Evidence from Clinical Studies Related to Dermatologic Surgeries for Skin Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Surgical Margin of Primary Tumors
2.1. Malignant Melanoma
2.2. Squamous Cell Carcinoma (SCC)
2.3. Basal Cell Carcinoma (BCC)
2.4. Merkel Cell Carcinoma (MCC)
2.5. Extramammary Paget Disease (EMPD)
2.6. Dermatofibrosarcoma Protuberans (DFSP)
2.7. Atypical Fibroxanthoma (AFX)
2.8. MMS
3. Method for Skin Grafts
4. Methods to Diminish Complications Associated with LND
5. Surgical Site Infection (SSI) after Excision of Skin Cancer
6. Reduction of Anxiety and Pain Associated with Surgery for Skin Cancer
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dummer, R.; Ascierto, P.A.; Gogas, H.J.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; Gutzmer, R.; et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018, 19, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Kaufman, H.L.; Russell, J.; Hamid, O.; Bhatia, S.; Terheyden, P.; D’Angelo, S.P.; Shih, K.C.; Lebbé, C.; Linette, G.P.; Milella, M.; et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 1374–1385. [Google Scholar] [PubMed] [Green Version]
- Jain, R.; Dubey, S.K.; Singhvi, G. The Hedgehog pathway and its inhibitors: Emerging therapeutic approaches for basal cell carcinoma. Drug Discov. Today 2021, 27, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Qi, Z.; Zhang, L.; Guo, J.; Si, L. Immunotherapy in Acral and Mucosal Melanoma: Current Status and Future Directions. Front. Immunol. 2021, 12, 680407. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Yamazaki, N. Targeted Therapy and Immunotherapy for Melanoma in Japan. Curr. Treat Opt. Oncol. 2019, 20, 7. [Google Scholar] [CrossRef] [Green Version]
- Cascinelli, N.; Zurrida, S.; Galimberti, V.; Bartoli, C.; Bufalino, R.; Del Prato, I.; Mascheroni, L.; Testori, A.; Clemente, C. Acral lentiginous melanoma. A histological type without prognostic significance. J. Dermatol. Surg. Oncol. 1994, 20, 817–822. [Google Scholar] [CrossRef]
- Chang, J.W.; Yeh, K.Y.; Wang, C.H.; Yang, T.S.; Chiang, H.F.; Wei, F.C.; Kuo, T.T.; Yang, C.H. Malignant melanoma in Taiwan: A prognostic study of 181 cases. Melanoma Res. 2004, 14, 537–541. [Google Scholar] [CrossRef]
- Cress, R.D.; Holly, E.A. Incidence of cutaneous melanoma among non-Hispanic whites, Hispanics, Asians, and blacks: An analysis of california cancer registry data, 1988–1993. Cancer Causes Control 1997, 8, 246–252. [Google Scholar] [CrossRef]
- Ferrara, G.; Argenziano, G. The WHO 2018 Classification of Cutaneous Melanocytic Neoplasms: Suggestions from Routine Practice. Front. Oncol. 2021, 11, 675296. [Google Scholar] [CrossRef]
- Yeh, I.; Bastian, B.C. Melanoma pathology: New approaches and classification. Br. J. Dermatol. 2021, 185, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dréno, B.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics: Update 2022. Eur. J. Cancer 2022, 170, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Elder, D.E.; Bastian, B.C.; Cree, I.A.; Massi, D.; Scolyer, R.A. The 2018 World Health Organization Classification of Cutaneous, Mucosal, and Uveal Melanoma: Detailed Analysis of 9 Distinct Subtypes Defined by Their Evolutionary Pathway. Arch. Pathol. Lab. Med. 2020, 144, 500–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeles, C.V.; Wong, S.L.; Karakousis, G. The Landmark Series: Randomized Trials Examining Surgical Margins for Cutaneous Melanoma. Ann. Surg. Oncol. 2020, 27, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, R. Surgical management of primary melanoma. Clin. Exp. Dermatol. 2000, 25, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Zito, P.M. Clinical Guidelines for The Staging, Diagnosis, and Management Of Cutaneous Malignant Melanoma; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Bartoli, C.; Bono, A.; Clemente, C.; Del Prato, I.D.; Zurrida, S.; Cascinelli, N. Clinical diagnosis and therapy of cutaneous melanoma in situ. Cancer 1996, 77, 888–892. [Google Scholar] [CrossRef]
- Kunishige, J.H.; Brodland, D.G.; Zitelli, J.A. Surgical margins for melanoma in situ. J. Am. Acad. Dermatol. 2012, 66, 438–444. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology; Melanoma Cutaneous. Version 1. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf. (accessed on 15 January 2022).
- Kunishige, J.H.; Doan, L.; Brodland, D.G.; Zitelli, J.A. Comparison of surgical margins for lentigo maligna versus melanoma in situ. J. Am. Acad. Dermatol. 2019, 81, 204–212. [Google Scholar] [CrossRef]
- Veronesi, U.; Cascinelli, N. Narrow excision (1-cm margin). A safe procedure for thin cutaneous melanoma. Arch. Surg. 1991, 126, 438–441. [Google Scholar] [CrossRef]
- Khayat, D.; Rixe, O.; Martin, G.; Soubrane, C.; Banzet, M.; Bazex, J.A.; Lauret, P.; Vérola, O.; Auclerc, G.; Harper, P.; et al. Surgical margins in cutaneous melanoma (2 cm versus 5 cm for lesions measuring less than 2.1-mm thick). Cancer 2003, 97, 1941–1946. [Google Scholar] [CrossRef]
- Hudson, L.E.; Maithel, S.K.; Carlson, G.W.; Rizzo, M.; Murray, D.R.; Hestley, A.C.; Delman, K.A. 1 or 2 cm margins of excision for T2 melanomas: Do they impact recurrence or survival? Ann. Surg. Oncol. 2013, 20, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Balch, C.M.; Soong, S.J.; Smith, T.; Ross, M.I.; Urist, M.M.; Karakousis, C.P.; Temple, W.J.; Mihm, M.C.; Barnhill, R.L.; Jewell, W.R.; et al. Long-term results of a prospective surgical trial comparing 2 cm vs. 4 cm excision margins for 740 patients with 1-4 mm melanomas. Ann. Surg. Oncol. 2001, 8, 101–108. [Google Scholar] [PubMed]
- Utjés, D.; Malmstedt, J.; Teras, J.; Drzewiecki, K.; Gullestad, H.P.; Ingvar, C.; Eriksson, H.; Gillgren, P. 2-cm versus 4-cm surgical excision margins for primary cutaneous melanoma thicker than 2 mm: Long-term follow-up of a multicentre, randomised trial. Lancet 2019, 394, 471–477. [Google Scholar] [CrossRef]
- Gillgren, P.; Drzewiecki, K.T.; Niin, M.; Gullestad, H.P.; Hellborg, H.; Månsson-Brahme, E.; Ingvar, C.; Ringborg, U. 2-cm versus 4-cm surgical excision margins for primary cutaneous melanoma thicker than 2 mm: A randomised, multicentre trial. Lancet 2011, 378, 1635–1642. [Google Scholar] [CrossRef]
