Identification of the O-Glycan Epitope Targeted by the Anti-Human Carcinoma Monoclonal Antibody (mAb) NEO-201
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Peripheral Blood Mononuclear Cells (PBMCs)
2.2. Reagents
2.3. Cell Lines and Culture
2.4. Isolation of Neutrophils from PBMCs
2.5. ELISA
2.6. Flow Cytometry
2.7. O-Glycan Array to Identify O-Glycan Recognized by NEO-201
2.8. O-Glycan Profiling of Cells Reactive with NEO-201
2.9. Antibody-Dependent Cellular Cytotoxicity (ADCC) Assay
2.10. Statistical Analysis
3. Results
3.1. NEO-201 Binds to Mammalian-Expressed rhCEACAM6 but Not to Bacterial-Expressed rhCEACAM6 by ELISA
3.2. NEO-201 Binds to O-Glycans
3.3. Human Cancer Cell Lines and Human Neutrophils Recognized by NEO-201 Express Core 1 and Extended Core 1 O-Glycans
3.4. NEO-201 Mediates ADCC to Kill Target Cells Expressing Core 1 and Extended Core 1 O-Glycans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fantini, M.; David, J.M.; Saric, O.; Dubeykovsky, A.; Cui, Y.; Marvroukakis, S.A.; Bristol, A.; Annunziata, C.M.; Tsang, K.Y.; Arlen, P.M. Preclinical characterization of a novel monoclonal antibody NEO-201 for the treatment of human carcinomas. Front. Immunol. 2018, 8, 1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeligs, K.P.; Morelli, M.P.; David, J.M.; Neuman, M.; Hernandez, L.; Hewitt, S.; Ozaki, M.; Osei-Tutu, A.; Anderson, D.; Andresson, T.; et al. Evaluation of the anti-tumor activity of the humanized monoclonal antibody NEO-201 in preclinical models of ovarian cancer. Front. Oncol. 2020, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.; David, J.M.; Wong, H.C.; Annunziata, C.M.; Arlen, M.A.; Tsang, K.Y. An IL-15 Superagonist, ALT-803, Enhances Antibody-Dependent Cell-Mediated Cytotoxicity Elicited by the Monoclonal Antibody NEO-201 Against Human Carcinoma Cells. Cancer Biother. Radiopharm. 2019, 34, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.; David, J.M.; Annunziata, C.M.; Morelli, M.P.; Arlen, P.M.; Tsang, K.Y. The Monoclonal Antibody NEO-201 Enhances Natural Killer Cell Cytotoxicity Against Tumor Cells Through Blockade of the Inhibitory CEACAM5/CEACAM1 Immune Checkpoint Pathway. Cancer Biother. Radiopharm. 2020, 35, 190–198. [Google Scholar] [CrossRef]
- Tsang, K.Y.; Fantini, M.; Cole, C.; Annunziata, C.M.; Arlen, P.M. A therapeutic humanized anti-carcinoma monoclonal antibody (mAb) can also identify immunosuppressive regulatory T (Tregs) cells and down regulate Treg-mediated immunosuppression. J. Immunother. Cancer 2021, 9, A881. [Google Scholar] [CrossRef]
- Romano, A.; Parrinello, N.; Marino, S.; La Spina, E.; Fantini, M.; Arlen, P.M.; Tsang, K.Y.; Di Raimondo, F. An anti-carcinoma monoclonal antibody (mAb) NEO-201 can also target human acute myeloid leukemia (AML) cell lines in vitro. J. Immunother. Cancer 2021, 9, A883. [Google Scholar] [CrossRef]
- Kuespert, K.; Pils, S.; Hauck, C.R. CEACAMs: Their role in physiology and pathophysiology. Curr. Opin. Cell Biol. 2006, 18, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Chia, J.; Goh, G.; Bard, F. Short O-GalNAc glycans: Regulation and role in tumor development and clinical perspectives. Biochim. Biophys. Acta 2016, 1860, 1623–1639. [Google Scholar] [CrossRef] [Green Version]
- Stanley, P. Golgi glycosylation. Cold Spring Harb Perspect. Biol. 2011, 3, a005199. [Google Scholar] [CrossRef]
- Loureiro, L.R.; Carrascal, M.A.; Barbas, A.; Ramalho, J.S.; Novo, C.; Delannoy, P.; Videira, P.A. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015, 5, 1783–1809. [Google Scholar] [CrossRef]
