Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Diagnostics of Pediatric GIST and Its Selected Consequences
2.1. NTRK Genetics in Wild-Type Pediatric GIST
2.2. FGFR Genetics in Wild-Type Pediatric GISTs
2.3. RAS/NF1-Related Genetics in Wild-Type Pediatric GISTs
2.4. SDH Genetics in Wild-Type Pediatric GISTs
2.5. New Biomarkers of High-Risk GIST
3. Perspectives in Pharmacological Management of Pediatric GIST with Use of Multikinase Inhibitors
3.1. Imatinib
3.2. Sunitinib
3.3. Regorafenib
3.4. Avapritinib
3.5. Vandetanib and Guadecitabine
3.6. NRTK Inhibitors
3.7. Sorafenib and Other Multikinase Inhibitors
3.8. Ripretinib
3.9. Treatment of SDH-Mutated and Carney-Stratakis Syndrome Associated GIST
4. Updates to Surgical Approach
4.1. Current Surgical Standards
4.2. Biopsy of GIST
4.3. Benefits from Extensive GIST Resection
4.4. Hyperthermic Intraperitoneal Chemotherapy in Pediatric GIST
4.5. Possible Future Amendments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rutkowski, P.; Magnan, H.; Chou, A.J.; Benson, C. Treatment of gastrointestinal stromal tumours in paediatric and young adult patients with sunitinib: A multicentre case series. BMC Cancer 2017, 17, 1. [Google Scholar] [CrossRef] [Green Version]
- Nishida, T.; Blay, J.Y.; Hirota, S.; Kitagawa, Y.; Kang, Y.K. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer 2016, 19, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rink, L.; Godwin, A.K. Clinical and molecular characteristics of gastrointestinal stromal tumors in the pediatric and young adult population. Curr. Oncol. Rep. 2009, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Raitio, A.; Salim, A.; Mullassery, D.; Losty, P.D. Current treatment and outcomes of pediatric gastrointestinal stromal tumors (GIST): A systematic review of published studies. Pediatr. Surg. Int. 2021, 37, 9. [Google Scholar] [CrossRef]
- Quiroz, H.J.; Willobee, B.A.; Sussman, M.S.; Fox, B.R.; Thorson, C.M.; Sola, J.E.; Perez, E.A. Pediatric gastrointestinal stromal tumors-a review of diagnostic modalities. Transl. Gastroenterol. Hepatol. 2018, 3, 54. [Google Scholar] [CrossRef]
- Herzberg, M.; Beer, M.; Anupindi, S.; Vollert, K.; Kröncke, T. Imaging pediatric gastrointestinal stromal tumor (GIST). J. Pediatr. Surg. 2018, 53, 9. [Google Scholar] [CrossRef]
- Casali, P.G.; Abecassis, N.; Aro, H.T.; Bauer, S.; Biagini, R.; Bielack, S.; Bonvalot, S.; Boukovinas, I.; Bovee, J.; Brodowicz, T.; et al. Gastrointestinal stromal tumours: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, 4. [Google Scholar] [CrossRef]
- Tornillo, L.; Terracciano, L.M. An update on molecular genetics of gastrointestinal stromal tumours. J. Clin. Pathol. 2006, 59, 6. [Google Scholar] [CrossRef] [PubMed]
- Pappo, A.S.; Janeway, K.; Laquaglia, M.; Kim, S.Y. Special considerations in pediatric gastrointestinal tumors. J. Surg. Oncol. 2011, 104, 8. [Google Scholar] [CrossRef] [PubMed]
- Willobee, B.A.; Quiroz, H.J.; Sussman, M.S.; Thorson, C.M.; Sola, J.E.; Perez, E.A. Current treatment strategies in pediatric gastrointestinal stromal cell tumor. Transl. Gastroenterol. Hepatol. 2018, 3, 53. [Google Scholar] [CrossRef]
- Naito, Y.; Mishima, S.; Akagi, K.; Igarashi, A.; Ikeda, M.; Okano, S.; Kato, S.; Takano, T.; Tsuchihara, K.; Terashima, K.; et al. Japan society of clinical oncology/Japanese society of medical oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese society of pediatric hematology/oncology. Int. J. Clin. Oncol. 2020, 25, 3. [Google Scholar] [CrossRef] [Green Version]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Shi, E.; Chmielecki, J.; Tang, C.M.; Wang, K.; Heinrich, M.C.; Kang, G.; Corless, C.L.; Hong, D.; Fero, K.E.; Murphy, J.D.; et al. FGFR1 and NTRK3 actionable alterations in ‘Wild-Type’ gastrointestinal stromal tumors. J. Transl. Med. 2016, 14, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, L.M.; Funari, V.A. NTRK fusions and Trk proteins: What are they and how to test for them. Hum. Pathol. 