- Hayes, A.J.; Maynard, L.; Coombes, G.; Newton-Bishop, J.; Timmons, M.; Cook, M.; Theaker, J.; Bliss, J.M.; Thomas, J.M. Wide versus narrow excision margins for high-risk, primary cutaneous melanomas: Long-term follow-up of survival in a randomised trial. Lancet Oncol. 2016, 17, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.T.; Kim, E.J.; Lee, D.Y.; Kim, J.H.; Jang, K.T.; Mun, G.H. Surgical excision margin for primary acral melanoma. J. Surg. Oncol. 2016, 114, 933–939. [Google Scholar] [CrossRef]
- Thomas, J.M.; Newton-Bishop, J.; A’Hern, R.; Coombes, G.; Timmons, M.; Evans, J.; Cook, M.; Theaker, J.; Fallowfield, M.; O’Neill, T.; et al. Excision margins in high-risk malignant melanoma. N. Engl. J. Med. 2004, 350, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Hunger, R.E.; Seyed Jafari, S.M.; Angermeier, S.; Shafighi, M. Excision of fascia in melanoma thicker than 2 mm: No evidence for improved clinical outcome. Br. J. Dermatol. 2014, 171, 1391–1396. [Google Scholar] [CrossRef]
- Beaulieu, D.; Fathi, R.; Srivastava, D.; Nijhawan, R.I. Current perspectives on Mohs micrographic surgery for melanoma. Clin. Cosmet. Investig. Dermatol. 2018, 11, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Veronese, F.; Boggio, P.; Tiberio, R.; Gattoni, M.; Fava, P.; Caliendo, V.; Colombo, E.; Savoia, P. Wide local excision vs. Mohs Tübingen technique in the treatment of dermatofibrosarcoma protuberans: A two-centre retrospective study and literature review. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 2069–2076. [Google Scholar] [CrossRef]
- Takenouchi, T.; Takatsuka, S. Long-term prognosis after surgical excision of basal cell carcinoma: A single institutional study in Japan. J. Dermatol. 2013, 40, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Matsushita, S.; Tanaka, R.; Saito, S.; Araki, R.; Teramoto, Y.; Aoki, M.; Yamamura, K.; Nakamura, Y.; Fujisawa, Y.; et al. 2-mm surgical margins are adequate for most basal cell carcinomas in Japanese: A retrospective multicentre study on 1000 basal cell carcinomas. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Zitelli, J.A.; Brown, C.; Hanusa, B.H. Mohs micrographic surgery for the treatment of primary cutaneous melanoma. J. Am. Acad. Dermatol. 1997, 37, 236–245. [Google Scholar] [CrossRef]
- Valentín-Nogueras, S.M.; Brodland, D.G.; Zitelli, J.A.; González-Sepúlveda, L.; Nazario, C.M. Mohs Micrographic Surgery Using MART-1 Immunostain in the Treatment of Invasive Melanoma and Melanoma In Situ. Dermatol. Surg. 2016, 42, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.; Demer, A.; Liszewski, W.; Foman, N.; Maher, I. Improved overall survival of melanoma of the head and neck treated with Mohs micrographic surgery versus wide local excision. J. Am. Acad. Dermatol. 2020, 82, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Cheraghlou, S.; Christensen, S.R.; Agogo, G.O.; Girardi, M. Comparison of Survival after Mohs Micrographic Surgery vs Wide Margin Excision for Early-Stage Invasive Melanoma. JAMA Dermatol. 2019, 155, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Demer, A.M.; Hanson, J.L.; Maher, I.A.; Liszewski, W. Association of Mohs Micrographic Surgery vs Wide Local Excision With Overall Survival Outcomes for Patients With Melanoma of the Trunk and Extremities. JAMA Dermatol. 2021, 157, 84–89. [Google Scholar] [CrossRef]
- Howard, J.H.; Thompson, J.F.; Mozzillo, N.; Nieweg, O.E.; Hoekstra, H.J.; Roses, D.F.; Sondak, V.K.; Reintgen, D.S.; Kashani-Sabet, M.; Karakousis, C.P.; et al. Metastasectomy for distant metastatic melanoma: Analysis of data from the first Multicenter Selective Lymphadenectomy Trial (MSLT-I). Ann. Surg. Oncol. 2012, 19, 2547–2555. [Google Scholar] [CrossRef] [Green Version]
- Puza, C.J.; Bressler, E.S.; Terando, A.M.; Howard, J.H.; Brown, M.C.; Hanks, B.; Salama, A.K.S.; Beasley, G.M. The Emerging Role of Surgery for Patients With Advanced Melanoma Treated With Immunotherapy. J. Surg. Res. 2019, 236, 209–215. [Google Scholar] [CrossRef]
- Wankhede, D.; Grover, S. Outcomes After Curative Metastasectomy for Patients with Malignant Melanoma: A Systematic Review and Meta-analysis. Ann. Surg. Oncol. 2022, 29, 3709–3723. [Google Scholar] [CrossRef]
- Leo, F.; Scanagatta, P.; Vannucci, F.; Brambilla, D.; Radice, D.; Spaggiari, L. Impaired quality of life after pneumonectomy: Who is at risk? J. Thorac. Cardiovasc. Surg. 2010, 139, 49–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyropoulou, G.A.; Pavlidis, L.; Trakatelli, M.; Foroglou, P.; Pagkalos, A.; Tsimponis, A.; Lampros, E.; Delimpaltas, A.; Demiri, E. Cutaneous squamous cell carcinoma with incomplete margins demonstrate higher tumour grade on re-excision. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, J.N.; Hajder, E.; van der Holt, B.; Den Bakker, M.A.; Hovius, S.E.; Mureau, M.A. The Effect of Differentiation Grade of Cutaneous Squamous Cell Carcinoma on Excision Margins, Local Recurrence, Metastasis, and Patient Survival: A Retrospective Follow-Up Study. Ann. Plast. Surg. 2015, 75, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Genders, R.E.; Marsidi, N.; Michi, M.; Henny, E.P.; Goeman, J.J.; van Kester, M.S. Incomplete Excision of Cutaneous Squamous Cell Carcinoma; Systematic Review of the Literature. Acta Derm. Venereol. 2020, 100, adv00084. [Google Scholar] [CrossRef]
- Brodland, D.G.; Zitelli, J.A. Surgical margins for excision of primary cutaneous squamous cell carcinoma. J. Am. Acad. Dermatol. 1992, 27, 241–248. [Google Scholar] [CrossRef]
- Newlands, C.; Currie, R.; Memon, A.; Whitaker, S.; Woolford, T. Non-melanoma skin cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016, 130, S125–S132. [Google Scholar] [CrossRef]
- Keohane, S.G.; Botting, J.; Budny, P.G.; Dolan, O.M.; Fife, K.; Harwood, C.A.; Mallipeddi, R.; Marsden, J.R.; Motley, R.J.; Newlands, C.; et al. British Association of Dermatologists guidelines for the management of people with cutaneous squamous cell carcinoma 2020. Br. J. Dermatol. 2021, 184, 401–414. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology; Squamous Cell Skin Cancer. Version 1. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/squamous.pdf (accessed on 15 January 2021).