- Brockhausen, I.; Wandall, H.H.; Hagen, K.G.T.; Stanley, P. O-GalNAc Glycans. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2022. [Google Scholar]
- Tarp, M.A.; Clausen, H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim. Biophys. Acta 2008, 1780, 546–563. [Google Scholar] [CrossRef]
- Cornelissen, L.A.; Van Vliet, S.J. A Bitter Sweet Symphony: Immune Responses to Altered O-glycan Epitopes in Cancer. Biomolecules 2016, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Davidson, B.; Berner, A.; Nesland, J.M.; Risberg, B.; Kristensen, G.B.; Tropé, C.G.; Bryne, M. Carbohydrate antigen expression in primary tumors, metastatic lesions, and serous effusions from patients diagnosed with epithelial ovarian carcinoma: Evidence of up-regulated Tn and Sialyl Tn antigen expression in effusions. Hum. Pathol. 2000, 31, 1081–1087. [Google Scholar] [CrossRef]
- Kim, G.E.; Bae, H.I.; Park, H.U.; Kuan, S.F.; Crawley, S.C.; Ho, J.J.; Kim, Y.S. Aberrant expression of MUC5AC and MUC6 gastric mucins and sialyl Tn antigen in intraepithelial neoplasms of the pancreas. Gastroenterology 2002, 123, 1052–1060. [Google Scholar] [CrossRef]
- Thomas, D.; Sagar, S.; Caffrey, T.; Grandgenett, P.M.; Radhakrishnan, P. Truncated O-glycans promote epithelial-to-mesenchymal transition and stemness properties of pancreatic cancer cells. J. Cell. Mol. Med. 2019, 23, 6885–6896. [Google Scholar] [CrossRef] [Green Version]
- Kudelka, M.R.; Ju, T.; Heimburg-Molinaro, J.; Cummings, R.D. Simple sugars to complex disease--mucin-type O-glycans in cancer. Adv. Cancer Res. 2015, 126, 53–135. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.; Smoldovskaya, O.; Feyzkhanova, G.; Kushlinskii, N.; Rubina, A. Glycan-specific antibodies as potential cancer biomarkers: A focus on microarray applications. Clin. Chem. Lab. Med. 2020, 58, 1611–1622. [Google Scholar] [CrossRef]
- Hollinshead, A.; Glew, D.; Bunnag, B.; Gold, P.; Herberman, R. Skin-reactive soluble antigen from intestinal cancer-cell-membranes and relationship to carcinoembryonic antigens. Lancet 1970, 1, 1191–1195. [Google Scholar] [CrossRef]
- Hollinshead, A.C.; McWright, C.G.; Alford, T.C.; GLEW, D.H.; Gold, P.; Herbeman, R.B. Separation of skin reactive intestinal cancer antigen from the carcinoembryonic antigen of Gold. Science 1972, 177, 887–889. [Google Scholar] [CrossRef]
- Hollinshead, A.; Elias, E.G.; Arlen, M.; Buda, B.; Mosley, M.; Scherrer, J. Specific active immunotherapy in patients with adenocarcinoma of the colon utilizing tumor-associated antigens (TAA). A phase I clinical trial. Cancer 1985, 56, 480–489. [Google Scholar] [CrossRef]
- Strohalm, M.; Kavan, D.; Novák, P.; Volný, M.; Havlícek, V. mMass 3: A cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 2010, 82, 4648–4651. [Google Scholar] [CrossRef]
- Tsang, K.Y.; Fantini, M.; Mavroukakis, S.A.; Zaki, A.; Annunziata, C.M.; Arlen, P.M. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers 2022, 14, 3037. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Ju, T.; Wang, Y.; Aryal, R.P.; Lehoux, S.D.; Ding, X.; Kudelka, M.R.; Cutler, C.; Zeng, J.; Wang, J.; Sun, X.; et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteom. Clin. Appl. 2013, 7, 618–631. [Google Scholar] [CrossRef] [Green Version]
- Campos, D.; Freitas, D.; Gomes, J.; Reis, C.A. Glycoengineered cell models for the characterization of cancer O-glycoproteome: An innovative strategy for biomarker discovery. Expert Rev. Proteom. 2015, 12, 337–342. [Google Scholar] [CrossRef]
