parikh, S. Pediatric chronic myeloid leukemia: A single-center experience. J. Cancer Res. Ther. 2020, 16, 110–115. [Google Scholar] [CrossRef]
- Mohsen, E.-A.; Alaa, A.-H.; Ahmed, H. Management of CML in the pediatric age group: Imatinib mesylate or SCT. J. Egypt. Natl. Cancer Inst. 2010, 22, 227–232. [Google Scholar]
- Zhang, L.Q.; Zheng, J.; Chen, Z.P.; Li, S.D.; Ma, J.; Wu, R.H. A retrospective analysis of the efficacy and safety of imatinib in children with chronic myeloid leukemia during chronic phase. Zhonghua Er Ke Za Zhi=Chin. J. Pediatr. 2019, 57, 113–117. [Google Scholar] [CrossRef]
- Deng, M.; Guan, X.; Wen, X.; Xiao, J.; An, X.; Yu, J. Clinical efficacy and safety of imatinib treatment in children and adolescents with chronic myeloid leukemia: A single-center experience in China. Medicine 2020, 99, e19150. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Rajendranath, R.; Kandakumar, V.; Sagar, T.G. Treatment of Chronic Phase Chronic Myeloid Leukemia with Imatinib. Indian J. Pediatr. 2014, 82, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Ghadyalpatil, N.; Banawali, S.; Kurkure, P.; Arora, B.; Bansal, S.; Amare, P.; Choughule, A.; Soy, L.; Singh, R. Efficacy and tolerability of imatinib mesylate in pediatric chronic myeloid leukemia in a large cohort: Results from a tertiary care referral center in India. J. Clin. Oncol. 2009, 27, 10047. [Google Scholar] [CrossRef]
- Slayton, W.B.; Schultz, K.R.; Kairalla, J.A.; Devidas, M.; Mi, X.; Pulsipher, M.A.; Chang, B.H.; Mullighan, C.; Iacobucci, I.; Silverman, L.B.; et al. Dasatinib Plus Intensive Chemotherapy in Children, Adolescents, and Young Adults with Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia: Results of Children’s Oncology Group Trial AALL0622. J. Clin. Oncol. 2018, 36, 2306–2313. [Google Scholar] [CrossRef] [PubMed]
- Zwaan, C.M.; Rizzari, C.; Mechinaud, F.; Lancaster, D.L.; Lehrnbecher, T.; Van Der Velden, V.H.; Beverloo, B.B.; Boer, M.L.D.; Pieters, R.; Reinhardt, D.; et al. Dasatinib in Children and Adolescents with Relapsed or Refractory Leukemia: Results of the CA180-018 Phase I Dose-Escalation Study of the Innovative Therapies for Children with Cancer Consortium. J. Clin. Oncol. 2013, 31, 2460–2468. [Google Scholar] [CrossRef]
- Gore, L.; Kearns, P.; de Martino Lee, M.L.; De Souza, C.A.; Bertrand, Y.; Hijiya, N.; Stork, L.C.; Chung, N.-G.; Cardos, R.C.; Saikia, T.; et al. Dasatinib in Pediatric Patients with Chronic Myeloid Leukemia in Chronic Phase: Results from a Phase II Trial. J. Clin. Oncol. 2018, 36, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Assessment Report: Dasatinib. Variation: Include the Treatment of Pediatric Patients with Ph+ CML-CP. EMA/CHMP/302652/2018. 2018. Available online: https://www.ema.europa.eu/en/documents/variation-report/sprycel-h-c-000709-x-0056-g-epar-assessment-report-variation_en.pdf (accessed on 19 July 2022).
- Yang, F.; Zhang, L.; Zhao, B.-B.; Zhang, J.-L.; Liu, X.-T.; Li, X.; Tang, B.-H.; Zhou, Y.; Yang, X.-M.; Anker, J.V.D.; et al. Population Pharmacokinetics and Safety of Dasatinib in Chinese Children with Core-Binding Factor Acute Myeloid Leukemia. Clin. Pharmacokinet. 2022, 61, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Ota, S.; Matsukawa, T.; Yamamoto, S.; Ito, S.; Shindo, M.; Sato, K.; Kondo, T.; Kohda, K.; Sakai, H.; Mori, A.; et al. Severe adverse events by tyrosine kinase inhibitors decrease survival rates in patients with newly diagnosed chronic-phase chronic myeloid leukemia. Eur. J. Haematol. 2018, 101, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, H.; Tanizawa, A.; Muramatsu, H.; Tono, C.; Watanabe, A.; Shima, H.; Ito, M.; Yuza, Y.; Hamamoto, K.; Hotta, N.; et al. Sequential use of second-generation tyrosine kinase inhibitors following imatinib therapy in pediatric chronic myeloid leukemia: A report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Pediatr. Blood Cancer 2018, 65, e27368. [Google Scholar] [CrossRef]
- Wölfl, M.; Langhammer, F.; Wiegering, V.; Eyrich, M.; Schlegel, P.G. Dasatinib medication causing profound immunosuppression in a patient after haploidentical SCT: Functional assays from whole blood as diagnostic clues. Bone Marrow Transplant. 2013, 48, 875–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaguchi, H.; Tamura, Y.; Suzuki, S.; Asano-Murakoshi, T.; Nonoyama, S. Cytomegalovirus infection- and dasatinib-induced proteinuria in Ph+ALL. Pediatr. Int. 2017, 59, 740–741. [Google Scholar] [CrossRef] [PubMed]
- Suttorp, M.; Carrion, A.W.; Hijiya, N. Chronic Myeloid Leukemia in Children: Immune Function and Vaccinations. J. Clin. Med. 2021, 10, 4056. [Google Scholar] [CrossRef] [PubMed]
- Hijiya, N.; Zwaan, C.M.; Rizzari, C.; Foà, R.; Abbink, F.; Lancaster, D.; Landman-Parker, J.; Millot, F.; Moppett, J.; Nelken, B.; et al. Pharmacokinetics of Nilotinib in Pediatric Patients with Philadelphia Chromosome–Positive Chronic Myeloid Leukemia or Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2020, 26, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Hijiya, N.; Maschan, A.; Rizzari, C.; Shimada, H.; Dufour, C.; Goto, H.; Kang, H.J.; Guinipero, T.; Karakas, Z.; Bautista, F.; et al. Phase 2 study of nilotinib in pediatric patients with Philadelphia chromosome–positive chronic myeloid leukemia. Blood 2019, 134, 2036–2045. [Google Scholar] [CrossRef]