- Thiem DG, E.; Scharr, K.; Pabst, A.M.; Saka, B.; Kämmerer, P.W. Facial cutaneous squamous cell carcinoma-microscopic safety margins and their impact on developing local recurrences. J. Craniomaxillofac. Surg. 2020, 48, 49–55. [Google Scholar] [CrossRef]
- Phillips, T.J.; Harris, B.N.; Moore, M.G.; Farwell, D.G.; Bewley, A.F. Pathological margins and advanced cutaneous squamous cell carcinoma of the head and neck. J. Otolaryngol. Head Neck Surg. 2019, 48, 55. [Google Scholar] [CrossRef] [Green Version]
- Pugliano-Mauro, M.; Goldman, G. Mohs surgery is effective for high-risk cutaneous squamous cell carcinoma. Dermatol. Surg. 2010, 36, 1544–1553. [Google Scholar] [CrossRef]
- Leibovitch, I.; Huilgol, S.C.; Selva, D.; Hill, D.; Richards, S.; Paver, R. Cutaneous squamous cell carcinoma treated with Mohs micrographic surgery in Australia, I. Experience over 10 years. J. Am. Acad. Dermatol. 2005, 53, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.D.; Beal, B.T.; Varra, V.; Rodriguez, M.; Cundall, H.; Woody, N.M.; Vidimos, A.T.; Koyfman, S.A.; Knackstedt, T.J. Outcomes in intermediate-risk squamous cell carcinomas treated with Mohs micrographic surgery compared with wide local excision. J. Am. Acad. Dermatol. 2020, 82, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Schmults, C.D.; Blitzblau, R.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Baumann, B.C.; Bordeaux, J.; Chen, P.L.; Chin, R.; Contreras, C.M.; et al. NCCN Guidelines® Insights: Squamous Cell Skin Cancer, Version 1.2022. J. Natl. Compr. Cancer Netw. 2021, 19, 1382–1394. [Google Scholar] [CrossRef]
- Sexton, M.; Jones, D.B.; Maloney, M.E. Histologic pattern analysis of basal cell carcinoma. Study of a series of 1039 consecutive neoplasms. J. Am. Acad. Dermatol. 1990, 23, 1118–1126. [Google Scholar] [CrossRef]
- Kundnani, N.R.; Tirziu, R.V.; Borza, C.; Tirziu, C.; Sharma, A.; Rosca, C.I.; Baderca, F.; Paul, C.; Solovan, C.S.; Blidisel, A. Implication of wide surgical excision in minimizing positive margins and consequential secondary excision-a retrospective comparative study involving 106 basal cell carcinoma cases. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4283–4288. [Google Scholar]
- Clover AJ, P.; Salwa, S.P.; Bourke, M.G.; McKiernan, J.; Forde, P.F.; O’Sullivan, S.T.; Kelly, E.J.; Soden, D.M. Electrochemotherapy for the treatment of primary basal cell carcinoma; A randomised control trial comparing electrochemotherapy and surgery with five year follow up. Eur. J. Surg. Oncol. 2020, 46, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Patidar, S. Excision of Basal cell carcinoma with radio frequency ablation. J. Cutan Aesthet. Surg. 2008, 1, 29–30. [Google Scholar] [CrossRef]
- Hibler, B.P.; Sierra, H.; Cordova, M.; Phillips, W.; Rajadhyaksha, M.; Nehal, K.S.; Rossi, A.M. Carbon dioxide laser ablation of basal cell carcinoma with visual guidance by reflectance confocal microscopy: A proof-of-principle pilot study. Br. J. Dermatol. 2016, 174, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.S.; Cho, H.H.; Ko, H.C.; Bae, Y.C.; Oh, C.K.; Kim, M.B.; Kwon, K.S. Recurrent basal cell carcinoma following ablative laser procedures. J. Am. Acad. Dermatol. 2011, 64, 723–729. [Google Scholar] [CrossRef]
- Gulleth, Y.; Goldberg, N.; Silverman, R.P.; Gastman, B.R. What is the best surgical margin for a Basal cell carcinoma: A meta-analysis of the literature. Plast. Reconstr. Surg. 2010, 126, 1222–1231. [Google Scholar] [CrossRef]
- Szewczyk, M.P.; Pazdrowski, J.; Dańczak-Pazdrowska, A.; Golusiński, P.; Majchrzak, E.; Luczewski, L.; Marszałek, S.; Silny, W.; Golusiński, W. Analysis of selected recurrence risk factors after treatment of head and neck basal cell carcinoma. Postepy Dermatol. Alergol. 2014, 31, 146–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cigna, E.; Tarallo, M.; Maruccia, M.; Sorvillo, V.; Pollastrini, A.; Scuderi, N. Basal cell carcinoma: 10 years of experience. J. Skin Cancer 2011, 2011, 476362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, A.Y.; Lee, S.H.; McGregor, D.H. Factors predictive of recurrence of basal cell carcinoma. Am. J. Dermatopathol. 1989, 11, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Bichakjian, C.K.; Olencki, T.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Berg, D.; Bowen, G.M.; Cheney, R.T.; Daniels, G.A.; Glass, L.F.; et al. Basal Cell Skin Cancer, Version 1.2016, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2016, 14, 574–597. [Google Scholar] [CrossRef]
- Leibovitch, I.; Huilgol, S.C.; Selva, D.; Richards, S.; Paver, R. Basal cell carcinoma treated with Mohs surgery in Australia III. Perineural invasion. J. Am. Acad. Dermatol. 2005, 53, 458–463. [Google Scholar] [CrossRef]
- Silverman, M.K.; Kopf, A.W.; Grin, C.M.; Bart, R.S.; Levenstein, M.J. Recurrence rates of treated basal cell carcinomas. Part 1: Overview. J. Dermatol. Surg. Oncol. 1991, 17, 713–718. [Google Scholar] [CrossRef]
- Dubin, N.; Kopf, A.W. Multivariate risk score for recurrence of cutaneous basal cell carcinomas. Arch. Dermatol. 1983, 119, 373–377. [Google Scholar] [CrossRef]
- Wolf, D.J.; Zitelli, J.A. Surgical margins for basal cell carcinoma. Arch. Dermatol. 1987, 123, 340–344. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology; Basal Cell Skin Cancer. Version 1. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nmsc.pdf (accessed on 15 January 2022).
- Nahhas, A.F.; Scarbrough, C.A.; Trotter, S. A Review of the Global Guidelines on Surgical Margins for Nonmelanoma Skin Cancers. J. Clin. Aesthet. Dermatol. 2017, 10, 37–46. [Google Scholar]
- Maloney, M.E.; Jones, D.B.; Sexton, F.M. Pigmented basal cell carcinoma: Investigation of 70 cases. J. Am. Acad. Dermatol. 1992, 27, 74–78. [Google Scholar] [CrossRef]
- Betti, R.; Gualandri, L.; Cerri, A.; Inselvini, E.; Crosti, C. Clinical features and histologic pattern analysis of pigmented basal cell carcinomas in an Italian population. J. Dermatol. 1998, 25, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Shimizu, H.; Nishikawa, T. Clinical histopathological characteristics of basal cell carcinoma in Japanese patients. Arch. Dermatol. 1996, 132, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Inatomi, Y.; Nagae, K.; Nakano-Nakamura, M.; Nakahara, T.; Furue, M.; Uchi, H. Narrow-margin excision is a safe, reliable treatment for well-defined, primary pigmented basal cell carcinoma: An analysis of 288 lesions in Japan. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1828–1831. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Tanese, K.; Hirai, I.; Kameyama, K.; Kawakami, Y.; Amagai, M.; Funakoshi, T. Evaluation of the appropriate surgical margin for pigmented basal cell carcinoma according to the risk factors for recurrence: A single-institute retrospective study in Japan. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e453–e455. [Google Scholar] [CrossRef] [PubMed]
- Takenouchi, T.; Nomoto, S.; Ito, M. Factors influencing the linear depth of invasion of primary basal cell carcinoma. Dermatol. Surg. 2001, 27, 393–396. [Google Scholar] [PubMed]
- Terashi, H.; Kurata, S.; Hashimoto, H.; Asada, Y.; Shibuya, H.; Fujiwara, S.; Takayasu, S. Adequate depth of excision for basal cell carcinoma of the nose. Ann. Plast. Surg. 2002, 48, 214–216. [Google Scholar] [CrossRef]