2021, 112, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Steeghs, E.; Kroeze, L.I.; Tops, B.; van Kempen, L.C.; Ter Elst, A.; Kastner-van Raaij, A.; Hendriks-Cornelissen, S.; Hermsen, M.; Jansen, E.; Nederlof, P.M.; et al. Comprehensive routine diagnostic screening to identify predictive mutations, gene amplifications, and microsatellite instability in FFPE tumor material. BMC Cancer 2020, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Malik, F.; Santiago, T.; Bahrami, A.; Davis, E.; McCarville, B.; Newman, S.; Azzato, E.M.; Davidoff, A.M.; Brennan, R.; Ellison, D.W.; et al. Dedifferentiation in SDH-Deficient Gastrointestinal Stromal Tumor: A Report With Histologic, Immunophenotypic, and Molecular Characterization. Pediatr. Dev. Pathol. 2019, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Atiq, M.A.; Davis, J.L.; Hornick, J.L.; Dickson, B.C.; Fletcher, C.; Fletcher, J.A.; Folpe, A.L.; Mariño-Enríquez, A. Mesenchymal tumors of the gastrointestinal tract with NTRK rearrangements: A clinicopathological, immunophenotypic, and molecular study of eight cases, emphasizing their distinction from gastrointestinal stromal tumor (GIST). Mod. Pathol. 2021, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shin, S.-J.; Choe, E.-A.; Kim, J.; Hyung, W.J.; Kim, H.S.; Jung, M.; Beom, S.-H.; Kim, T.I.; Ahn, J.B.; et al. Tropomyosin-Related Kinase Fusions in Gastrointestinal Stromal Tumors. Cancers 2022, 14, 2659. [Google Scholar] [CrossRef]
- Garcia, E.P.; Minkovsky, A.; Jia, Y.; Ducar, M.D.; Shivdasani, P.; Gong, X.; Ligon, A.H.; Sholl, L.M.; Kuo, F.C.; MacConaill, L.E.; et al. Validation of OncoPanel: A Targeted Next-Generation Sequencing Assay for the Detection of Somatic Variants in Cancer. Arch. Pathol. Lab. Med. 2017, 141, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.P.; Minkovsky, A.; Jia, Y.; Ducar, M.D.; Shivdasani, P.; Gong, X.; Ligon, A.H.; Sholl, L.M.; Kuo, F.C.; MacConaill, L.E.; et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro. Oncol. 2017, 19, 5. [Google Scholar] [CrossRef]
- Demetri, G.D.; Antonescu, C.R.; Bjerkehagen, B.; Bovée, J.; Boye, K.; Chacón, M.; Dei Tos, A.P.; Desai, J.; Fletcher, J.A.; Gelderblom, H.; et al. Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: Expert recommendations from the World Sarcoma Network. Ann. Oncol. 2020, 31, 11. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Ostler, A.E.; Jones, R.L.; Huang, P.H. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021, 10, 1533. [Google Scholar] [CrossRef]
- Javidi-Sharifi, N.; Traer, E.; Martinez, J.; Gupta, A.; Taguchi, T.; Dunlap, J.; Heinrich, M.C.; Corless, C.L.; Rubin, B.P.; Druker, B.J.; et al. Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance. Cancer Res. 2015, 75, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boichuk, S.; Galembikova, A.; Dunaev, P.; Valeeva, E.; Shagimardanova, E.; Gusev, O.; Khaiboullina, S. A Novel Receptor Tyrosine Kinase Switch Promotes Gastrointestinal Stromal Tumor Drug Resistance. Molecules 2017, 22, 2152. [Google Scholar] [CrossRef] [Green Version]
- Urbini, M.; Astolfi, A.; Indio, V.; Nannini, M.; Schipani, A.; Bacalini, M.G.; Angelini, S.; Ravegnini, G.; Calice, G.; Del Gaudio, M.; et al. Gene duplication, rather than epigenetic changes, drives FGF4 overexpression in KIT/PDGFRA/SDH/RAS-P WT GIST. Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Boichuk, S.; Galembikova, A.; Mikheeva, E.; Bikinieva, F.; Aukhadieva, A.; Dunaev, P.; Khalikov, D.; Petrov, S.; Kurtasanov, R.; Valeeva, E.; et al. Inhibition of FGF2-Mediated Signaling in GIST-Promising Approach for Overcoming Resistance to Imatinib. Cancers 2020, 12, 1674. [Google Scholar] [CrossRef]