- Hijiya, N.; Maschan, A.; Rizzari, C.; Shimada, H.; Dufour, C.; Goto, H.; Kang, H.J.; Guinipero, T.; Karakas, Z.; Bautista, F.; et al. A phase 2 study of nilotinib in pediatric patients with CML: Long-term update on growth retardation and safety. Blood Adv. 2021, 5, 2925–2934. [Google Scholar] [CrossRef]
- Günes, A.M.; Millot, F.; Kalwak, K.; Lausen, B.; Sedlacek, P.; Versluys, A.B.; Dworzak, M.; De Moerloose, B.; Suttorp, M. Features and outcome of chronic myeloid leukemia at very young age: Data from the International Pediatric Chronic Myeloid Leukemia Registry. Pediatr. Blood Cancer 2021, 68, e28706. [Google Scholar] [CrossRef]
- Pearson, A.D.; Barry, E.; Mossé, Y.P.; Ligas, F.; Bird, N.; de Rojas, T.; Zimmerman, Z.F.; Wilner, K.; Woessmann, W.; Weiner, S.; et al. Second Paediatric Strategy Forum for anaplastic lymphoma kinase (ALK) inhibition in paediatric malignancies: ACCELERATE in collaboration with the European Medicines Agency with the participation of the Food and Drug Administration. Eur. J. Cancer 2021, 157, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Mossé, Y.P.; Lim, M.S.; Voss, S.D.; Wilner, K.; Ruffner, K.; Laliberte, J.; Rolland, D.; Balis, F.M.; Maris, J.M.; Weigel, B.J.; et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: A Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013, 14, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Mossé, Y.P.; Voss, S.D.; Lim, M.; Rolland, D.; Minard, C.G.; Fox, E.; Adamson, P.; Wilner, K.; Blaney, S.M.; Weigel, B.J. Targeting ALK With Crizotinib in Pediatric Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumor: A Children’s Oncology Group Study. J. Clin. Oncol. 2017, 35, 3215–3221. [Google Scholar] [CrossRef]
- Merino, M.; Kasamon, Y.; Li, H.; Ma, L.; Leong, R.; Zhou, J.; Reaman, G.; Chambers, W.; Richardson, N.; Theoret, M.; et al. FDA approval summary: Crizotinib for pediatric and young adult patients with relapsed or refractory systemic anaplastic large cell lymphoma. Pediatr. Blood Cancer 2022, 69, e29602. [Google Scholar] [CrossRef] [PubMed]
- Greengard, E.; Mosse, Y.P.; Liu, X.; Minard, C.G.; Reid, J.M.; Voss, S.; Wilner, K.; Fox, E.; Balis, F.; Blaney, S.M.; et al. Safety, tolerability and pharmacokinetics of crizotinib in combination with cytotoxic chemotherapy for pediatric patients with refractory solid tumors or anaplastic large cell lymphoma (ALCL): A Children’s Oncology Group phase 1 consortium study (ADVL1212). Cancer Chemother. Pharmacol. 2020, 86, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.V.; Robinson, G.W.; Gauvain, K.; Basu, E.M.; Macy, M.E.; Maese, L.; Whipple, N.S.; Sabnis, A.J.; Foster, J.H.; Shusterman, S.; et al. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro-Oncol. 2022, 24, 1776–1789. [Google Scholar] [CrossRef]
- Mercier, F.; Djebli, N.; González-Sales, M.; Jaminion, F.; Meneses-Lorente, G. Efficacy and safety exposure–response analyses of entrectinib in patients with advanced or metastatic solid tumors. Cancer Chemother. Pharmacol. 2022, 89, 363–372. [Google Scholar] [CrossRef]
- Taylor, J.; Pavlick, D.; Yoshimi, A.; Marcelus, C.; Chung, S.S.; Hechtman, J.F.; Benayed, R.; Cocco, E.; Durham, B.H.; Bitner, L.; et al. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. J. Clin. Investig. 2018, 128, 3819–3825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Kotch, C.; Fox, E.; Surrey, L.F.; Wertheim, G.B.; Baloch, Z.W.; Lin, F.; Pillai, V.; Luo, M.; Kreiger, P.A.; et al. NTRK Fusions Identified in Pediatric Tumors: The Frequency, Fusion Partners, and Clinical Outcome. JCO Precis. Oncol. 2021, 1, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Laetsch, T.W.; DuBois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef]
- Doz, F.; van Tilburg, C.M.; Geoerger, B.; Højgaard, M.; Øra, I.; Boni, V.; Capra, M.; Chisholm, J.; Chung, H.C.; DuBois, S.G.; et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro-Oncol. 2021, 24, 997–1007. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Los-Arcos, I.; Iacoboni, G.; Aguilar-Guisado, M.; Alsina-Manrique, L.; de Heredia, C.D.; Fortuny-Guasch, C.; García-Cadenas, I.; García-Vidal, C.; González-Vicent, M.; Hernani, R.; et al. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: A position paper. Infection 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.A.; Maude, S.L.; Rives, S.; Baruchel, A.; Boyer, M.W.; Bittencourt, H.; Bader, P.; Büchner, J.; Laetsch, T.W.; Stefanski, H.; et al. Updated Analysis of the Efficacy and Safety of Tisagenlecleucel in Pediatric and Young Adult Patients with Relapsed/Refractory (r/r) Acute Lymphoblastic Leukemia. Blood 2018, 132, 895. [Google Scholar] [CrossRef]