- Matsushita, S.; Nakamura, Y.; Tanaka, R.; Araki, R.; Yamamura, K.; Yoshioka, M.; Inoue, A.; Komori, T.; Saito, S.; Teramoto, Y.; et al. Prediction of the invasive level of basal cell carcinomas in the facial area: Analysis of 718 Japanese cases. J. Dermatol. Sci.. 2020, 99, 152–157. [Google Scholar] [CrossRef]
- van Loo, E.; Mosterd, K.; Krekels, G.A.; Roozeboom, M.H.; Ostertag, J.U.; Dirksen, C.D.; Steijlen, P.M.; Neumann, H.A.; Nelemans, P.J.; Kelleners-Smeets, N.W. Surgical excision versus Mohs’ micrographic surgery for basal cell carcinoma of the face: A randomised clinical trial with 10 year follow-up. Eur. J. Cancer 2014, 50, 3011–3020. [Google Scholar] [CrossRef]
- Mosterd, K.; Krekels, G.A.; Nieman, F.H.; Ostertag, J.U.; Essers, B.A.; Dirksen, C.D.; Steijlen, P.M.; Vermeulen, A.; Neumann, H.; Kelleners-Smeets, N.W. Surgical excision versus Mohs’ micrographic surgery for primary and recurrent basal-cell carcinoma of the face: A prospective randomised controlled trial with 5-years’ follow-up. Lancet Oncol. 2008, 9, 1149–1156. [Google Scholar] [CrossRef]
- Muller, F.M.; Dawe, R.S.; Moseley, H.; Fleming, C.J. Randomized comparison of Mohs micrographic surgery and surgical excision for small nodular basal cell carcinoma: Tissue-sparing outcome. Dermatol. Surg. 2009, 35, 1349–1354. [Google Scholar] [CrossRef]
- Swann, M.H.; Yoon, J. Merkel cell carcinoma. Semin. Oncol. 2007, 34, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Rollison, D.E.; Giuliano, A.R.; Becker, J.C. New virus associated with merkel cell carcinoma development. J. Natl. Compr. Cancer Netw. 2010, 8, 874–880. [Google Scholar]
- Lewis, K.G.; Weinstock, M.A.; Weaver, A.L.; Otley, C.C. Adjuvant local irradiation for Merkel cell carcinoma. Arch. Dermatol. 2006, 142, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, E.; Knackstedt, R.; Vidimos, A.; Gastman, B.; Knackstedt, T. A retrospective cohort study of comprehensive peripheral and deep margin assessment in Merkel cell carcinoma: Standard margins may be unreliable. J. Am. Acad. Dermatol. 2021, 84, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Jaouen, F.; Kervarrec, T.; Caille, A.; Le Corre, Y.; Dreno, B.; Esteve, E.; Wierzbicka-Hainaut, E.; Maillard, H.; Dinulescu, M.; Blom, A.; et al. Narrow resection margins are not associated with mortality or recurrence in patients with Merkel cell carcinoma: A retrospective study. J. Am. Acad. Dermatol. 2021, 84, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.C.; de Pinho, F.R.; Holstein, A.; Oliver, D.E.; Naqvi, S.M.H.; Kim, Y.; Messina, J.L.; Burke, E.; Gonzalez, R.J.; Sarnaik, A.A.; et al. Resection Margins in Merkel Cell Carcinoma: Is a 1-cm Margin Wide Enough? Ann. Surg. Oncol. 2018, 25, 3334–3340. [Google Scholar] [CrossRef]
- Andruska, N.; Mahapatra, L.; Brenneman, R.J.; Rich, J.T.; Baumann, B.C.; Compton, L.; Thorstad, W.L.; Daly, M.D. Reduced Wide Local Excision Margins are Associated with Increased Risk of Relapse and Death from Merkel Cell Carcinoma. Ann. Surg. Oncol. 2021, 28, 3312–3319. [Google Scholar] [CrossRef]
- Fields, R.C.; Busam, K.J.; Chou, J.F.; Panageas, K.S.; Pulitzer, M.P.; Allen, P.J.; Kraus, D.H.; Brady, M.S.; Coit, D.G. Recurrence after complete resection and selective use of adjuvant therapy for stage I through III Merkel cell carcinoma. Cancer 2012, 118, 3311–3320. [Google Scholar] [CrossRef]
- Strom, T.; Naghavi, A.O.; Messina, J.L.; Kim, S.; Torres-Roca, J.F.; Russell, J.; Sondak, V.K.; Padhya, T.A.; Trotti, A.M.; Caudell, J.J.; et al. Improved local and regional control with radiotherapy for Merkel cell carcinoma of the head and neck. Head Neck 2017, 39, 48–55. [Google Scholar] [CrossRef]
- Harrington, C.; Kwan, W. Radiotherapy and Conservative Surgery in the Locoregional Management of Merkel Cell Carcinoma: The British Columbia Cancer Agency Experience. Ann. Surg. Oncol. 2016, 23, 573–578. [Google Scholar] [CrossRef]
- Tarabadkar, E.S.; Fu, T.; Lachance, K.; Hippe, D.S.; Pulliam, T.; Thomas, H.; Li, J.Y.; Lewis, C.W.; Doolittle-Amieva, C.; Byrd, D.R.; et al. Narrow excision margins are appropriate for Merkel cell carcinoma when combined with adjuvant radiation: Analysis of 188 cases of localized disease and proposed management algorithm. J. Am. Acad. Dermatol. 2021, 84, 340–347. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology; Merkel Cell Carcinoma. Version 1. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/mcc.pdf (accessed on 15 January 2022).
- Carrasquillo, O.Y.; Cancel-Artau, K.J.; Ramos-Rodriguez, A.J.; Cruzval-O’Reilly, E.; Merritt, B.G. Mohs Micrographic Surgery Versus Wide Local Excision in the Treatment of Merkel Cell Carcinoma: A Systematic Review. Dermatol. Surg. 2021, 48, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Ghazawi, F.M.; Iga, N.; Tanaka, R.; Fujisawa, Y.; Yoshino, K.; Yamashita, C.; Yamamoto, Y.; Fujimura, T.; Yanagi, T.; Hata, H.; et al. Demographic and clinical characteristics of extramammary Paget’s disease patients in Japan from 2000 to 2019. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e133–e135. [Google Scholar] [CrossRef] [PubMed]
- Herrel, L.A.; Weiss, A.D.; Goodman, M.; Johnson, T.V.; Osunkoya, A.O.; Delman, K.A.; Master, V.A. Extramammary Paget’s disease in males: Survival outcomes in 495 patients. Ann. Surg. Oncol. 2015, 22, 1625–1630. [Google Scholar] [CrossRef]
- Siesling, S.; Elferink, M.A.; van Dijck, J.A.; Pierie, J.P.; Blokx, W.A. Epidemiology and treatment of extramammary Paget disease in the Netherlands. Eur. J. Surg. Oncol. 2007, 33, 951–955. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Yoshino, K.; Kiyohara, Y.; Kadono, T.; Murata, Y.; Uhara, H.; Hatta, N.; Uchi, H.; Matsushita, S.; Takenouchi, T.; et al. The role of sentinel lymph node biopsy in the management of invasive extramammary Paget’s disease: Multi-center, retrospective study of 151 patients. J. Dermatol. Sci. 2015, 79, 38–42. [Google Scholar] [CrossRef]
- Hendi, A.; Brodland, D.G.; Zitelli, J.A. Extramammary Paget’s disease: Surgical treatment with Mohs micrographic surgery. J. Am. Acad. Dermatol. 2004, 51, 767–773. [Google Scholar] [CrossRef]
- Chung, P.H.; Leong, J.Y.; Voelzke, B.B. Surgical Experience With Genital and Perineal Extramammary Paget’s Disease. Urology 2019, 128, 90–95. [Google Scholar] [CrossRef]
- Lai, C.S.; Lin, S.D.; Yang, C.C.; Chou, C.K. Surgical treatment of the penoscrotal Paget’s disease. Ann. Plast. Surg. 1989, 23, 141–146. [Google Scholar] [CrossRef]
- Murata, Y.; Kumano, K. Extramammary Paget’s disease of the genitalia with clinically clear margins can be adequately resected with 1 cm margin. Eur. J. Dermatol. 2005, 15, 168–170. [Google Scholar]
- Hatta, N.; Yamada, M.; Hirano, T.; Fujimoto, A.; Morita, R. Extramammary Paget’s disease: Treatment, prognostic factors and outcome in 76 patients. Br. J. Dermatol. 2008, 158, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Park, S.K.; Chang, H. The Effectiveness of Mapping Biopsy in Patients with Extramammary Paget’s Disease. Arch. Plast. Surg. 2014, 41, 753–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaku-Ito, Y.; Ito, T.; Tsuji, G.; Nakahara, T.; Hagihara, A.; Furue, M.; Uchi, H. Evaluation of mapping biopsies for extramammary Paget disease: A retrospective study. J. Am. Acad. Dermatol. 2018, 78, 1171–1177.e4. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.A.; Hettinger, P.C.; Neuburg, M.; Dzwierzynski, W.W. Extramammary Paget’s disease: A novel approach to treatment using a modification of peripheral Mohs micrographic surgery. Ann. Plast. Surg. 2012, 68, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.S.; Mulvaney, P.M.; Danesh, M.J.; Feltmate, C.M.; Schmults, C.D. Modified peripheral and central Mohs micrographic surgery for improved margin control in extramammary Paget disease. JAAD Case Rep. 2021, 7, 71–73. [Google Scholar] [CrossRef]