- Sergei, B.; Pavel, D.; Aigul, G.; Firyuza, B.; Ilmira, N.; Ilshat, M.; Aida, A.; Refat, K.; Natalia, A.; Elena, S.; et al. Inhibition of FGFR2-Signaling Attenuates a Homology-Mediated DNA Repair in GIST and Sensitizes Them to DNA-Topoisomerase II Inhibitors. Int. J. Mol. Sci. 2020, 21, 352. [Google Scholar] [CrossRef] [Green Version]
- Brčić, I.; Argyropoulos, A.; Liegl-Atzwanger, B. Update on Molecular Genetics of Gastrointestinal Stromal Tumors. Diagnostics 2021, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Huss, S.; Pasternack, H.; Ihle, M.A.; Merkelbach-Bruse, S.; Heitkötter, B.; Hartmann, W.; Trautmann, M.; Gevensleben, H.; Büttner, R.; Schildhaus, H.U.; et al. Clinicopathological and molecular features of a large cohort of gastrointestinal stromal tumors (GISTs) and review of the literature: BRAF mutations in KIT/PDGFRA wild-type GISTs are rare events. Hum. Pathol. 2017, 62, 206–214. [Google Scholar] [CrossRef]
- Carney, J.A. Carney triad: A syndrome featuring paraganglionic, adrenocortical, and possibly other endocrine tumors. J. Clin. Endocrinol. Metab. 2009, 94, 10. [Google Scholar] [CrossRef]
- Jing, X.; Meng, X.; Gao, Y.; Yu, J.; Liu, B. A 4-month-old boy with gastrointestinal stromal tumor of mesocolon. Cancer Biol. Ther. 2019, 20, 1. [Google Scholar] [CrossRef] [Green Version]
- Del Rivero, J.; Arnaldez, F.I.; Srinivasan, R.; Spencer, M.; Steinberg, S.M.; Pacak, K.; Killian, K.; Helman, L.J.; Meltzer, P.S.; Linehan, W.M.; et al. A phase II trial of the DNA methyl transferase inhibitor, SGI-110 (Guadecitabine), in children and adults with SDH-deficient GIST, pheochromocytoma, and paraganglioma, and HLRCC-associated kidney cancer. JCO 2020, 38, 11540. [Google Scholar] [CrossRef]
- Belinsky, M.G.; Rink, L.; von Mehren, M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Front. Oncol. 2013, 3, 117. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.; Thomas, J.; Levy, M.; Patel, N.; Levy, A.; Smadi, Y. Presyncope Leading to the Diagnosis of Gastrointestinal Stromal Tumor in a Pediatric Patient. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 3. [Google Scholar] [CrossRef] [PubMed]
- Roh, T.H.; Yim, H.; Roh, J.; Lee, K.B.; Park, S.H.; Jeong, S.-Y.; Kim, S.-H.; Kim, J.-H. The Loss of Succinate Dehydrogenase B Expression Is Frequently Identified in Hemangioblastoma of the Central Nervous System. Sci. Rep. 2019, 9, 5873. [Google Scholar] [CrossRef] [Green Version]
- Nannini, M.; Rizzo, A.; Indio, V.; Schipani, A.; Astolfi, A.; Pantaleo, M.A. Targeted therapy in SDH-deficient GIST. Ther. Adv. Med. Oncol. 2021, 13, 17588359211023278. [Google Scholar] [CrossRef]
- Hemming, M.L.; Coy, S.; Lin, J.R.; Andersen, J.L.; Przybyl, J.; Mazzola, E.; Abdelhamid Ahmed, A.H.; van de Rijn, M.; Sorger, P.K.; Armstrong, S.A.; et al. HAND1 and BARX1 act as transcriptional and anatomic determinants of malignancy in gastrointestinal stromal tumor. Clin. Cancer Res. 2021, 27, 6. [Google Scholar] [CrossRef]
- Singeltary, B.; Ghose, A.; Sussman, J.; Choe, K.; Olowokure, O. Durable response with a combination of imatinib and sorafenib in KIT exon 17 mutant gastrointestinal stromal tumor. J. Gastrointest. Oncol. 2014, 5, 1. [Google Scholar] [CrossRef]
- Bauer, S.; George, S.; von Mehren, M.; Heinrich, M.C. Early and Next-Generation KIT/PDGFRA Kinase Inhibitors and the Future of Treatment for Advanced Gastrointestinal Stromal Tumor. Front. Oncol. 2021, 11, 672500. [Google Scholar] [CrossRef]
- Brzozowska, M.; Wierzba, W.; Szafraniec-Buryło, S.; Czech, M.; Połowinczak-Przybyłek, J.; Potemski, P.; Śliwczyński, A. Real-World Evidence of Patient Outcome Following Treatment of Advanced Gastrointestinal Stromal Tumor (GIST) with Imatinib, Sunitinib, and Sorafenib in Publicly Funded Health Care in Poland. Med. Sci. Monit. 2019, 25, 3846. [Google Scholar] [CrossRef]