- Hiramatsu, H.; Adachi, S.; Umeda, K.; Kato, I.; Eldjerou, L.; Agostinho, A.C.; Natsume, K.; Tokushige, K.; Watanabe, Y.; Grupp, S.A. Efficacy and safety of tisagenlecleucel in Japanese pediatric and young adult patients with relapsed/refractory B cell acute lymphoblastic leukemia. Int. J. Hematol. 2020, 111, 303–310. [Google Scholar] [CrossRef]
- Curran, K.J.; Margossian, S.P.; Kernan, N.A.; Silverman, L.B.; Williams, D.A.; Shukla, N.; Kobos, R.; Forlenza, C.J.; Steinherz, P.; Prockop, S.; et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood 2019, 134, 2361–2368. [Google Scholar] [CrossRef]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Levine, J.E.; Grupp, S.A.; Pulsipher, M.A.; Dietz, A.C.; Rives, S.; Myers, G.D.; August, K.J.; Verneris, M.R.; Buechner, J.; Laetsch, T.W.; et al. Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia. J. Immunother. Cancer 2021, 9, e002287. [Google Scholar] [CrossRef]
- Walton, M.; Sharif, S.; Simmonds, M.; Claxton, L.; Hodgson, R. Tisagenlecleucel for the Treatment of Relapsed or Refractory B-cell Acute Lymphoblastic Leukaemia in People Aged up to 25 Years: An Evidence Review Group Perspective of a NICE Single Technology Appraisal. Pharmacoeconomics 2019, 37, 1209–1217. [Google Scholar] [CrossRef]
- Pasquini, M.C.; Hu, Z.-H.; Curran, K.; Laetsch, T.; Locke, F.; Rouce, R.; Pulsipher, M.A.; Phillips, C.L.; Keating, A.; Frigault, M.J.; et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020, 4, 5414–5424. [Google Scholar] [CrossRef]
- Rossoff, J.; Baggott, R.C.; Prabhu, S.; Pacenta, H.; Phillips, C.L.; Stefanski, M.H.; Talano, J.-A.; Moskop, A.; Margossian, S.P.; Verneris, M.R.; et al. Real-World Treatment of Pediatric Patients with Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia Using Tisagenlecleucel That Is out of Specification for Commercial Release. Blood 2020, 136, 42–44. [Google Scholar] [CrossRef]
- Fabrizio, V.A.; Phillips, C.L.; Lane, A.; Baggott, C.; Prabhu, S.; Egeler, E.; Mavroukakis, S.; Pacenta, H.L.; Rossoff, J.; Stefanski, H.E.; et al. Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: A Pediatric Real World CAR Consortium Report. Blood Adv. 2022, 6, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Grupp, S.; Hu, M.Z.-H.; Zhang, Y.; Keating, A.; Pulsipher, M.A.; Philips, C.; Margossian, S.P.; Rosenthal, M.J.; Salzberg, D.; Schiff, D.E.; et al. Tisagenlecleucel Chimeric Antigen Receptor (CAR) T-Cell Therapy for Relapsed/Refractory Children and Young Adults with Acute Lymphoblastic Leukemia (ALL): Real World Experience from the Center for International Blood and Marrow Transplant Research (CIBMTR) and Cellular Therapy (CT) Registry. Blood 2019, 134, 2619. [Google Scholar] [CrossRef]
- Maron, G.M.; Hijano, D.R.; Epperly, R.; Su, Y.; Tang, L.; Hayden, R.T.; Naik, S.; Karol, S.E.; Gottschalk, S.; Triplett, B.M.; et al. Infectious Complications in Pediatric, Adolescent and Young Adult Patients Undergoing CD19-CAR T Cell Therapy. Front. Oncol. 2022, 12, 845540. [Google Scholar] [CrossRef] [PubMed]
- Ravich, J.W.; Huang, S.; Zhou, Y.; Brown, P.; Pui, C.-H.; Inaba, H.; Cheng, C.; Gottschalk, S.; Triplett, B.M.; Bonifant, C.L.; et al. Impact of High Disease Burden on Survival in Pediatric Patients with B-ALL Treated with Tisagenlecleucel. Transplant. Cell Ther. 2022, 28, 73.e1–73.e9. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Balduzzi, A.; Rives, S.; Bittencourt, H.; Boyer, M.W.; Buechner, J.; De Moerloose, B.; Qayed, M.; Phillips, C.L.; et al. Tisagenlecleucel in pediatric and young adult patients with Down syndrome-associated relapsed/refractory acute lymphoblastic leukemia. Leukemia 2022, 36, 1508–1515. [Google Scholar] [CrossRef]
- Aamir, S.; Anwar, M.Y.; Khalid, F.; Khan, S.I.; Ali, M.A.; Khattak, Z.E. Systematic Review and Meta-analysis of CD19-Specific CAR-T Cell Therapy in Relapsed/Refractory Acute Lymphoblastic Leukemia in the Pediatric and Young Adult Population: Safety and Efficacy Outcomes. Clin. Lymphoma Myeloma Leuk. 2021, 21, e334–e347. [Google Scholar] [CrossRef]
- Dores, G.M.; Jason, C.; Niu, M.T.; Perez-Vilar, S. Adverse events reported to the U.S. Food and Drug Administration Adverse Event Reporting System for tisagenlecleucel. Am. J. Hematol. 2021, 96, 1087–1100. [Google Scholar] [CrossRef]
- Fusaroli, M.; Isgrò, V.; Cutroneo, P.M.; Ferrajolo, C.; Cirillo, V.; Del Bufalo, F.; Raschi, E.; Poluzzi, E.; Trifirò, G. Post-Marketing Surveillance of CAR-T-Cell Therapies: Analysis of the FDA Adverse Event Reporting System (FAERS) Database. Drug Saf. 2022, 45, 891–908. [Google Scholar] [CrossRef]
- Ghorashian, S.; Kramer, A.M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R.; Albon, S.J.; Casanovas-Company, J.; Castro, F.; Popova, B.; et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 2019, 25, 1408–1414. [Google Scholar] [CrossRef]
- Tragiannidis, A.; Groll, A.H. Secondary Dysgammaglobulinemia in Children with Hematological Malignancies Treated with Targeted Therapies. Pediatr. Drugs 2021, 235, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Besponsa. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: http://www.fda.gov/medwatch (accessed on 8 October 2022).