- Fields, R.C.; Hameed, M.; Qin, L.X.; Moraco, N.; Jia, X.; Maki, R.G.; Singer, S.; Brennan, M.F. Dermatofibrosarcoma protuberans (DFSP): Predictors of recurrence and the use of systemic therapy. Ann. Surg. Oncol. 2011, 18, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.J.; Kim, H.; Jin, U.S.; Minn, K.W.; Chang, H. Wide Local Excision for Dermatofibrosarcoma Protuberans: A Single-Center Series of 90 Patients. Biomed. Res. Int. 2015, 2015, 642549. [Google Scholar] [CrossRef] [Green Version]
- Harati, K.; Lange, K.; Goertz, O.; Lahmer, A.; Kapalschinski, N.; Stricker, I.; Lehnhardt, M.; Daigeler, A. A single-institutional review of 68 patients with dermatofibrosarcoma protuberans: Wide re-excision after inadequate previous surgery results in a high rate of local control. World J. Surg. Oncol. 2017, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Fiore, M.; Miceli, R.; Mussi, C.; Lo Vullo, S.; Mariani, L.; Lozza, L.; Collini, P.; Olmi, P.; Casali, P.G.; Gronchi, A. Dermatofibrosarcoma protuberans treated at a single institution: A surgical disease with a high cure rate. J. Clin. Oncol. 2005, 23, 7669–7675. [Google Scholar] [CrossRef]
- Bowne, W.B.; Antonescu, C.R.; Leung, D.H.; Katz, S.C.; Hawkins, W.G.; Woodruff, J.M.; Brennan, M.F.; Lewis, J.J. Dermatofibrosarcoma protuberans: A clinicopathologic analysis of patients treated and followed at a single institution. Cancer 2000, 88, 2711–2720. [Google Scholar] [CrossRef]
- Cai, H.; Wang, Y.; Wu, J.; Shi, Y. Dermatofibrosarcoma protuberans: Clinical diagnoses and treatment results of 260 cases in China. J. Surg. Oncol. 2012, 105, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, I.; Kariya, Y.; Okada, E.; Yasuda, M.; Matori, S.; Ishikawa, O.; Uezato, H.; Takahashi, K. A Novel Chromosomal Translocation Associated With COL1A2-PDGFB Gene Fusion in Dermatofibrosarcoma Protuberans: PDGF Expression as a New Diagnostic Tool. JAMA Dermatol. 2015, 151, 1330–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, A.; Etchichury, D.; Rivero, J.M.; Adamo, L. Treatment of dermatofibrosarcoma of the head and neck with Mohs surgery with paraffin sections. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Bogucki, B.; Neuhaus, I.; Hurst, E.A. Dermatofibrosarcoma protuberans: A review of the literature. Dermatol. Surg. 2012, 38, 537–551. [Google Scholar] [CrossRef] [PubMed]
- McArthur, G.A.; Demetri, G.D.; van Oosterom, A.; Heinrich, M.C.; Debiec-Rychter, M.; Corless, C.L.; Nikolova, Z.; Dimitrijevic, S.; Fletcher, J.A. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J. Clin. Oncol. 2005, 23, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Monnier, D.; Vidal, C.; Martin, L.; Danzon, A.; Pelletier, F.; Puzenat, E.; Algros, M.P.; Blanc, D.; Laurent, R.; Humbert, P.H.; et al. Dermatofibrosarcoma protuberans: A population-based cancer registry descriptive study of 66 consecutive cases diagnosed between 1982 and 2002. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 1237–1242. [Google Scholar] [CrossRef]
- Roses, D.F.; Valensi, Q.; LaTrenta, G.; Harris, M.N. Surgical treatment of dermatofibrosarcoma protuberans. Surg. Gynecol. Obstet. 1986, 162, 449–452. [Google Scholar]
- Chang, C.K.; Jacobs, I.A.; Salti, G.I. Outcomes of surgery for dermatofibrosarcoma protuberans. Eur. J. Surg. Oncol. 2004, 30, 341–345. [Google Scholar] [CrossRef]
- Kimmel, Z.; Ratner, D.; Kim, J.Y.; Wayne, J.D.; Rademaker, A.W.; Alam, M. Peripheral excision margins for dermatofibrosarcoma protuberans: A meta-analysis of spatial data. Ann. Surg. Oncol. 2007, 14, 2113–2120. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, G. Association between surgical excision margins and outcomes in patients with dermatofibrosarcoma protuberans: A meta-analysis. Dermatol. Ther. 2021, 34, e14954. [Google Scholar] [CrossRef]
- Huis In ’t Veld, E.A.; Grünhagen, D.J.; van Coevorden, F.; Smith, M.J.; van Akkooi, A.C.; Wouters, M.; Verhoef, C.; Strauss, D.C.; Hayes, A.; Jvan Houdt, W.J. Adequate surgical margins for dermatofibrosarcoma protuberans-A multi-centre analysis. Eur. J. Surg. Oncol. 2021, 47, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Farma, J.M.; Ammori, J.B.; Zager, J.S.; Marzban, S.S.; Bui, M.M.; Bichakjian, C.K.; Johnson, T.M.; Lowe, L.; Sabel, M.S.; Wong, S.L.; et al. Dermatofibrosarcoma protuberans: How wide should we resect? Ann. Surg. Oncol. 2010, 17, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Du Bay, D.; Cimmino, V.; Lowe, L.; Johnson, T.M.; Sondak, V.K. Low recurrence rate after surgery for dermatofibrosarcoma protuberans: A multidisciplinary approach from a single institution. Cancer 2004, 100, 1008–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology; Dermatofibrosarcoma Protuberans. Version 1. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/dfsp.pdf (accessed on 15 January 2022).
- Meguerditchian, A.N.; Wang, J.; Lema, B.; Kraybill, W.G.; Zeitouni, N.C.; Kane, J.M., 3rd. Wide excision or Mohs micrographic surgery for the treatment of primary dermatofibrosarcoma protuberans. Am. J. Clin. Oncol. 2010, 33, 300–303. [Google Scholar] [CrossRef]
- Paradisi, A.; Abeni, D.; Rusciani, A.; Cigna, E.; Wolter, M.; Scuderi, N.; Rusciani, L.; Kaufmann, R.; Podda, M. Dermatofibrosarcoma protuberans: Wide local excision vs. Mohs micrographic surgery. Cancer Treat Rev. 2008, 34, 728–736. [Google Scholar] [CrossRef]
- Gloster, H.M., Jr.; Harris, K.R.; Roenigk, R.K. A comparison between Mohs micrographic surgery and wide surgical excision for the treatment of dermatofibrosarcoma protuberans. J. Am. Acad. Dermatol. 1996, 35, 82–87. [Google Scholar]
- Foroozan, M.; Sei, J.F.; Amini, M.; Beauchet, A.; Saiag, P. Efficacy of Mohs micrographic surgery for the treatment of dermatofibrosarcoma protuberans: Systematic review. Arch. Dermatol. 2012, 148, 1055–1063. [Google Scholar] [CrossRef]
- Serra-Guillén, C.; Llombart, B.; Nagore, E.; Guillén, C.; Sanmartín, O. Determination of Margins for Tumor Clearance in Dermatofibrosarcoma Protuberans: A Single-Center Study of 222 Cases Treated With Modified Mohs Surgery. Dermatol. Surg. 2022, 48, 51–56. [Google Scholar] [CrossRef]
- Jibbe, A.; Worley, B.; Miller, C.H.; Alam, M. Surgical excision margins for fibrohistiocytic tumors, including atypical fibroxanthoma and undifferentiated pleomorphic sarcoma: A probability model based on a systematic review. J. Am. Acad. Dermatol. 2021; online ahead of print. [Google Scholar] [CrossRef]
- Tsukada, S. Transfer of free skin grafts with a preserved subcutaneous vascular network. Ann. Plast. Surg. 1980, 4, 500–506. [Google Scholar] [CrossRef]
- Fukui, A.; Inada, Y.; Tamai, S.; Mizumoto, S.; Yajima, H.; Sempuku, T. Skin graft including subcutaneous vein: Experimental study and clinical applications. J. Reconstr. Microsurg. 1988, 4, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, T.; Togashi, S.; Haga, Y.; Nakayama, Y.; Sekido, M.; Kiyosawa, T. Linear Separation of Toe Syndactyly with Preserved Subcutaneous Vascular Network Skin Grafts. Ann. Plast. Surg. 2017, 78, 311–314. [Google Scholar] [CrossRef] [PubMed]
