Survival Prediction in Patients Treated Surgically for Metastases of the Appendicular Skeleton—An External Validation of 2013-SPRING Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The 2013-SPRING Model
2.2. Statistical Analysis
3. Results
3.1. Differences between Osteosynthesis Group (n = 141) and Endoprosthesis Group (n = 162)
3.2. Differences between Upper Limb (n = 65) and Lower Limb (n = 238)
3.3. Validation of 3-, 6- and 12-Month Risk of Death
3.3.1. Subgroup Analysis—Osteosynthesis Group (n = 141) vs. Endoprosthesis Group (n = 162)
3.3.2. Subgroup Analysis—Upper Limb (n = 65) vs. Lower Limb (n = 238)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillekås, H.; Rogers, M.S.; Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019, 8, 5574–5576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12 Pt 2, 6243s–6249s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, R.E.; Croucher, P.I.; Padhani, A.R.; Clézardin, P.; Chow, E.; Fallon, M.; Guise, T.; Colangeli, S.; Capanna, R.; Costa, L. Bone metastases. Nat. Rev. Dis. Primers 2020, 6, 83. [Google Scholar] [CrossRef]
- Tahara, R.K.; Brewer, T.M.; Theriault, R.L.; Ueno, N.T. Bone Metastasis of Breast Cancer. Adv. Exp. Med. Biol. 2019, 1152, 105–129. [Google Scholar] [PubMed]
- Ratasvuori, M.; Wedin, R.; Hansen, B.H.; Keller, J.; Trovik, C.; Zaikova, O.; Bergh, P.; Kalen, A.; Laitinen, M. Prognostic role of en-bloc resection and late onset of bone metastasis in patients with bone-seeking carcinomas of the kidney, breast, lung, and prostate: SSG study on 672 operated skeletal metastases. J. Surg. Oncol. 2014, 110, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.; Hadji, P.; Body, J.-J.; Santini, D.; Chow, E.; Terpos, E.; Oudard, S.; Bruland, Ø.; Flamen, P.; Kurth, A.; et al. Bone health in cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2020, 31, 1650–1663. [Google Scholar] [CrossRef]
- Jiang, L.; Cui, X.; Ma, H.; Tang, X. Comparison of denosumab and zoledronic acid for the treatment of solid tumors and multiple myeloma with bone metastasis: A systematic review and meta-analysis based on randomized controlled trials. J. Orthop. Surg. Res. 2021, 16, 400. [Google Scholar] [CrossRef]
- Rich, S.E.; Chow, R.; Raman, S.; Zeng, K.L.; Lutz, S.; Lam, H.; Silva, M.F.; Chow, E. Update of the systematic review of palliative radiation therapy fractionation for bone metastases. Radiother. Oncol. 2018, 126, 547–557. [Google Scholar] [CrossRef]
- Willeumier, J.J.; van der Linden, Y.M.; van de Sande, M.A.J.; Dijkstra, P.D.S. Treatment of pathological fractures of the long bones. Efort Open Rev. 2016, 1, 136–145. [Google Scholar] [CrossRef]
- Bauer, H.C.; Wedin, R. Survival after surgery for spinal and extremity metastases. Prognostication in 241 patients. Acta Orthop. Scand. 1995, 66, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Leithner, A.; Radl, R.; Gruber, G.; Hochegger, M.; Leithner, K.; Welkerling, H.; Rehak, P.; Windhager, R. Predictive value of seven preoperative prognostic scoring systems for spinal metastases. Eur. Spine J. 2008, 17, 1488–1495. [Google Scholar] [CrossRef] [Green Version]
- Tseng, T.-E.; Lee, C.-C.; Yen, H.-K.; Groot, O.Q.; Hou, C.-H.; Lin, S.-Y.; Bongers, M.E.R.; Hu, M.-H.; Karhade, A.V.; Ko, J.-C.; et al. International Validation of the SORG Machine-learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment. Clin. Orthop. Relat. Res. 2021, 480, 367–378. [Google Scholar] [CrossRef]