- Munkley, J. The Role of Sialyl-Tn in Cancer. Int. J. Mol. Sci. 2016, 17, 275. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, P.; Dabelsteen, S.; Madsen, F.B.; Francavilla, C.; Kopp, K.L.; Steentoft, C.; Vakhrushev, S.Y.; Olsen, J.V.; Hansen, L.; Bennett, E.P.; et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl. Acad. Sci. USA 2014, 111, E4066–E4075. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.; Macauley, M.S. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Berois, N.; Pittini, A.; Osinaga, E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers 2022, 14, 645. [Google Scholar] [CrossRef]
- Nasi, M.L.; Meyers, M.; Livingston, P.O.; Houghton, A.N.; Chapman, P.B. Anti-melanoma effects of R24, a monoclonal antibody against GD3 ganglioside. Melanoma Res. 1997, 7, S155–S162. [Google Scholar] [CrossRef]
- Livingston, P.O.; Hood, C.; Krug, L.M.; Warren, N.; Kris, M.G.; Brezicka, T.; Ragupathi, G. Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol. Immunother. 2005, 54, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.M.; Tebbutt, N.; Lee, F.T.; Cavicchiolo, T.; Liu, Z.; Gill, S.; Poon, A.M.; Hopkins, W.; Smyth, F.E.; Murone, C.; et al. A phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3s193 in patients with advanced epithelial cancers that express the Lewis-Y antigen. Clin. Cancer Res. 2007, 13, 3286–3292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawada, R.; Sun, S.M.; Wu, X.; Hong, F.; Ragupathi, G.; Livingston, P.O.; Scholz, W.W. Human monoclonal antibodies to sialyl-Lewis (CA19.9) with potent CDC, ADCC, and antitumor activity. Clin. Cancer Res. 2011, 17, 1024–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, V.; Glimelius, B.; Grawe, P.; Dietrich, D.; Bodoky, G.; Ruhstaller, T.; Bajetta, E.; Saletti, P.; Figer, A.; Scheithauer, W.; et al. CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol. 2008, 9, 132–138. [Google Scholar] [CrossRef]
- Boeck, S.; Haas, M.; Laubender, R.P.; Kullmann, F.; Klose, C.; Bruns, C.J.; Wilkowski, R.; Stieber, P.; Holdenrieder, S.; Buchner, H.; et al. Application of a time-varying covariate model to the analysis of CA 19-9 as serum biomarker in patients with advanced pancreatic cancer. Clin. Cancer Res. 2010, 16, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S. Dinutuximab: First global approval. Drugs 2015, 75, 923–927. [Google Scholar] [CrossRef]
- The Database of Anti-Glycan Reagents. Available online: https://dagr.ccr.cancer.gov/ (accessed on 30 August 2022).
- Wang, L.; Cummings, R.D.; Smith, D.F.; Huflejt, M.; Campbell, C.T.; Gildersleeve, J.C.; Gerlach, J.Q.; Kilcoyne, M.; Joshi, L.; Serna, S.; et al. Cross-platform comparison of glycan microarray formats. Glycobiology 2014, 24, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Babu, P.; North, S.J.; Jang-Lee, J.; Chalabi, S.; Mackerness, K.; Stowell, S.R.; Cummings, R.D.; Rankin, S.; Dell, A.; Haslam, S.M. Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology. Glycoconj. J. 2009, 8, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, C.; Wang, D.; Madunić, K.; Lageveen-Kammeijer, G.S.M.; Huber, C.G.; Wuhrer, M.; Zhang, T. Integrated N- and O-Glycomics of Acute Myeloid Leukemia (AML) Cell Lines. Cells 2021, 10, 3058. [Google Scholar] [CrossRef]
- Martínez-Sáez, N.; Castro-López, J.; Valero-González, J.; Madariaga, D.; Compañón, I.; Somovilla, V.J.; Salvadó, M.; Asensio, J.L.; Jiménez-Barbero, J.; Avenoza, A.; et al. Deciphering the Non-Equivalence of Serine and Threonine O-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew. Chem. Int. Ed. Engl. 2015, 54, 9830–9834. [Google Scholar] [CrossRef]