- De Gado, F.; Chiummariello, S.; Monarca, C.; Dessy, L.A.; Rizzo, M.I.; Alfano, C.; Scuderi, N. Skin grafting: Comparative evaluation of two dressing techniques in selected body areas. In Vivo 2008, 22, 503–508. [Google Scholar]
- Yin, Y.; Zhang, R.; Li, S.; Guo, J.; Hou, Z.; Zhang, Y. Negative-pressure therapy versus conventional therapy on split-thickness skin graft: A systematic review and meta-analysis. Int. J. Surg. 2018, 50, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Yuki, A.; Takenouchi, T.; Takatsuka, S.; Fujikawa, H.; Abe, R. Investigating the use of tie-over dressing after skin grafting. J. Dermatol. 2017, 44, 1317–1319. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Ito, E.; Kato, H.; Watanabe, S.; Morita, A. A multilayered polyurethane foam technique for skin graft immobilization. Dermatol. Surg. 2012, 38, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Llanos, S.; Danilla, S.; Barraza, C.; Armijo, E.; Piñeros, J.L.; Quintas, M.; Searle, S.; Calderon, W. Effectiveness of negative pressure closure in the integration of split thickness skin grafts: A randomized, double-masked, controlled trial. Ann. Surg. 2006, 244, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Kanakaris, N.K.; Thanasas, C.; Keramaris, N.; Kontakis, G.; Granick, M.S.; Giannoudis, P.V. The efficacy of negative pressure wound therapy in the management of lower extremity trauma: Review of clinical evidence. Injury 2007, 38 (Suppl. 5), S9–S18. [Google Scholar] [CrossRef]
- Petkar, K.S.; Dhanraj, P.; Kingsly, P.M.; Sreekar, H.; Lakshmanarao, A.; Lamba, S.; Shetty, R.; Zachariah, J.R. A prospective randomized controlled trial comparing negative pressure dressing and conventional dressing methods on split-thickness skin grafts in burned patients. Burns 2011, 37, 925–929. [Google Scholar] [CrossRef]
- Nakamura, Y.; Fujisawa, Y.; Ishitsuka, Y.; Tanaka, R.; Maruyama, H.; Okiyama, N.; Watanabe, R.; Fujimoto, M. Negative-pressure closure was superior to tie-over technique for stabilization of split-thickness skin graft in large or muscle-exposing defects: A retrospective study. J. Dermatol. 2018, 45, 1207–1210. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ishitsuka, Y.; Sasaki, K.; Ishizuki, S.; Tanaka, R.; Okiyama, N.; Furuta, J.; Fujimoto, M.; Yamada, T.; Fujisawa, Y. A prospective, phase II study on the safety and efficacy of negative pressure closure for the stabilization of split-thickness skin graft in large or muscle-exposing defects: The NPSG study. J. Dermatol. 2021, 48, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Zargar, H.R.; Wani, A.H.; Zaroo, M.I.; Baba, P.U.F.; Bashir, S.A.; Rasool, A.; Bijli, A.H. Role of customised negative-pressure wound therapy in the integration of split-thickness skin grafts: A randomised control study. Indian J. Plast. Surg. 2017, 50, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Bedi, M.; King, D.M.; DeVries, J.; Hackbarth, D.A.; Neilson, J.C. Does Vacuum-assisted Closure Reduce the Risk of Wound Complications in Patients With Lower Extremity Sarcomas Treated with Preoperative Radiation? Clin. Orthop. Relat. Res. 2019, 477, 768–774. [Google Scholar] [CrossRef] [PubMed]
- A, N.; Khan, W.S.J.P. The evidence-based principles of negative pressure wound therapy in trauma & orthopedics. Open Orthop. J. 2014, 8, 168–177. [Google Scholar] [PubMed] [Green Version]
- Pflibsen, L.R.; Lettieri, S.C.; Kruger, E.A.; Rebecca, A.M.; Teven, C.M. Negative Pressure Wound Therapy in Malignancy: Always an Absolute Contraindication? Plast. Reconstr. Surg. Glob. Open 2020, 8, e3007. [Google Scholar] [CrossRef]
- Taylor, J.W.; Wilmore, D.W.; Peterson, H.D.; Pruitt, B.A., Jr. Scalp as a donor site. Am. J. Surg. 1977, 133, 218–220. [Google Scholar] [CrossRef]
- Chang, L.Y.; Yang, J.Y.; Chuang, S.S.; Hsiao, C.W. Use of the scalp as a donor site for large burn wound coverage: Review of 150 patients. World J. Surg. 1998, 22, 296–299, Discussion 99–300. [Google Scholar] [CrossRef]
- Barret, J.P.; Dziewulski, P.; Wolf, S.E.; Desai, M.H.; Herndon, D.N. Outcome of scalp donor sites in 450 consecutive pediatric burn patients. Plast. Reconstr. Surg. 1999, 103, 1139–1142. [Google Scholar] [CrossRef]
- Kovacs, M.; Karsai, S.; Podda, M. Superiority of occipital donor sites for split-thickness skin grafting in dermatosurgery: Results of a prospective randomized controlled study. J. Dtsch. Dermatol. Ges 2017, 15, 990–997. [Google Scholar] [CrossRef]
- Ito, M.; Liu, Y.; Yang, Z.; Nguyen, J.; Liang, F.; Morris, R.J.; Cotsarelis, G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 2005, 11, 1351–1354. [Google Scholar] [CrossRef]
- Levy, V.; Lindon, C.; Zheng, Y.; Harfe, B.D.; Morgan, B.A. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 2007, 21, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Roh, C.; Roche, M.; Guo, Z.; Photopoulos, C.; Tao, Q.; Lyle, S. Multi-potentiality of a new immortalized epithelial stem cell line derived from human hair follicles. In Vitro Cell Dev. Biol. Anim. 2008, 44, 236–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimoun, M.; Chaouat, M.; Picovski, D.; Serroussi, D.; Smarrito, S. The scalp is an advantageous donor site for thin-skin grafts: A report on 945 harvested samples. Plast. Reconstr. Surg. 2006, 118, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Ayantunde, A.A.; Cheung, K.L. Concepts of seroma formation and prevention in breast cancer surgery. ANZ J. Surg. 2006, 76, 1088–1095. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, E.V.; Ilott, J.; Monypenny, I.J.; Webster, D.J. Obesity predisposes to increased drainage following axillary node clearance: A prospective audit. Ann. R. Coll. Surg. Engl. 2001, 83, 268–271. [Google Scholar]
- Shabbir, A.; Dargan, D. Advancement and benefit of energy sealing in minimally invasive surgery. Asian J. Endosc. Surg. 2014, 7, 95–101. [Google Scholar] [CrossRef]
- Litta, P.; Fantinato, S.; Calonaci, F.; Cosmi, E.; Filippeschi, M.; Zerbetto, I.; Petraglia, F.; Florio, P. A randomized controlled study comparing harmonic versus electrosurgery in laparoscopic myomectomy. Fertil Steril 2010, 94, 1882–1886. [Google Scholar] [CrossRef]
- Dutta, D.K.; Dutta, I. The Harmonic Scalpel. J. Obstet. Gynaecol. India 2016, 66, 209–210. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Hsiao, C.W.; Clymer, J.W.; Schwiers, M.L.; Tibensky, B.N.; Patel, L.; Ferko, N.C.; Chekan, E. Gastrectomy and D2 Lymphadenectomy for Gastric Cancer: A Meta-Analysis Comparing the Harmonic Scalpel to Conventional Techniques. Int. J. Surg. Oncol. 2015, 2015, 397260. [Google Scholar] [CrossRef]
- Lumachi, F.; Basso, S.M.; Santeufemia, D.A.; Bonamini, M.; Chiara, G.B. Ultrasonic dissection system technology in breast cancer: A case-control study in a large cohort of patients requiring axillary dissection. Breast Cancer Res. Treat. 2013, 142, 399–404. [Google Scholar] [CrossRef]
- Iovino, F.; Auriemma, P.P.; Ferraraccio, F.; Antoniol, G.; Barbarisi, A. Preventing seroma formation after axillary dissection for breast cancer: A randomized clinical trial. Am. J. Surg 2012, 203, 708–714. [Google Scholar] [CrossRef]