- Venclexta. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: http://www.fda.gov/medwatch (accessed on 8 October 2022).
- Adcetris. Highlights of Prescribing Information. Food and Drug Administration (FDA). Available online: http://www.fda.gov/Safety/MedWatch (accessed on 8 October 2022).
- Brivio, E.; Locatelli, F.; Lopez-Yurda, M.; Malone, A.; Díaz-De-Heredia, C.; Bielorai, B.; Rossig, C.; van der Velden, V.H.J.; Ammerlaan, A.C.J.; Thano, A.; et al. A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood 2021, 137, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Ogawa, C.; Sekimizu, M.; Fujisaki, H.; Kosaka, Y.; Hashimoto, H.; Saito, A.M.; Horibe, K. A phase I study of inotuzumab ozogamicin as a single agent in pediatric patients in Japan with relapsed/refractory CD22-positive acute lymphoblastic leukemia (INO-Ped-ALL-1). Int. J. Hematol. 2022, 116, 612–621. [Google Scholar] [CrossRef]
- O’Brien, M.M.; Ji, L.; Shah, N.N.; Rheingold, S.R.; Bhojwani, D.; Yuan, C.M.; Xu, X.; Yi, J.S.; Harris, A.C.; Brown, P.A.; et al. Phase II Trial of Inotuzumab Ozogamicin in Children and Adolescents with Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia: Children’s Oncology Group Protocol AALL1621. J. Clin. Oncol. 2022, 40, 956–967. [Google Scholar] [CrossRef]
- Pennesi, E.; Michels, N.; Brivio, E.; van der Velden, V.H.J.; Jiang, Y.; Thano, A.; Ammerlaan, A.J.C.; Boer, J.M.; Beverloo, H.B.; Sleight, B.; et al. Inotuzumab ozogamicin as single agent in pediatric patients with relapsed and refractory acute lymphoblastic leukemia: Results from a phase II trial. Leukemia 2022, 36, 1516–1524. [Google Scholar] [CrossRef]
- Brivio, E.; Chantrain, C.F.; Gruber, T.A.; Thano, A.; Rialland, F.; Contet, A.; Elitzur, S.; Dalla-Pozza, L.; Kállay, K.M.; Li, C.; et al. Inotuzumab ozogamicin in infants and young children with relapsed or refractory acute lymphoblastic leukaemia: A case series. Br. J. Haematol. 2021, 193, 1172–1177. [Google Scholar] [CrossRef]
- Rytting, M.; Triche, L.; Thomas, D.; O’Brien, S.; Kantarjian, H. Initial experience with CMC-544 (inotuzumab ozogamicin) in pediatric patients with relapsed B-cell acute lymphoblastic leukemia. Pediatr. Blood Cancer 2014, 61, 369–372. [Google Scholar] [CrossRef] [Green Version]
- Bhojwani, D.; Sposto, R.; Shah, N.N.; Rodriguez, V.; Yuan, C.; Stetler-Stevenson, M.; O’Brien, M.M.; McNeer, J.L.; Quereshi, A.; Cabannes, A.; et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 2019, 33, 884–892. [Google Scholar] [CrossRef]
- Calvo, C.; Cabannes-Hamy, A.; Adjaoud, D.; Bruno, B.; Blanc, L.; Boissel, N.; Tabone, M.; Willson-Plat, G.; Villemonteix, J.; Baruchel, A.; et al. Inotuzumab ozogamicin compassionate use for French paediatric patients with relapsed or refractory CD22 -positive B-cell acute lymphoblastic leukaemia. Br. J. Haematol. 2020, 190, e53–e56. [Google Scholar] [CrossRef]
- Locatelli, F.; Mauz-Koerholz, C.; Neville, K.; Llort, A.; Beishuizen, A.; Daw, S.; Pillon, M.; Aladjidi, N.; Klingebiel, T.; Landman-Parker, J.; et al. Brentuximab vedotin for paediatric relapsed or refractory Hodgkin’s lymphoma and anaplastic large-cell lymphoma: A multicentre, open-label, phase 1/2 study. Lancet Haematol. 2018, 5, e450–e461. [Google Scholar] [CrossRef]
- Koga, Y.; Sekimizu, M.; Iguchi, A.; Kada, A.; Saito, A.M.; Asada, R.; Mori, T.; Horibe, K. Phase I study of brentuximab vedotin (SGN-35) in Japanese children with relapsed or refractory CD30-positive Hodgkin’s lymphoma or systemic anaplastic large cell lymphoma. Int. J. Hematol. 2020, 111, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Fernández, K.S.; Mavers, M.; Marks, L.J.; Agarwal, R. Brentuximab Vedotin as Consolidation Therapy After Autologous Stem Cell Transplantation in Children and Adolescents (<18 y) With Early Relapse Hodgkin Lymphoma. J. Pediatr. Hematol. Oncol. 2021, 43, e191–e194. [Google Scholar] [CrossRef]