- Benesch, M.; Wardelmann, E.; Ferrari, A.; Brennan, B.; Verschuur, A. Gastrointestinal stromal tumors (GIST) in children and adolescents: A comprehensive review of the current literature. Pediatr. Blood Cancer 2009, 53, 7. [Google Scholar] [CrossRef]
- Singh, A.S.; Hecht, J.R.; Rosen, L.; Wainberg, Z.A.; Wang, X.; Douek, M.; Hagopian, A.; Andes, R.; Sauer, L.; Brackert, S.R.; et al. A Randomized Phase II Study of Nivolumab Monotherapy or Nivolumab Combined with Ipilimumab in Patients with Advanced Gastrointestinal Stromal Tumors. Clin. Cancer Res. 2022, 28, 1. [Google Scholar] [CrossRef]
- Reilley, M.J.; Bailey, A.; Subbiah, V.; Janku, F.; Naing, A.; Falchook, G.; Karp, D.; Piha-Paul, S.; Tsimberidou, A.; Fu, S.; et al. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J. Immunother. Cancer 2017, 5, 1–10. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Shoushtari, A.N.; Keohan, M.L.; Dickson, M.A.; Gounder, M.M.; Chi, P.; Loo, J.K.; Gaffney, L.; Schneider, L.; Patel, Z.; et al. Combined KIT and CTLA-4 Blockade in Patients with Refractory GIST and Other Advanced Sarcomas: A Phase Ib Study of Dasatinib plus Ipilimumab. Clin. Cancer Res. 2017, 23, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agaram, N.P.; Laquaglia, M.P.; Ustun, B.; Guo, T.; Wong, G.C.; Socci, N.D.; Maki, R.G.; DeMatteo, R.P.; Besmer, P.; Antonescu, C.R. Molecular characterization of pediatric gastrointestinal stromal tumors. Clin. Cancer Res. 2008, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Dubois, S.G.; Shusterman, S.; Ingle, A.M.; Ahern, C.H.; Reid, J.M.; Wu, B.; Baruchel, S.; Glade-Bender, J.; Ivy, P.; Grier, H.E.; et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumors: A children’s oncology group study. Clin. Cancer Res. 2011, 17, 15. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; DuBois, S.G.; Wetmore, C.; Khosravan, R. Physiologically Based Pharmacokinetic Modeling and Simulation of Sunitinib in Pediatrics. AAPS J. 2020, 22, 2. [Google Scholar] [CrossRef]
- Wang, E.; DuBois, S.G.; Wetmore, C.; Verschuur, A.C.; Khosravan, R. Population Pharmacokinetics of Sunitinib and its Active Metabolite SU012662 in Pediatric Patients with Gastrointestinal Stromal Tumors or Other Solid Tumors. Eur. J. Drug. Metab. Pharm. 2021, 46, 3. [Google Scholar] [CrossRef]
- Verschuur, A.C.; Bajčiová, V.; Mascarenhas, L.; Khosravan, R.; Lin, X.; Ingrosso, A.; Janeway, K.A. Sunitinib in pediatric patients with advanced gastrointestinal stromal tumor: Results from a phase I/II trial. Cancer Chemother. Pharmacol. 2019, 84, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verschuur, A.C.; Bajčiová, V.; Mascarenhas, L.; Khosravan, R.; Lin, X.; Ingrosso, A.; Janeway, K.A. Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib. Pediatr. Blood Cancer 2009, 52, 7. [Google Scholar] [CrossRef]
- Rihacek, M.; Selingerova, I.; Kocak, I.; Kocakova, I.; Rihackova, E.; Valik, D.; Sterba, J. Sunitinib-Induced Elevation of Mean Corpuscular Volume (MCV)-Exploring Its Possible Clinical Relevance in Cancer Patients. Curr. Oncol. 2022, 29, 330. [Google Scholar] [CrossRef] [PubMed]
- Mross, K.; Frost, A.; Steinbild, S.; Hedbom, S.; Büchert, M.; Fasol, U.; Unger, C.; Krätzschmar, J.; Heinig, R.; Boix, O.; et al. A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin. Cancer Res. 2012, 18, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu; et al. Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: A multicenter phase II trial. J. Clin. Oncol. 2012, 30, 19. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 1. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Tak, W.Y.; Gasbarrini, A.; Santoro, A.; Colombo, M.; Lim, H.Y.; Mazzaferro, V.; Wiest, R.; Reig, M.; Wagner, A.; et al. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: Multicentre, open-label, phase II safety study. Eur. J. Cancer 2013, 49, 16. [Google Scholar] [CrossRef]