- Willeumier, J.; van der Linden, Y.; Van Der Wal, C.; Jutte, P.; Van Der Velden, J.; Smolle, M.; Van Der Zwaal, P.; Koper, P.; Bakri, L.; De Pree, I.; et al. An Easy-to-Use Prognostic Model for Survival Estimation for Patients with Symptomatic Long Bone Metastases. J. Bone Jt. Surg. 2018, 100, 196–204. [Google Scholar] [CrossRef]
- Piccioli, A.; Spinelli, M.S.; Forsberg, J.A.; Wedin, R.; Healey, J.H.; Ippolito, V.; Daolio, P.A.; Ruggieri, P.; Maccauro, G.; Gasbarrini, A.; et al. How do we estimate survival? External validation of a tool for survival estimation in patients with metastatic bone disease—Decision analysis and comparison of three international patient populations. BMC Cancer 2015, 15, 424. [Google Scholar] [CrossRef]
- Sorensen, M.S.; Gerds, T.A.; Hindso, K.; Petersen, M.M. Prediction of survival after surgery due to skeletal metastases in the extremities. Bone Jt. J. 2016, 98-B, 271–277. [Google Scholar] [CrossRef]
- Sorensen, M.S.; Gerds, T.A.; Hindso, K.; Petersen, M.M. External Validation and Optimization of the SPRING Model for Prediction of Survival after Surgical Treatment of Bone Metastases of the Extremities. Clin. Orthop. Relat. Res. 2018, 476, 1591–1599. [Google Scholar] [CrossRef]
- Steensma, M.; Healey, J.H. Trends in the surgical treatment of pathologic proximal femur fractures among Musculoskeletal Tumor Society members. Clin. Orthop. Relat. Res. 2013, 471, 2000–2006. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.J.; Racano, A.; Yeung, H. Surgical management of bone metastases: Quality of evidence and systematic review. Ann. Surg. Oncol. 2014, 21, 4081–4089. [Google Scholar] [CrossRef]
- Chen, J.H.; Alagappan, M.; Goldstein, M.K.; Asch, S.M.; Altman, R.B. Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets. Int. J. Med. Inform. 2017, 102, 71–79. [Google Scholar] [CrossRef]
- Al-Jahwari, A.; Schemitsch, E.H.; Wunder, J.S.; Ferguson, P.C.; Zdero, R. The biomechanical effect of torsion on humeral shaft repair techniques for completed pathological fractures. J. Biomech. Eng. 2012, 134, 024501. [Google Scholar] [CrossRef]
- Mirels, H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin. Orthop. Relat. Res. 1989, 1989, 256–264. [Google Scholar] [CrossRef]
Bone Metastasis Location | Lower Limb (n = 238) | Upper Limb (n = 65) | ||
---|---|---|---|---|
Femur (n = 221) | Tibia (n = 17) | Humerus (n = 64) | Ulna (n = 1) | |
Osteosynthesis Group (n = 141; 100%) | ||||
(Compound) plate osteosynthesis (n = 53; 37.6%) | 28 | 4 | 20 | 1 |
Intramedullary nailing (n = 88; 62.4%) | 47 | 12 | 29 | 0 |
Endoprosthesis Group (n = 162; 100%) | ||||
Tumour endoprosthesis (n = 53; 32.7%) | 41 | 1 | 11 | 0 |
Total joint arthroplasty (n = 9; 5.6%) | 9 | 0 | 0 | 0 |
Hemiarthroplasty (n = 100; 61.7%) | 96 | 0 | 4 | 0 |
Entire Cohort (n = 303) | Osteosynthesis Group (n = 141) | Endoprosthesis Group (n = 162) | p-Value | Upper Limb (n = 65) | Lower Limb (n = 238) | p-Value | ||
---|---|---|---|---|---|---|---|---|
Gender | Female | 163 (53.5) | 65 (46.1) | 98 (60.5) | 0.012 | 30 (46.2) | 133 (55.9) | 0.163 |
Male | 140 (46.5) | 76 (53.9) | 64 (39.5) | 35 (53.8) | 105 (44.1) | |||
Bone Metastasis Location | Femur | 221 (72.9) | 75 (53.2) | 146 (90.1) | <0.001 | N/A | ||
Humerus | 64 (21.1) | 49 (34.8) | 15 (9.3) | |||||
Tibia | 17 (5.6) | 16 (11.3) | 1 (0.6) | |||||
Ulna | 1 (0.4) | 1 (0.7) | 0 (0.0) | |||||