- Flerlage, J.E.; Von Buttlar, X.; Krasin, M.; Triplett, B.; Kaste, S.C.; Metzger, M.L. Brentuximab vedotin as consolidation after hematopoietic cell transplant for relapsed Hodgkin lymphoma in pediatric patients. Pediatr. Blood Cancer 2019, 66, e27962. [Google Scholar] [CrossRef]
- Forlenza, C.J.; Gulati, N.; Mauguen, A.; Absalon, M.J.; Castellino, S.M.; Franklin, A.; Keller, F.G.; Shukla, N.N. Combination brentuximab vedotin and bendamustine for pediatric patients with relapsed/refractory Hodgkin lymphoma. Blood Adv. 2021, 5, 5519–5524. [Google Scholar] [CrossRef] [PubMed]
- McMillan, A.; O’Neill, A.T.; Townsend, W.; Lambert, J.; Virchis, A.; Shah, R.; Menezes, L.; Humphries, P.; Von Both, K.; Grandage, V.; et al. The addition of bendamustine to brentuximab vedotin leads to improved rates of complete metabolic remission in children, adolescents and young adults with relapsed and refractory classical Hodgkin lymphoma: A retrospective single-centre series. Br. J. Haematol. 2021, 192, e84–e87. [Google Scholar] [CrossRef]
- Vinti, L.; Pagliara, D.; Buffardi, S.; Di Ruscio, V.; Stocchi, F.; Mariggiò, E.; Parasole, R.; De Matteo, A.; Petruzziello, F.; Paganelli, V.; et al. Brentuximab vedotin in combination with bendamustine in pediatric patients or young adults with relapsed or refractory Hodgkin lymphoma. Pediatr. Blood Cancer 2022, 69, e29557. [Google Scholar] [CrossRef] [PubMed]
- Cole, P.D.; McCarten, K.M.; Pei, Q.; Spira, M.; Metzger, M.L.; Drachtman, R.A.; Horton, T.M.; Bush, R.; Blaney, S.M.; Weigel, B.J.; et al. Brentuximab vedotin with gemcitabine for paediatric and young adult patients with relapsed or refractory Hodgkin lymphoma: A Children’s Oncology Group, multicentre single-arm, phase 1–2 trial. Lancet Oncol. 2018, 19, 1229–1238. [Google Scholar] [CrossRef]
- Hochberg, J.; Basso, J.; Shi, Q.; Klejmont, L.; Flower, A.; Bortfeld, K.; Harrison, L.; van de Ven, C.; Moorthy, C.; Islam, H.; et al. Risk-adapted chemoimmunotherapy using brentuximab vedotin and rituximab in children, adolescents, and young adults with newly diagnosed Hodgkin’s lymphoma: A phase II, non-randomized controlled trial. J. Immunother. Cancer 2022, 10, e004445. [Google Scholar] [CrossRef]
- Metzger, M.L.; Link, M.P.; Billett, A.L.; Flerlage, J.; Lucas, J.T.; Mandrell, B.N.; Ehrhardt, M.J.; Bhakta, N.; Yock, T.I.; Friedmann, A.M.; et al. Excellent Outcome for Pediatric Patients with High-Risk Hodgkin Lymphoma Treated with Brentuximab Vedotin and Risk-Adapted Residual Node Radiation. J. Clin. Oncol. 2021, 39, 2276–2283. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Viviani, S.; Anastasia, A.; Vitolo, U.; Luminari, S.; Zaja, F.; Corradini, P.; Spina, M.; Brusamolino, E.; Gianni, A.M.; et al. Brentuximab vedotin in relapsed/refractory Hodgkin’s lymphoma: The Italian experience and results of its use in daily clinical practice outside clinical trials. Haematologica 2013, 98, 1232–1236. [Google Scholar] [CrossRef]
- Faulk, K.E.; Sopfe, J.M.; Campbell, K.; Liptzin, D.R.; Liu, A.K.; Franklin, A.R.K.; Cost, C.R. Pulmonary toxicity in paediatric patients with relapsed or refractory Hodgkin lymphoma receiving brentuximab vedotin. Br. J. Haematol. 2018, 183, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Massano, D.; Carraro, E.; Mussolin, L.; Buffardi, S.; Barat, V.; Zama, D.; Muggeo, P.; Vendemini, F.; Sau, A.; Moleti, M.L.; et al. Brentuximab vedotin in the treatment of paediatric patients with relapsed or refractory Hodgkin’s lymphoma: Results of a real-life study. Pediatr. Blood Cancer 2022, 69, e29801. [Google Scholar] [CrossRef]
- Velcade. Hoghlights of Prescribing Information. Food and Drug Administration (FDA). Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 8 October 2022).
- Combination Chemotherapy with or Without Bortezomib in Treating Younger Patients with Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma—Study Results—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02112916?term=AALL1231&draw=2&rank=1&view=results (accessed on 21 August 2022).