- Daudigeos-Dubus, E.; Le Dret, L.; Lanvers-Kaminsky, C.; Bawa, O.; Opolon, P.; Vievard, A.; Villa, I.; Pagès, M.; Bosq, J.; Vassal, G.; et al. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models. PLoS ONE 2015, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.Y.; Shen, L.; Kang, Y.K.; Rutkowski, P.; Qin, S.; Nosov, D.; Wan, D.; Trent, J.; Srimuninnimit, V.; Pápai, Z.; et al. Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): A randomised phase 3 trial. Lancet Oncol. 2015, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Glod, J.; Arnaldez, F.I.; Wiener, L.; Spencer, M.; Killian, J.K.; Meltzer, P.; Dombi, E.; Derse-Anthony, C.; Derdak, J.; Srinivasan, R.; et al. A Phase II Trial of Vandetanib in Children and Adults with Succinate Dehydrogenase-Deficient Gastrointestinal Stromal Tumor. Clin. Cancer Res. 2019, 25, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 8. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 4. [Google Scholar] [CrossRef]
- Heinrich, M.C.; Marino-Enriquez, A.; Presnell, A.; Donsky, R.S.; Griffith, D.J.; McKinley, A.; Patterson, J.; Taguchi, T.; Liang, C.W.; Fletcher, J.A. Sorafenib Inhibits Many Kinase Mutations Associated with Drug-Resistant Gastrointestinal Stromal Tumors. Mol. Cancer Ther. 2012, 11, 1770–1780. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, P.; Jagielska, B.; Andrzejuk, J.; Bylina, E.; Lugowska, I.; Switaj, T.; Kosela-Paterczyk, H.; Kozak, K.; Falkowski, S.; Klimczak, A. The analysis of the long-term outcomes of sorafenib therapy in routine practice in imatinib and sunitinib resistant gastrointestinal stromal tumors (GIST). Contemp. Oncol. 2017, 21, 4. [Google Scholar] [CrossRef] [Green Version]
- Brinch, C.; Dehnfeld, M.; Hogdall, E.; Poulsen, T.S.; Toxvaerd, A.; Al-Farra, G.; Bergenfeldt, M.; Krarup-Hansen, A. Outstanding Response to Sorafenib in a Patient with Metastatic Gastrointestinal Stromal Tumour. Case Rep. Oncol. 2021, 14, 3. [Google Scholar] [CrossRef]
- Henriques-Abreu, M.; Serrano, C. Avapritinib in unresectable or metastatic gastrointestinal stromal tumor with PDGFRA exon 18 mutation: Safety and efficacy. Expert Rev. Anticancer. Ther. 2021, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Serrano, C.; von Mehren, M.; George, S.; Heinrich, M.C.; Kang, Y.K.; Schöffski, P.; Cassier, P.A.; Mir, O.; Chawla, S.P.; et al. Avapritinib in unresectable or metastatic PDGFRA D842V-mutant gastrointestinal stromal tumours: Long-term efficacy and safety data from the NAVIGATOR phase I trial. Eur. J. Cancer 2021, 145, 132–142. [Google Scholar] [CrossRef]
- George, S.; Jones, R.L.; Bauer, S.; Kang, Y.K.; Schöffski, P.; Eskens, F.; Mir, O.; Cassier, P.A.; Serrano, C.; Tap, W.D.; et al. Avapritinib in Patients With Advanced Gastrointestinal Stromal Tumors Following at Least Three Prior Lines of Therapy. Oncologist 2021, 26, 4. [Google Scholar] [CrossRef] [PubMed]
- George, S.; von Mehren, M.; Fletcher, J.A.; Sun, J.; Zhang, S.; Pritchard, J.R.; Hodgson, J.G.; Kerstein, D.; Rivera, V.M.; Haluska, F.G.; et al. Phase II Study of Ponatinib in Advanced Gastrointestinal Stromal Tumors: Efficacy, Safety, and Impact of Liquid Biopsy and Other Biomarkers. Clinical. Cancer Res. 2022, 28, 7. [Google Scholar] [CrossRef]
- Franck, C.; Rosania, R.; Franke, S.; Haybaeck, J.; Canbay, A.; Venerito, M. The BRAF Status May Predict Response to Sorafenib in Gastrointestinal Stromal Tumors Resistant to Imatinib, Sunitinib, and Regorafenib: Case Series and Review of the Literature. Digestion 2019, 99, 2. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L.; et al. Ripretinib (DCC-2618) Is a Switch Control Kinase Inhibitor of a Broad Spectrum of Oncogenic and Drug-Resistant KIT and PDGFRA Variants. Cancer Cell 2019, 35, 5. [Google Scholar] [CrossRef] [PubMed]