- Lundquist, J.J.; Toone, E.J. The cluster glycoside effect. Chem. Rev. 2002, 102, 555–578. [Google Scholar] [CrossRef]
- Gordon, E.J.; Sanders, W.J.; Kiessling, L.L. Synthetic ligands point to cell surface strategies. Nature 1998, 392, 30–31. [Google Scholar] [CrossRef]
- Liang, R.; Loebach, J.; Horan, N.; Ge, M.; Thompson, C.; Yan, L.; Kahne, D. Polyvalent binding to carbohydrates immobilized on an insoluble resin. Proc. Natl. Acad. Sci. USA 1997, 94, 10554–10559. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Li, H.; Guan, F.; Li, X. Multiple Roles of Glycans in Hematological Malignancies. Front. Oncol. 2018, 8, 364. [Google Scholar] [CrossRef]
- Su, H.; Wang, M.; Pang, X.; Guan, F.; Li, X.; Cheng, Y. When Glycosylation Meets Blood Cells: A Glance of the Aberrant Glycosylation in Hematological Malignancies. Rev. Physiol. Biochem. Pharmacol. 2021, 180, 85–117. [Google Scholar] [CrossRef]
m/z Observed | Proposed Structure | Relative Abundance (%) | O-Glycan Profile | |
---|---|---|---|---|
Theoretical | Observed | |||
CFPAC-1 (human pancreatic cell line) | ||||
895.5 | 895.5 | 74.38% | Sialyl-T antigen (Sialyl core 1) | |
534.3 | 534.3 | 13.92% | T antigen (core 1) | |
1256.7 | 1256.7 | 7.86% | Disialyl-T antigen (Disialyl core 1) | |
Human neutrophils | ||||
895.5 | 895.5 | 33.08% | Sialyl-T antigen (Sialyl core 1) | |
534.3 | 534.3 | 24.65% | T antigen (core 1) | |
1256.7 | 1256.7 | 11.81% | Disialyl-T antigen (Disialyl core 1) | |
1705.9 | 1705.9 | 6.25% | Extended core 2 | |
983.6 | 983.6 | 5.03% | ||
1344.8 | 1344.8 | 4.02% | ||
779.4 | 779.4 | 2.73% | Core 2 | |
m/z Observed | Proposed Structure | Relative Abundance (%) | O-Glycan Profile | |
---|---|---|---|---|
Theoretical | Observed | |||
HL-60 (human acute myeloid leukemia cell line) | ||||
1758.8 | 1758.8 | 100% | Extended core 1 | |
U937 (human acute myeloid leukemia cell line) | ||||
1705.9 | 1705.9 | 73.05% | Extended core 1 | |
1879.9 | 1879.9 | 12.10% | ||
1821.9 | 1821.9 | 8.23% | Extended core 2 | |
1722.9 | 1722.9 | 6.62% | Extended core 1 | |
K562 (human chronic myeloid leukemia cell line) | ||||
1821.9 | 1821.9 | 100% | Extended core 2 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsang, K.Y.; Fantini, M.; Zaki, A.; Mavroukakis, S.A.; Morelli, M.P.; Annunziata, C.M.; Arlen, P.M. Identification of the O-Glycan Epitope Targeted by the Anti-Human Carcinoma Monoclonal Antibody (mAb) NEO-201. Cancers 2022, 14, 4999. https://doi.org/10.3390/cancers14204999
Tsang KY, Fantini M, Zaki A, Mavroukakis SA, Morelli MP, Annunziata CM, Arlen PM. Identification of the O-Glycan Epitope Targeted by the Anti-Human Carcinoma Monoclonal Antibody (mAb) NEO-201. Cancers. 2022; 14(20):4999. https://doi.org/10.3390/cancers14204999
Chicago/Turabian StyleTsang, Kwong Y., Massimo Fantini, Anjum Zaki, Sharon A. Mavroukakis, Maria Pia Morelli, Christina M. Annunziata, and Philip M. Arlen. 2022. "Identification of the O-Glycan Epitope Targeted by the Anti-Human Carcinoma Monoclonal Antibody (mAb) NEO-201" Cancers 14, no. 20: 4999. https://doi.org/10.3390/cancers14204999
APA StyleTsang, K. Y., Fantini, M., Zaki, A., Mavroukakis, S. A., Morelli, M. P., Annunziata, C. M., & Arlen, P. M. (2022). Identification of the O-Glycan Epitope Targeted by the Anti-Human Carcinoma Monoclonal Antibody (mAb) NEO-201. Cancers, 14(20), 4999. https://doi.org/10.3390/cancers14204999