- Horton, T.M.; Whitlock, J.A.; Lu, X.; O’Brien, M.M.; Borowitz, M.J.; Devidas, M.; Raetz, E.A.; Brown, P.A.; Carroll, W.L.; Hunger, S.P. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: A report from the Children’s Oncology Group. Br. J. Haematol. 2019, 186, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Horton, T.M.; Pati, D.; Plon, S.E.; Thompson, P.A.; Bomgaars, L.R.; Adamson, P.C.; Ingle, A.M.; Wright, J.; Brockman, A.H.; Paton, M.; et al. A Phase 1 Study of the Proteasome Inhibitor Bortezomib in Pediatric Patients with Refractory Leukemia: A Children’s Oncology Group Study. Clin. Cancer Res. 2007, 13, 1516–1522. [Google Scholar] [CrossRef] [Green Version]
- Messinger, Y.H.; Gaynon, P.S.; Sposto, R.; Van Der Giessen, J.; Eckroth, E.; Malvar, J.; Bostrom, B.C. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 2012, 120, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messinger, Y.; Gaynon, P.; Raetz, E.; Hutchinson, R.; DuBois, S.; Glade-Bender, J.; Sposto, R.; van der Giessen, J.; Eckroth, E.; Bostrom, B.C. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): A report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr. Blood Cancer 2010, 55, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertaina, A.; Vinti, L.; Strocchio, L.; Gaspari, S.; Caruso, R.; Algeri, M.; Coletti, V.; Gurnari, C.; Romano, M.; Cefalo, M.G.; et al. The combination of bortezomib with chemotherapy to treat relapsed/refractory acute lymphoblastic leukaemia of childhood. Br. J. Haematol. 2017, 176, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Kaspers, G.J.L.; Niewerth, D.; Wilhelm, B.A.J.; Houtem, P.S.-V.; Lopez-Yurda, M.; Berkhof, J.; Cloos, J.; De Haas, V.; Mathot, R.A.; Attarbaschi, A.; et al. An effective modestly intensive re-induction regimen with bortezomib in relapsed or refractory paediatric acute lymphoblastic leukaemia. Br. J. Haematol. 2018, 181, 523–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, D.; Yoshimoto, Y.; Kimura, S.; Kumamoto, T.; Maeda, N.; Hara, J.; Kikuta, A.; Kada, A.; Kimura, T.; Iijima-Yamashita, Y.; et al. Bortezomib-containing therapy in Japanese children with relapsed acute lymphoblastic leukemia. Int. J. Hematol. 2019, 110, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Horton, T.M.; Perentesis, J.; Gamis, A.S.; Alonzo, T.A.; Ms, R.B.G.; Rn, J.B.; Adlard, K.; Howard, D.S.; Smith, F.O.; Jenkins, G.; et al. A Phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2014, 61, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Aplenc, R.; Meshinchi, S.; Sung, L.; Alonzo, T.; Choi, J.; Fisher, B.; Gerbing, R.; Hirsch, B.; Horton, T.; Kahwash, S.; et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: A report from the Children’s Oncology Group. Haematologica 2020, 105, 1879–1886. [Google Scholar] [CrossRef]
- Horton, T.M.; Drachtman, R.A.; Chen, L.; Cole, P.D.; McCarten, K.; Voss, S.; Guillerman, R.P.; Buxton, A.; Howard, S.C.; Hogan, S.M.; et al. A phase 2 study of bortezomib in combination with ifosfamide/vinorelbine in paediatric patients and young adults with refractory/recurrent Hodgkin lymphoma: A Children’s Oncology Group study. Br. J. Haematol. 2015, 170, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Shekhovtsova, Z.; Shelikhova, L.; Balashov, D.; Zakharova, V.; Ilushina, M.; Voronin, K.; Kurnikova, E.; Muzalevskii, Y.; Kazachenok, A.; Pershin, D.; et al. Control of graft-versus-host disease with rabbit anti-thymocyte globulin, rituximab, and bortezomib in TCRαβ/CD19-depleted graft transplantation for leukemia in children: A single-center retrospective analysis of two GVHD-prophylaxis regimens. Pediatr. Transplant. 2020, 24, e13594. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, A.; Cho, Y.; Sugiyama, M.; Terashita, Y.; Ariga, T.; Hosoya, Y.; Hirabayashi, S.; Manabe, A.; Hara, K.; Aiba, T.; et al. Bortezomib combined with standard induction chemotherapy in Japanese children with refractory acute lymphoblastic leukemia. Int. J. Hematol. 2017, 106, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Yeo, K.K.; Gaynon, P.S.; Fu, C.H.; Wayne, A.S.; Sun, W. Bortezomib, Dexamethasone, Mitoxantrone, and Vinorelbine (BDMV): An Active Reinduction Regimen for Children with Relapsed Acute Lymphoblastic Leukemia and Asparaginase Intolerance. J. Pediatr. Hematol. Oncol. 2016, 38, 345–349. [Google Scholar] [CrossRef]
- Study to Assess the Effectiveness of RCHOP With or Without VELCADE in Previously Untreated Non-Germinal Center B-Cell-like Diffuse Large B-Cell Lymphoma Patients—Study Results—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT00931918?term=NCT00931918&draw=2&rank=1 (accessed on 21 August 2022).
- Karol, S.E.; Cooper, T.M.; Bittencourt, H.; Gore, L.; O’Brien, M.M.; Fraser, C.; Gambart, M.; Cario, G.; Zwaan, C.M.; Bourquin, J.-P.; et al. Safety, Efficacy, and PK of the BCL2 Inhibitor Venetoclax in Combination with Chemotherapy in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia: Phase 1 Study. Blood 2019, 134, 2649. [Google Scholar] [CrossRef]
- Gibson, A.; Trabal, A.; McCall, D.; Khazal, S.; Toepfer, L.; Bell, D.H.; Roth, M.; Mahadeo, K.M.; Nunez, C.; Short, N.J.; et al. Venetoclax for Children and Adolescents with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancers 2021, 14, 150. [Google Scholar] [CrossRef]