Age at Surgery (in years, mean ± SD) | 67.6 ± 11.1 | 68.1 ± 10.4 | 67.1 ± 11.7 | 0.397 | 69.6 ± 10.8 | 67.0 ± 11.2 | 0.090 | |
Primary Cancer Growth | Slow | 95 (31.4) | 36 (25.5) | 59 (36.4) | 0.089 | 20 (30.8) | 75 (31.5) | 0.573 |
Moderate | 83 (27.4) | 39 (27.7) | 44 (27.2) | 21 (32.3) | 62 (26.1) | |||
Fast | 125 (41.2) | 66 (46.8) | 59 (36.4) | 24 (36.9) | 101 (42.4) | |||
ASA | 1 + 2 | 45 (14.9) | 26 (18.4) | 19 (11.7) | 0.101 | 14 (21.5) | 31 (13.0) | 0.087 |
3 + 4 | 258 (85.1) | 115 (81.6) | 143 (88.3) | 51 (78.5) | 207 (87.0) | |||
Karnofski Score | < 70 | 139 (45.9) | 59 (41.8) | 80 (49.4) | 0.189 | 25 (38.5) | 114 (47.9) | 0.176 |
≥ 70 | 164 (54.1) | 82 (58.2) | 82 (50.6) | 40 (61.5) | 124 (52.1) | |||
Visceral Metastases | No | 155 (51.2) | 63 (44.7) | 92 (56.8) | 0.035 | 37 (56.9) | 118 (49.6) | 0.294 |
Yes | 148 (48.8) | 78 (55.3) | 70 (43.2) | 28 (43.1) | 120 (50.4) | |||
Multiple Bone Metastases | No | 86 (28.4) | 43 (30.5) | 43 (26.5) | 0.446 | 21 (32.3) | 65 (27.3) | 0.428 |
Yes | 217 (71.6) | 98 (69.5) | 119 (73.5) | 44 (67.7) | 173 (72.7) | |||
Fracture Type | Impending | 93 (30.7) | 52 (36.9) | 41 (25.3) | 0.029 | 11 (16.9) | 82 (34.5) | 0.007 |
Pathologic | 210 (69.3) | 89 (63.1) | 121 (74.7) | 54 (83.1) | 156 (65.5) | |||
Haemoglobin Levels (in mM; mean ± SD) | 7.3 ± 1.1 | 7.5 ± 1.2 | 7.2 ± 1.0 | 0.015 | 7.6 ± 1.2 | 7.3 ± 1.1 | 0.058 |
Time Since Surgery | 3 Months | 6 Months | 12 Months | ||||
---|---|---|---|---|---|---|---|
PPV | NPV | PPV | NPV | PPV | NPV | ||
Entire Cohort (n = 303) | 54.0% | 75.8% | 74.1% | 73.2% | 77.8% | 71.4% | |
Type of Surgery | Osteosynthesis (n = 141) | 62.5% | 78.0% | 73.3% | 78.8% | 79.1% | 72.0% |
Endoprosthesis (n = 162) | 58.3% | 78.6% | 72.9% | 70.7% | 79.0% | 68.8% | |
Metastasis Location | Upper Limb (n = 65) | 66.7% | 85.1% | 79.3% | 86.1% | 74.5% | 72.2% |
Lower Limb (n = 238) | 60.5% | 75.9% | 69.5% | 69.2% | 79.4% | 76.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolle, M.A.; Musser, E.; Bergovec, M.; Friesenbichler, J.; Wibmer, C.L.; Leitner, L.; Sørensen, M.S.; Petersen, M.M.; Brcic, I.; Szkandera, J.; et al. Survival Prediction in Patients Treated Surgically for Metastases of the Appendicular Skeleton—An External Validation of 2013-SPRING Model. Cancers 2022, 14, 3521. https://doi.org/10.3390/cancers14143521
Smolle MA, Musser E, Bergovec M, Friesenbichler J, Wibmer CL, Leitner L, Sørensen MS, Petersen MM, Brcic I, Szkandera J, et al. Survival Prediction in Patients Treated Surgically for Metastases of the Appendicular Skeleton—An External Validation of 2013-SPRING Model. Cancers. 2022; 14(14):3521. https://doi.org/10.3390/cancers14143521
Chicago/Turabian StyleSmolle, Maria Anna, Ewald Musser, Marko Bergovec, Joerg Friesenbichler, Christine Linda Wibmer, Lukas Leitner, Michala Skovlund Sørensen, Michael Mørk Petersen, Iva Brcic, Joanna Szkandera, and et al. 2022. "Survival Prediction in Patients Treated Surgically for Metastases of the Appendicular Skeleton—An External Validation of 2013-SPRING Model" Cancers 14, no. 14: 3521. https://doi.org/10.3390/cancers14143521
APA StyleSmolle, M. A., Musser, E., Bergovec, M., Friesenbichler, J., Wibmer, C. L., Leitner, L., Sørensen, M. S., Petersen, M. M., Brcic, I., Szkandera, J., Scheipl, S., & Leithner, A. (2022). Survival Prediction in Patients Treated Surgically for Metastases of the Appendicular Skeleton—An External Validation of 2013-SPRING Model. Cancers, 14(14), 3521. https://doi.org/10.3390/cancers14143521