- Boikos, S.A.; Pappo, A.S.; Killian, J.K.; LaQuaglia, M.P.; Weldon, C.B.; George, S.; Trent, J.C.; von Mehren, M.; Wright, J.A.; Schiffman, J.D.; et al. Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ami, E.; Barysauskas, C.M.; von Mehren, M.; Heinrich, M.C.; Corless, C.L.; Butrynski, J.E.; Morgan, J.A.; Wagner, A.J.; Choy, E.; Yap, J.T.; et al. Long-Term Follow-up Results of the Multicenter Phase II Trial of Regorafenib in Patients with Metastatic and/or Unresectable GI Stromal Tumor after Failure of Standard Tyrosine Kinase Inhibitor Therapy. Ann. Oncol. 2016, 27, 1794–1799. [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, M.A.; Nannini, M.; Saponara, M.; Gnocchi, C.; Di Scioscio, V.; Lolli, C.; Catena, F.; Astolfi, A.; Di Battista, M.; Biasco, G.; et al. Impressive long-term disease stabilization by nilotinib in two pretreated patients with KIT/PDGFRA wild-type metastatic gastrointestinal stromal tumours. Anticancer. Drugs 2012, 23, 5. [Google Scholar] [CrossRef]
- Neppala, P.; Banerjee, S.; Fanta, P.T.; Yerba, M.; Porras, K.A.; Burgoyne, A.M.; Sicklick, J.K. Current Management of Succinate Dehydrogenase–Deficient Gastrointestinal Stromal Tumors. Cancer Metastasis Rev. 2019, 38, 525–535. [Google Scholar] [CrossRef]
- Ganjoo, K.N.; Villalobos, V.M.; Kamaya, A.; Fisher, G.A.; Butrynski, J.E.; Morgan, J.A.; Wagner, A.J.; D’Adamo, D.; McMillan, A.; Demetri, G.D.; et al. A multicenter phase II study of pazopanib in patients with advanced gastrointestinal stromal tumors (GIST) following failure of at least imatinib and sunitinib. Ann. Oncol. 2014, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Gokozan, H.N.; Bomeisl, P. Succinate dehydrogenase-deficient gastrointestinal stromal tumor of stomach diagnosed by endoscopic ultrasound-guided fine-needle biopsy: Report of a distinct subtype in cytology. Diagn. Cytopathol. 2020, 48, 12. [Google Scholar] [CrossRef]
- Frankfurt, O.; Licht, J.D. Ponatinib--a step forward in overcoming resistance in chronic myeloid leukemia. Clin. Cancer Res. 2013, 19, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danti, G.; Addeo, G.; Cozzi, D.; Maggialetti, N.; Lanzetta, M.M.; Frezzetti, G.; Masserelli, A.; Pradella, S.; Giovagnoni, A.; Miele, V. Relationship between diagnostic imaging features and prognostic outcomes in gastrointestinal stromal tumors (GIST). Acta Biomed. 2019, 90, 9. [Google Scholar] [CrossRef] [PubMed]
- Lino-Silva, L.S.; Segales-Rojas, P.; Aguilar-Cruz, E.; Salcedo-Hernández, R.A.; Zepeda-Najar, C. Gastrointestinal Stromal Tumors Risk of Recurrence Stratification by Tumor Volume is a Best Predictor Compared with Risk Based on Mitosis and Tumor Size. J. Gastrointest. Cancer 2019, 50, 3. [Google Scholar] [CrossRef] [PubMed]
- Jumniensuk, C.; Charoenpitakchai, M. Gastrointestinal stromal tumor: Clinicopathological characteristics and pathologic prognostic analysis. World J. Surg. Oncol. 2018, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Lasota, J. Gastrointestinal stromal tumors: Review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch. Pathol. Lab. Med. 2006, 130, 10. [Google Scholar] [CrossRef]
- Sugai, Y.; Hirayama, Y.; Iinuma, Y.; Nakaya, K.; Aikou, T.; Taki, S.; Hashidate, H.; Kinoshita, Y. A rare case of neonatal colonic obstruction caused by a solitary intestinal tumor. Surg. Case Rep. 2021, 7, 26. [Google Scholar] [CrossRef]
- Tran, S.; Dingeldein, M.; Mengshol, S.C.; Kay, S.; Chin, A.C. Incidental GIST after appendectomy in a pediatric patient: A first instance and review of pediatric patients with CD117 confirmed GISTs. Pediatr. Surg. Int. 2014, 30, 4. [Google Scholar] [CrossRef] [PubMed]
- Weldon, C.B.; Madenci, A.L.; Boikos, S.A.; Janeway, K.A.; George, S.; von Mehren, M.; Pappo, A.S.; Schiffman, J.D.; Wright, J.; Trent, J.C.; et al. Surgical Management of Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Pediatric and Wildtype GIST Clinic. J. Clin. Oncol. 2017, 35, 5. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.M.; Kim, M.C.; Jung, G.J.; Kim, H.H.; Kwon, H.C.; Choi, S.R.; Jang, J.S.; Jeong, J.S. Laparoscopic wedge resection for gastric GIST: Long-term follow-up results. Eur. J. Surg. Oncol. 2007, 33, 4. [Google Scholar] [CrossRef]