- Karol, S.E.; Bittencourt, H.; Morgenstern, D.A.; Macy, M.E.; Khaw, S.L.; Cooper, D.T.M.; Petit, A.; Ramsingh, G.; Tong, B.; Unnebrink, K.; et al. Venetoclax Alone or in Combination with Chemotherapy: Responses in Pediatric Patients with Relapsed/Refractory Acute Myeloid Leukemia with Heterogeneous Genomic Profiles. Blood 2020, 136, 30–31. [Google Scholar] [CrossRef]
- Karol, S.E.; Alexander, T.B.; Budhraja, A.; Pounds, S.B.; Canavera, K.; Wang, L.; Wolf, J.; Klco, J.M.; Mead, P.E.; Das Gupta, S.; et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: A phase 1, dose-escalation study. Lancet Oncol. 2020, 21, 551–560. [Google Scholar] [CrossRef]
- Place, M.A.E.; Karol, S.E.; Forlenza, C.J.; Gambart, M.; Cooper, D.T.M.; Fraser, M.C.; Cario, G.; O’Brien, M.M.; Gerber, N.U.; Barnette, P.; et al. Pediatric Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia Harboring Heterogeneous Genomic Profiles Respond to Venetoclax in Combination with Chemotherapy. Blood 2020, 136, 37–38. [Google Scholar] [CrossRef]
- Winters, A.C.; Maloney, K.W.; Treece, A.L.; Gore, L.; Franklin, A.K. Single-center pediatric experience with venetoclax and azacitidine as treatment for myelodysplastic syndrome and acute myeloid leukemia. Pediatr. Blood Cancer 2020, 67, e28398. [Google Scholar] [CrossRef]
- Pullarkat, V.A.; Lacayo, N.J.; Jabbour, E.; Rubnitz, J.E.; Bajel, A.; Laetsch, T.W.; Leonard, J.; Colace, S.I.; Khaw, S.L.; Fleming, S.A.; et al. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discov. 2021, 11, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
Name | Trade Name | Target | Indication | Grade ≥ 3 Infection Risk |
---|---|---|---|---|
Monoclonal Antibodies (mAbs) | ||||
Rituximab [5] | MabThera, Truxima, Rituxan, Rixathon, Riximyo, Reditux, Ruxience, Zytux | Chimeric IgG1κ mAb → CD20 | In combination with chemotherapy for children ≥ 6 months old with previously untreated and advanced CD20-positive DLBCL, BL, B-AL, or BLL | 2.9–4.2% as monotherapy; 7–64% in combination with chemotherapy |
Gemtuzumab ozogamicin [6] | Mylotarg | ADC recombinant humanized IgG4κ mAb linked to N-acetyl-gamma-calicheamicin → CD33 | In combination with chemotherapy for children ≥ 1 month old with de novo or in children ≥ 2 years old with r/r CD33-positive AML. | 30.2–47% as monotherapy; 35.6–69.1% in combination with chemotherapy |
Pembrolizumab [7] | Keytruda | Humanized IgG4κ mAb → PD-1 | For children with r/r HL and NHL (PMBCL) after ≥ 3 and ≥ 2 prior lines of therapy, respectively. | 1.2–4.2% |
Bi-specific T-cell engagers (BiTEs) | ||||
Blinatumomab [8] | Blincyto | BiTE → binds CD3 on T-cells and CD19 on B-cells | For children ≥1 year old with r/r Ph-negative CD19-positive BCP-ALL with MRD ≥0.1% (after >2 prior lines of therapy or r/r after allo-HSCT or r/r high-risk) | 3.6–22% |
Tyrosine kinase inhibitors (TKIs) | ||||
Imatinib mesylate [9] | Gleevec, Glivec | Inhibits TK domain of ABL1, ABL2, KIT, KITLG, DDR1, DDR2, PDGFRA, PDGFRB AND CSF1R | For newly diagnosed children with Ph-positive ALL combined with chemotherapy and Ph-positive CML-CP or in blast crisis and accelerated phase in children not eligible for HSCT or after failure of IFN-α | 0.4–9.7% as monotherapy for CML; 16.4–58.3% in combination with chemotherapy for Ph-positive ALL |
Dasatinib [10] | Sprycel | Inhibits domains of ABL1, ABL2, Src family (SRC, LCK, YES1, FYN, HCK), KIT, EPHA2, and PDGFRB | For newly diagnosed children ≥1 year old with Ph-positive ALL combined with chemotherapy and Ph-positive CML-CP | 0.9–1.1% as monotherapy for CML; 15.3–68.4% in combination with chemotherapy for Ph-positive ALL |
Nilotinib [11] | Tasigna | Binds to and stabilizes the inactive conformation of the kinase domain of ABL proteins TK domain; Also inhibits PDGFRA, KIT, CSF1R, and DDR1 | For children ≥1 year old with Ph-positive CML-CP at diagnosis or after other TKI failure | Up to 1.7% |
Crizotinib [12] | Xalkori | Inhibits receptor TKs ALK (including fusion proteins EML4-ALK and NPM1-ALK), MET, ROS1, and MST1R | For children ≥1 year old with ALK-positive systemic ALCL | 7.7–20.5% |
Entrectinib [13] | Rozlytrek | Inhibits NTRK1, NTRK2, NTRK3, ROS1, ALK, JAK2, and TNK2 (including fusion proteins derived from NTRK, ROS1, and ALK) | For children ≥12 years old with r/r metastatic or unresectable solid tumors displaying NTRK fusion | 2.3–8.3% |
Larotrectinib [14] | Vitrakvi | Inhibits NTRK1, NTRK2, NTRK3, and TNK2 | 2–27.3% * | |
Chimeric antigen receptor T-cells (CAR T-cells) | ||||
Tisagenlecleucel [15] | Kymriah | Reprogramming a patient’s own T-cells with a transgene encoding CAR → identification and elimination of CD19-positive cells | Children with r/r BCP-ALL | 19–35.2% ** |
Targeted Therapy | Comparison | Odds Ratios for Grade ≥ 3 Infections |
---|---|---|
Rituximab (R) | Addition of R to revised NHL-BFM-95 protocol for BL [36] | No significant difference |
R-CHOP versus modified NHL-BFM-90 for DLBCL [25] | No significant difference | |
Addition of R to standard chemotherapy for DLBCL [31] | No significant difference | |
Addition of R to standard chemotherapy for CD20-positive ALL [43] | No significant difference | |
Addition of R to modified FAB/LMB96 for stage III/IV B-NHL [29] | OR 2.73 (95% CI: 1.25 to 5.99; p = 0.006) during second induction for C1 group †. No other significant differences during any other phase and across all groups. | |