- He, Q.; Zhuang, D.; Zheng, L.; Fan, Z.; Zhou, P.; Zhu, J.; Lv, Z.; Chai, J.; Cao, L. Harmonic focus versus electrocautery in axillary lymph node dissection for breast cancer: A randomized clinical study. Clin. Breast Cancer 2012, 12, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Selvendran, S.; Cheluvappa, R.; Tr Ng, V.K.; Yarrow, S.; Pang, T.C.; Segara, D.; Soon, P. Efficacy of harmonic focus scalpel in seroma prevention after axillary clearance. Int. J. Surg. 2016, 30, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Gié, O.; Matthey-Gié, M.L.; Marques-Vidal, P.M.; Demartines, N.; Matter, M. Impact of the Ultrasonic scalpel on the amount of drained lymph after axillary or inguinal lymphadenectomy. BMC Surg. 2017, 17, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, R.K.; Mathiazhagan, A.; Panda, N.K. Neck dissection with harmonic scalpel and electrocautery? A randomised study. Auris Nasus Larynx 2017, 44, 590–595. [Google Scholar] [CrossRef]
- Ren, Z.H.; Xu, J.L.; Fan, T.F.; Ji, T.; Wu, H.J.; Zhang, C.P. The Harmonic Scalpel versus Conventional Hemostasis for Neck Dissection: A Meta-Analysis of the Randomized Controlled Trials. PLoS ONE 2015, 10, e0132476. [Google Scholar]
- Nakamura, Y.; Fujisawa, Y.; Maruyama, H.; Furuta, J.; Kawachi, Y.; Otsuka, F. Intraoperative mapping with isosulfan blue of lymphatic leakage during inguinal lymph node dissection (ILND) for skin cancer for the prevention of postoperative lymphocele. J. Surg. Oncol. 2011, 104, 657–660. [Google Scholar] [CrossRef]
- Ravisankar, P.; Malik, K.; Raja, A.; Narayanaswamy, K. Clipping inguinal lymphatics decreases lymphorrhoea after lymphadenectomy following cancer treatment: Results from a randomized clinical trial. Scand. J. Urol. 2021, 55, 480–485. [Google Scholar] [CrossRef]
- Bézu, C.; Coutant, C.; Salengro, A.; Daraï, E.; Rouzier, R.; Uzan, S. Anaphylactic response to blue dye during sentinel lymph node biopsy. Surg. Oncol. 2011, 20, e55–e59. [Google Scholar] [CrossRef]
- Liu, X.; Sprengers, M.; Nelemans, P.J.; Mosterd, K.; Kelleners-Smeets, N.W.J. Risk Factors for Surgical Site Infections in Dermatological Surgery. Acta Derm. Venereol. 2018, 98, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Kulichová, D.; Geimer, T.; Mühlstädt, M.; Ruzicka, T.; Kunte, C. Surgical site infections in skin surgery: A single center experience. J. Dermatol. 2013, 40, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.J.; Dixon, M.P.; Askew, D.A.; Wilkinson, D. Prospective study of wound infections in dermatologic surgery in the absence of prophylactic antibiotics. Dermatol. Surg. 2006, 32, 819–826. [Google Scholar] [PubMed]
- Futoryan, T.; Grande, D. Postoperative wound infection rates in dermatologic surgery. Dermatol. Surg. 1995, 21, 509–514. [Google Scholar] [CrossRef]
- Alam, M.; Ibrahim, O.; Nodzenski, M.; Strasswimmer, J.M.; Jiang, S.I.; Cohen, J.L.; Albano, B.J.; Batra, P.; Behshad, R.; Benedetto, A.V.; et al. Adverse events associated with mohs micrographic surgery: Multicenter prospective cohort study of 20,821 cases at 23 centers. JAMA Dermatol. 2013, 149, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Schlager, J.G.; Ruiz San Jose, V.; Patzer, K.; French, L.E.; Kendziora, B.; Hartmann, D. Are Specific Body Sites Prone for Wound Infection After Skin Surgery? A Systematic Review and Meta-Analysis. Dermatol. Surg. 2022, 48, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Fortaleza, C.; Padoveze, M.C.; Kiffer CR, V.; Barth, A.L.; Carneiro, I.; Giamberardino, H.I.G.; Rodrigues, J.L.N.; Santos Filho, L.; de Mello, M.J.G.; Pereira, M.S.; et al. Multi-state survey of healthcare-associated infections in acute care hospitals in Brazil. J. Hosp. Infect. 2017, 96, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Aiken, A.M.; Zeynep Kubilay, N.; Nthumba, P.; Barasa, J.; Okumu, G.; Mugarura, R.; Elobu, A.; Jombwe, J.; Maimbo, M.; et al. A multimodal infection control and patient safety intervention to reduce surgical site infections in Africa: A multicentre, before-after, cohort study. Lancet Infect. Dis. 2018, 18, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Aiken, A.M.; Wanyoro, A.K.; Mwangi, J.; Mulingwa, P.; Wanjohi, J.; Njoroge, J.; Juma, F.; Mugoya, I.K.; Scott, J.A.; Hall, A.J. Evaluation of surveillance for surgical site infections in Thika Hospital, Kenya. J. Hosp. Infect. 2013, 83, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Anthony, C.A.; Peterson, R.A.; Polgreen, L.A.; Sewell, D.K.; Polgreen, P.M. The Seasonal Variability in Surgical Site Infections and the Association With Warmer Weather: A Population-Based Investigation. Infect. Control Hosp. Epidemiol. 2017, 38, 809–816. [Google Scholar] [CrossRef]
- Fortaleza, C.; Silva, M.O.; Saad Rodrigues, F.; da Cunha, A.R. Impact of weather on the risk of surgical site infections in a tropical area. Am. J. Infect. Control. 2019, 47, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Sasaki, K.; Ishizuki, S.; Inoue, S.; Okune, M.; Kubota, N.; Okiyama, N.; Furuta, J.; Fujisawa, Y. Invasive and in situ lesions of squamous cell carcinoma are independent factors for postoperative surgical-site infection after outpatient skin tumors surgery: A retrospective study of 512 patients. J. Dermatol. 2021, 48, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Shenefelt, P.D. Relaxation strategies for patients during dermatologic surgery. J. Drug. Dermatol. 2010, 9, 795–799. [Google Scholar]
- Nelson, E.A.; Dowsey, M.M.; Knowles, S.R.; Castle, D.J.; Salzberg, M.R.; Monshat, K.; Dunin, A.J.; Choong, P.F. Systematic review of the efficacy of pre-surgical mind-body based therapies on post-operative outcome measures. Complement. Ther. Med. 2013, 21, 697–711. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M. Patient anxiety and modern elective surgery: A literature review. J. Clin. Nurs. 2003, 12, 806–815. [Google Scholar] [PubMed] [Green Version]
- Nilsson, U. The anxiety- and pain-reducing effects of music interventions: A systematic review. Aorn J. 2008, 87, 780–807. [Google Scholar] [CrossRef] [PubMed]
- Vachiramon, V.; Sobanko, J.F.; Rattanaumpawan, P.; Miller, C.J. Music reduces patient anxiety during Mohs surgery: An open-label randomized controlled trial. Dermatol. Surg. 2013, 39, 298–305. [Google Scholar] [CrossRef]
- Alam, M.; Roongpisuthipong, W.; Kim, N.A.; Goyal, A.; Swary, J.H.; Brindise, R.T.; Iyengar, S.; Pace, N.; West, D.P.; Polavarapu, M.; et al. Utility of recorded guided imagery and relaxing music in reducing patient pain and anxiety, and surgeon anxiety, during cutaneous surgical procedures: A single-blinded randomized controlled trial. J. Am. Acad. Dermatol. 2016, 75, 585–589. [Google Scholar] [CrossRef]
- Moon, J.S.; Cho, K.S. The effects of handholding on anxiety in cataract surgery patients under local anaesthesia. J. Adv. Nurs. 2001, 35, 407–415. [Google Scholar] [CrossRef]
- Kim, B.H.; Kang, H.Y.; Choi, E.Y. Effects of handholding and providing information on anxiety in patients undergoing percutaneous vertebroplasty. J. Clin. Nurs. 2015, 24, 3459–3468. [Google Scholar] [CrossRef]
- Yanes, A.F.; Weil, A.; Furlan, K.C.; Poon, E.; Alam, M. Effect of Stress Ball Use or Hand-holding on Anxiety During Skin Cancer Excision: A Randomized Clinical Trial. JAMA Dermatol. 2018, 154, 1045–1049. [Google Scholar] [CrossRef] [Green Version]