- Matsumoto, S.; Hosoya, Y.; Lefor, A.K.; Ino, Y.; Haruta, H.; Kurashina, K.; Saito, S.; Kitayama, J.; Sata, N. Non-exposed endoscopic wall-inversion surgery for pediatric gastrointestinal stromal tumor: A case report. Asian J. Endosc. Surg. 2019, 12, 3. [Google Scholar] [CrossRef]
- Günter, E.; Lingenfelser, T.; Eitelbach, F.; Müller, H.; Ell, C. EUS-guided ethanol injection for treatment of a GI stromal tumor. Gastrointest. Endosc. 2003, 57, 1. [Google Scholar] [CrossRef]
- Hernández-Ludeña, L.; Consiglieri, C.F.; Gornals, J.B. EUS-guided ethanol ablation therapy for gastric stromal tumors. Rev. Esp. Enferm. Dig. 2018, 110, 1. [Google Scholar] [CrossRef]
- Valli, P.V.; Valli, C.; Pfammatter, T.; Bauerfeind, P. Life-threatening bleeding of a duodenal gastrointestinal stromal tumor in a teenager: A rare case report. Endosc. Int. Open 2016, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Kaemmer, D.A.; Otto, J.; Lassay, L.; Steinau, G.; Klink, C.; Junge, K.; Klinge, U.; Schumpelick, V. The Gist of literature on pediatric GIST: Review of clinical presentation. J. Pediatr. Hematol. Oncol. 2009, 31, 2. [Google Scholar] [CrossRef]
- Miranda, M.E.; Alberti, L.R.; Tatsuo, E.S.; Piçarro, C.; Rausch, M. Gastrointestinal stromal tumor of the stomach in a child with a 3-year follow-up period-Case report. Int. J. Surg. Case Rep. 2011, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Dave, M.; Jimenez, A.; Evans, K.; Leslie, W. Treatment of recurrent pediatric gastrointestinal stromal tumors. Gastrointest. Cancer Res. 2012, 5, 4. [Google Scholar]
- Nishida, T.; Hølmebakk, T.; Raut, C.P.; Rutkowski, P. Defining Tumor Rupture in Gastrointestinal Stromal Tumor. Ann. Surg. Oncol. 2019, 26, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakob, J.; Salameh, R.; Wichmann, D.; Charalambous, N.; Zygmunt, A.C.; Kreisel, I.; Heinz, J.; Ghadimi, M.; Ronellenfitsch, U. Needle tract seeding and abdominal recurrence following pre-treatment biopsy of gastrointestinal stromal tumors (GIST): Results of a systematic review. BMC Surg. 2022, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Garnier, H.; Murawski, M.; Jastrzebski, T.; Pawinska-Wasikowska, K.; Balwierz, W.; Sinacka, K.; Gorecki, W.; Izycka-Swieszewska, E.; Czauderna, P. Case Report: Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Application in Intraperitoneally Disseminated Inflammatory Myofibroblastic Tumor and in the Youngest Patient in the World: New Indication and Modification of Technique. Front. Surg. 2021, 8, 746700. [Google Scholar] [CrossRef] [PubMed]
- Seitz, G.; Fuchs, J.; Königsrainer, I.; Warmann, S.; Königsrainer, A.; Beckert, S. Zytoreduktive Chirurgie und HIPEC bei peritoneal-metastasierten Tumoren im Kindesalter. Zent. Chir. 2014, 139, 607–612. [Google Scholar] [CrossRef]
- Bryan, M.L.; Fitzgerald, N.C.; Levine, E.A.; Shen, P.; Stewart, J.H.; Votanopoulos, K.I. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in sarcomatosis from gastrointestinal stromal tumor. Am. Surg. 2014, 80, 9. [Google Scholar] [CrossRef]
- Ong, E.; Diven, C.; Abrams, A.; Lee, E.; Mahadevan, D. Laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) for palliative treatment of malignant ascites from gastrointestinal stromal tumours. J. Palliat. Care 2012, 28, 4. [Google Scholar] [CrossRef]
- Kalisvaart, G.M.; Meijer, R.; Bijlstra, O.D.; Galema, H.A.; de Steur, W.O.; Hartgrink, H.H.; Verhoef, C.; de Geus-Oei, L.F.; Grünhagen, D.J.; Schrage, Y.M.; et al. Intraoperative Near-Infrared Fluorescence Imaging with Indocyanine Green for Identification of Gastrointestinal Stromal Tumors (GISTs), a Feasibility Study. Cancers 2022, 14, 1572. [Google Scholar] [CrossRef]