Addition of R to FAB/LMB96-based regimen for PMBCL [30] | No significant difference | |
Addition of R to CCCG-B-NHL2015 protocol for B-NHL [37] | No significant difference | |
Gemtuzumab ozogamicin (GO) | Addition of GO to COG-AAML0531 regimen for de novo AML [48] | No significant difference |
Addition of chemotherapy to GO for r/r AML [49] | No significant difference | |
Post-consolidation randomization to GO or no further therapy for AML (NOPHO-AML 2004) [50] | No significant difference | |
Pembrolizumab | N/A | |
Blinatumomab (BLINA) | BLINA versus consolidation chemotherapy for Ph-negative, high-risk, first-relapse B-ALL [51] | No significant difference ‡ |
Post-reinduction BLINA versus chemotherapy for high- and intermediate-risk first-relapse B-ALL [52] | OR 0.16 (95% CI: 0.08 to 0.35; p = 0.000002) after cycle 1, and OR 0.07 (95% CI: 0.07 to 0.17; p < 0.05) after cycle 2. | |
BLINA versus InO for r/r BCP-ALL [53] | No significant difference | |
Imatinib | Addition of imatinib to chemotherapy for Ph-positive ALL [54] | No significant difference |
Imatinib plus chemotherapy for Ph-positive ALL compared with the same chemotherapy alone for Ph-negative ALL [55] | OR 10.24 (95% CI: 1.25 to 83.67; p = 0.015) during second reinduction. No other significant differences during any other phase. | |
Addition of imatinib to chemotherapy for Ph-positive ALL [56] | No significant difference overall. As regards infection subcategories, significant difference for sepsis with OR 0.21 (95% CI: 0.04 to 1.07; p = 0.03) during induction only. | |
Imatinib versus dasatinib | For Ph-positive ALL [57] | No significant difference |
Nilotinib | N/A | |
Crizotinib | Crizotinib versus BV for de novo stage II-IV ALCL [58] | No significant difference |
Entrectinib | N/A | |
Larotrectinib | N/A | |
Tisagenlecleucel | N/A | |
Inotuzumab ozogamicin (InO) | InO versus BLINA for r/r BCP-ALL [53] | No significant difference |
Brentuximab vedotin (BV) | Chemotherapy plus BV instead of vincristine for de novo high-risk classical HL [59] | No significant difference |
Addition of BV to chemotherapy for de novo ALCL [60,61] | No significant difference | |
BV versus crizotinib for de novo stage II-IV ALCL [58] | No significant difference | |
Bortezomib | For de novo T-cell ALL and lymphoma [62] | OR 0.24 (95% CI: 0.16 to 0.38; p < 0.05) during induction; OR 0.26 (95% CI: 0.18 to 0.37; p < 0.05) during consolidation; OR 0.34 (95% CI: 0.24 to 0.47; p < 0.05) during delayed intensification. |
Venetoclax | N/A |
Targeted Therapy | Description | Off-Label Use | Grade ≥ 3 Infection Risk |
---|---|---|---|
ALL | |||
Inotuzumab ozogamicin (Besponsa) [176] | ADC recombinant humanized IgG4κ mAb linked to N-acetyl-gamma-calicheamicin → CD22 | r/r Ph-positive BCP-ALL after failure of ≥1 TKI; r/r CD22-positive B-ALL | 10.5% to 20% |
Bortezomib (Velcade) | 26S proteasome inhibitor | r/r ALL | 16.2% to 45.5% |
Also: bosutinib (Bosulif) and ponatinib (Iclusig) | |||
AML | |||
Venetoclax (Venclexta, Venclyxto) [177] | BCL2 inhibitor | r/r AML | 15.3% to 50% |
FLT3 inhibitors midostaurin (Rydapt) and gilteritinib (Xospata), and IDH inhibitor enasidenib mesylate (Idhifa) | |||
HL | |||
Brentuximab vedotin or SGN-35 (Adcetris) [178] | ADC chimeric IgG1 mAb linked to MMAE → CD30 | r/r classical HL | 3.4% to 5.3% for monotherapy; 3.3% to 15.6% when combined with chemotherapy |
Also: nivolumab (Opdivo) and atezolizumab (Tecentriq) | |||
NHL | |||
Brentuximab vedotin or SGN-35 (Adcetris) [178] | As in HL above | ||
Also: ceritinib (Zykadia), atezolizumab (Tecentriq), nivolumab (Opdivo), ipilimumab (Yervoy), and ibritumomab (Zevalin) |
Agent | Risk of HSV/VZV | Risk of PJP | Risk of HBV Reactivation | Risk of CMV Infection | Other Risk |
---|---|---|---|---|---|
Rituximab | Low | Low | Yes | Low | PML; Respiratory tract infections |
GO | N/A (AML patients receive prophylaxis) | ||||
Pembrolizumab | Only after irAEs | No | Yes | Only after irAEs | LTBI |
Blinatumomab | Yes | Yes | Yes | Low | PML; HGG |
Imatinib | Low | No | Yes | Low | |
Dasatinib | Yes | No | Yes | Yes | |
Nilotinib | Low | No | Yes | Low | |
Tisagenlecleucel | Yes/Low | Yes | Yes | Yes | HGG; after CRS |
InO | No | Low | Low | No | |
BV | N/A (HSCT recipients receive prophylaxis) | N/A (HSCT recipients receive prophylaxis) | Yes | Yes | PML |
Bortezomib | Low/Yes | Low | Low | Low | Respiratory tract infections |
Venetoclax | No | No | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakidis, I.; Mantadakis, E.; Stiakaki, E.; Groll, A.H.; Tragiannidis, A. Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas. Cancers 2022, 14, 5022. https://doi.org/10.3390/cancers14205022
Kyriakidis I, Mantadakis E, Stiakaki E, Groll AH, Tragiannidis A. Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas. Cancers. 2022; 14(20):5022. https://doi.org/10.3390/cancers14205022
Chicago/Turabian StyleKyriakidis, Ioannis, Elpis Mantadakis, Eftichia Stiakaki, Andreas H. Groll, and Athanasios Tragiannidis. 2022. "Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas" Cancers 14, no. 20: 5022. https://doi.org/10.3390/cancers14205022
APA StyleKyriakidis, I., Mantadakis, E., Stiakaki, E., Groll, A. H., & Tragiannidis, A. (2022). Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas. Cancers, 14(20), 5022. https://doi.org/10.3390/cancers14205022