- Reves, J.G.; Fragen, R.J.; Vinik, H.R.; Greenblatt, D.J. Midazolam: Pharmacology and uses. Anesthesiology 1985, 62, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Ravitskiy, L.; Phillips, P.K.; Roenigk, R.K.; Weaver, A.L.; Killian, J.M.; Hoverson Schott, A.; Otley, C.C. The use of oral midazolam for perioperative anxiolysis of healthy patients undergoing Mohs surgery: Conclusions from randomized controlled and prospective studies. J. Am. Acad. Dermatol. 2011, 64, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Sniezek, P.J.; Brodland, D.G.; Zitelli, J.A. A randomized controlled trial comparing acetaminophen, acetaminophen and ibuprofen, and acetaminophen and codeine for postoperative pain relief after Mohs surgery and cutaneous reconstruction. Dermatol. Surg. 2011, 37, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
Year | Researchers | Number | Thickness, mm | Location | Peripheral Margin, cm | Recurrence | OS Rate and/or MSS Rate | Follow-Up Period |
---|---|---|---|---|---|---|---|---|
1991 | Veronesi et al. [21] | 612 | ≤2 | Except lesions of face, finger or toes | 1 vs. 3 | 8 year-RFS rate: 81.6% in the 1 cm margin vs. 84.4% in the 3 cm margin (p = 0.74) | 8 year-OS rate: 89.6% in the 1 cm margin vs. 90.3% in the 3 cm margin (p = 0.64) | Mean, 91 months in 1 cm margin and 90 months in the 3 cm margin |
2001 | Balch et al. [24] | 468 | 1–4 | Head/neck or extremity or trunk | 2 vs. 4 | LRR: 2.1% in the 2 cm margin vs. 2.6% in the 4 cm margin (no significant difference) | 10 year-MSS rate: 70% in the 2 cm margin vs. 77% in the 4 cm margin (p = 0.074) | Median, 10 years |
2003 | Khayat et al. [22] | 326 | ≤2 | Except ALM | 2 vs. 5 | LRR: 0.6% in 2 cm margin vs. 2.4% in the 5 cm margin (no significant difference) | 10 year-OS rate: 87% in 2 cm margin vs. 86% in the 5 cm margin (p = 0.56) | Median, 16 years |
2012 | Hudson et al. [23] | 576 | 1–2 | Whole body | 1 vs. 2 | LRR: 3.6% in 1 cm margin vs. 0.9% in the 2 cm margin (p = 0.044) | OS rate was not significantly different ** | Median, 38 months |
2004 2016 | Thomas et al. [29] Hayes et al. [27] | 900 | >2 | Trunk or limbs (excluding palms and soles) | 1 vs. 3 | Locoregional recurrence * rate up to 3 years was significantly higher in the 1 cm margin (p = 0.02) | OS rate was not significantly different (p = 0.14). MSS rate was significantly better in the 3 cm margin (p = 0.041) *** | Median, 5.7 years |
2011 2019 | Gillgren et al. [26] Utjes et al. [25] | 936 | >2 | Trunk or upper or lower extremities | 2 vs. 4 | LRR: 4.3% in 2 cm margin vs. 1.9% in the 4 cm margin (p = 0.06) | Neither OS rate nor MSS rate was significantly different (p = 0.75 and p = 0.61, respectively) **** | Median, 6.7 years for analyses of LRR Median, 19.6 years for analyses of OS rate and MSS rate |
Organization | Peripheral Margin | |||||
---|---|---|---|---|---|---|
Tumor Thickness (Breslow) in Melanoma | In Situ | <1 mm | 1–2 mm | 2.01–4 mm | 4 mm< | |
NCCN | 0.5–1 cm | 1 cm | 1–2 cm | 2 cm | ||
AAD | 0.5–1 cm | 1 cm | 1–2 cm | 2 cm | ||
ESMO | 0.5 cm | 1 cm | 2 cm | |||
CCA | 1.01–2 cm | 2 cm |
Type of Cancer | Year | Researchers | Type of Study | Number | Limitation of Location or Stage | LRR | Prognosis (Survival or Development of Metastases) | Follow-Up Period | Recommendation of NCCN Guidelines |
---|---|---|---|---|---|---|---|---|---|
Melanoma | 1997 | Zitelli et al. [35] | Retrospective study | MMS, 369 | None | MMS, 0.5%; historical WLE, 3% | 5-year OS rate: 93% | 5 years except for 3 patients | The NCCN guidelines do not recommend MMS for primary treatment of invasive cutaneous melanoma when standard clinical margins can be obtained [19]. |
2016 | Valentin-Nogueras et al. [36] | Retrospective study | MMS, 2114 | None | MMS, 0.49%; historical WLE, 9–20% | 5-year disease-specific survival rate: 98.5% | Mean, 3.73 years | ||
2019 | Hanson et al. [37] | Retrospective study | MMS, 46,887; WLE, 3510 | Head and neck | NA | A better OS in MMS than in WLE (WLE HR, 1.181; 95% CI, 1.08–1.29; p < 0.001) | NA | ||
2019 | Cheraghlou et al. [38] | Retrospective study | MMS, 3234; WLE, 67,085 | Stage I * | NA | A better OS in MMS than in WLE (HR, 1.16; 95% CI, 1.03–1.32) | Mean, 4.81 years | ||
2020 | Demer et al. [39] | Retrospective study | MMS, 4413; WLE, 184,449 | Trunk and extremities | NA | No significant difference in OS (WLE HR, 1.03; 95% CI, 0.94–1.13; p = 0.51) | NA | ||
SCC | 2005 | Leibovitch et al. [54] | Prospective observational study | 381 | None | Primary SCC, 2.6%; recurrent SCC, 5.9% | No cases with metastases during the follow-up period | 5 years | The NCCN guidelines recommend MMS as the preferred surgical technique for high-risk SCC [50,56]. |
2010 | Pugliano-Mauro et al. [53] | Retrospective study | 260 | None | 1.2% | Six tumors (2.3%) metastasized. | A minimum of 2 years | ||
2019 | Xiong et al. [55] | Retrospective study | MMS, 240; WLE, 126 | T2a ** | MMS, 1.2%; WLE, 4.0% (p = 0.03) | A significantly lower cumulative incidence of overall disease progression *** in MMS than in WLE (WLE HR, 2.9; 95% CI, 1.1–7.6; p = 0.03) | Mean, 2.8 years | ||
BCC | 2008 2014 | Mosterd et al. [83] Van Loo et al. [82] | Prospective randomized controlled study | MMS, 198; WLE, 199 in primary BCC; MMS, 100; WLE, 102 in recurrent BCC | Face | MMS, 4.4%; WLE, 12.2% in primary BCC (p = 0.10); MMS, 3.9% vs. WLE, 13.5% in recurrent BCC (p = 0.023) | NA | Median, 79.2 months in primary BCC and 85.0 months in recurrent BCC | The current NCCN guidelines recommend MMS as a preferred technique for the treatment of high-risk BCC [72]. |
MCC | 2022 | Carrasquillo et al. [97] | Systematic literature search | MMS, 58; WLE, 4216 | Stage I * | MMS, 8.5%; WLE, 6.8% (p = 0.53) | No significant difference in regional and distant metastases between MMS and WLE | NA | The NCCN guidelines recommend MMS as an alternative method when it does not interfere with sentinel lymph node biopsy [73,96]. |
EMPD | 2004 | Hendi et al. [102] | Retrospective study | 27 | None | MMS, 26%; historical WLE, 33–60% | Two patients developed metastases | Mean, 58.6 months; median, 55.5 months | NA |
DFSP | 2008 | Paradisi et al. [131] | Retrospective study | MMS, 41; WLE, 38 | None | MMS, 0%; WLE, 13.2% (p = 0.016) | No cases with metastases during the follow-up period | Mean, 5.4 years in MMS and 4.8 years in WLE | The NCCN guidelines recommend MMS rather than WLE if MMS is available [73,129]. |
2021 | Gonzalez et al. [118] | Retrospective study | 41 | Head and neck | MMS, 2.4%; historical WLE, 9–73% | No cases with metastases during the follow-up period | Mean, 92.6 months | ||
2022 | Serra-Guillen et al. [134] | Retrospective study | 222 | None | 0.9% | NA | Mean, 71.5 months; median, 61.5 months | ||
AFX | 2021 | Jibbe et al. [135] | Systematic literature search | MMS, 71; WLE, 30 | None | 8.3% (MMS) vs. 26.7% (WLE) | NA. | Mean, 41.4 months | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishizuki, S.; Nakamura, Y. Evidence from Clinical Studies Related to Dermatologic Surgeries for Skin Cancer. Cancers 2022, 14, 3835. https://doi.org/10.3390/cancers14153835
Ishizuki S, Nakamura Y. Evidence from Clinical Studies Related to Dermatologic Surgeries for Skin Cancer. Cancers. 2022; 14(15):3835. https://doi.org/10.3390/cancers14153835
Chicago/Turabian StyleIshizuki, Shoichiro, and Yoshiyuki Nakamura. 2022. "Evidence from Clinical Studies Related to Dermatologic Surgeries for Skin Cancer" Cancers 14, no. 15: 3835. https://doi.org/10.3390/cancers14153835
APA StyleIshizuki, S., & Nakamura, Y. (2022). Evidence from Clinical Studies Related to Dermatologic Surgeries for Skin Cancer. Cancers, 14(15), 3835. https://doi.org/10.3390/cancers14153835