- Souzaki, R.; Ieiri, S.; Uemura, M.; Ohuchida, K.; Tomikawa, M.; Kinoshita, Y.; Koga, Y.; Suminoe, A.; Kohashi, K.; Oda, Y.; et al. An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. J. Pediatr. Surg. 2013, 48, 12. [Google Scholar] [CrossRef]
- Brookes, M.J.; Chan, C.D.; Baljer, B.; Wimalagunaratna, S.; Crowley, T.P.; Ragbir, M.; Irwin, A.; Gamie, Z.; Beckingsale, T.; Ghosh, K.; et al. Surgical Advances in Osteosarcoma. Cancers 2021, 13, 388. [Google Scholar] [CrossRef] [PubMed]
- Privitera, L.; Paraboschi, I.; Cross, K.; Giuliani, S. Above and Beyond Robotic Surgery and 3D Modelling in Paediatric Cancer Surgery. Front. Pediatr. 2021, 9, 777840. [Google Scholar] [CrossRef] [PubMed]
Drug Substance | Molecular Target | Comments | Reference |
---|---|---|---|
Imatinib | PDGF, SCF, KIT, C-KIT, ABL (including BCR-ABL fusion) | First-line treatment after R1 surgery (including high-risk group); if needed- neoadjuvant treatment | [2,38,39,40,41] |
Sunitinib | PDGFR-α, PDGFR-β, VEGFR1, VEGFR2, VEGFR3, KIT, FLT3, CSF-1R, RET | Usually the second-line treatment of imatinib-resistant GIST; leads to the tumor stabilization | [1,45,46,47,48,49,50] |
Regorafenib | VEGF-1, VEGF-2, VEGF-3, VEGFR-1, VEGFR-2, VEGFR-3, TIE-2, KIT, RET, RAF-1, B-RAF, PDGFR(-β), FGFR-1, EGFR | Beneficial for KIT-mutated and PDGFR-mutated GIST, including radio- and chemosensitization in vitro; anti-angiogenic effect (limited data) | [52,53,54,55,56,57] |
Nilotinib | BCR-ABL, KIT, LCK, EPHA3, EPHA8, DDR1, DDR2, PDGFRB, MAPK11, ZAK | Less effective in adult GIST than imatinib without evidence in the pediatric population | [58] |
Vandetanib | VEGFR-2, VEGFR-3 (weak interaction), VEGF, EGFR(-3), EGF, RET | No meaningful changes observed after application so far | [59] |
Larotrectinib | TRK A, B, C | High and durable clinical response rate, good toleration of treatment | [60,61] |
Entrectinib | TRK A, B, C, ROS1, ALK | High and durable clinical response rate, well-tolerated | [60,61] |
Sorafenib | RAF kinases (C-RAF > B-RAF), PDGFR kinases, PDGFRβ, VEGFR-1, VEGFR-2, VEGFR-3, FLT-3, C-KIT, RET, induction of autophagy | Effective in adult GIST treatment but ineffective in V600E BRAF mutation, no evidence of efficacy in pediatric GIST | [40,62,63,64,69] |
Avapritinib | KIT, PDGFRA mutant (such as D816 V KIT and D842 V PDGFRA) | Effective in adult GIST treatment, no evidence of efficacy in pediatric GIST treatment, ongoing NCT03862885 trial with early access for avapritinib in patients >16 years old with locally advanced unresectable or metastatic GIST | [65,66,67] |
Ponatinib | ABL (BCR-ABL mutants), VEGFR, PDGFR, EGFR, SRC kinase, KIT, RET, FLT3 | Effective in adult GIST treatment, no evidence of efficacy in pediatric GIST treatment yet | [68,77] |
Ipilimumab | CTLA-4 | Good safety, limited data about the treatment efficacy in combination with other multikinase inhibitors, ongoing NCT01738139 trial in patients >15 years old | [42,43,44] |
Ripretinib | KIT and PDGFRA kinases | Effective inhibition of a wide range of KIT mutants in patients with drug-resistant GISTs (preclinical models, phase III trial finished) | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrzejewska, M.; Czarny, J.; Derwich, K. Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors. Cancers 2022, 14, 4989. https://doi.org/10.3390/cancers14204989
Andrzejewska M, Czarny J, Derwich K. Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors. Cancers. 2022; 14(20):4989. https://doi.org/10.3390/cancers14204989
Chicago/Turabian StyleAndrzejewska, Marta, Jakub Czarny, and Katarzyna Derwich. 2022. "Latest Advances in the Management of Pediatric Gastrointestinal Stromal Tumors" Cancers 14, no. 20: 4989. https://doi.org/10.3390/cancers14204989