Recent Advances in the Genetic of MALT Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. IGHV Usage
3. Cytogenetics
4. Mutations
5. MicroRNAs
6. Transcriptomics
7. Epigenetics and Methylation
8. Applicability in the Real-World
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Isaacson, P.; Wright, D.H. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer 1983, 52, 1410–1416. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; World Health Organization, International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; World Health Organization: Geneva, Switzerland; IARC: Lyon, France, 2017. [Google Scholar]
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef]
- Cerhan, J.R.; Habermann, T.M. Epidemiology of Marginal Zone Lymphoma. Ann. Lymphoma 2021, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Luminari, S.; Cesaretti, M.; Marcheselli, L.; Rashid, I.; Madrigali, S.; Maiorana, A.; Federico, M. Decreasing incidence of gastric MALT lymphomas in the era of anti-Helicobacter pylori interventions: Results from a population-based study on extranodal marginal zone lymphomas. Ann. Oncol. 2010, 21, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Zucca, E.; Bertoni, F. The spectrum of MALT lymphoma at different sites: Biological and therapeutic relevance. Blood 2016, 127, 2082–2092. [Google Scholar] [CrossRef] [Green Version]
- Isaacson, P.G.; Du, M.-Q. MALT lymphoma: From morphology to molecules. Nat. Rev. Cancer 2004, 4, 644–653. [Google Scholar] [CrossRef]
- Ferreri, A.J.M.; Govi, S.; Ponzoni, M. Marginal zone lymphomas and infectious agents. Semin. Cancer Biol. 2013, 23, 431–440. [Google Scholar] [CrossRef]
- Zucca, E.; Conconi, A.; Pedrinis, E.; Cortelazzo, S.; Motta, T.; Gospodarowicz, M.K.; Patterson, B.J.; Ferreri, J.M.; Ponzoni, M.; Devizzi, L.; et al. Nongastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Arbor Cienc. Pensam. Cult. 2003, 101, 2489–2495. [Google Scholar] [CrossRef]
- Isaacson, P.G. Gastrointestinal lymphoma. Hum. Pathol. 1994, 25, 1020–1029. [Google Scholar] [CrossRef]
- Morgner, A.; Lehn, N.; Andersen, L.P.; Thiede, C.; Bennedsen, M.; Trebesius, K.; Neubauer, B.; Neubauer, A.; Stolte, M.; Bayerdörffer, E. Helicobacter heilmannii-associated primary gastric low-grade MALT lymphoma: Complete remission after curing the infection. Gastroenterology 2000, 118, 821–828. [Google Scholar] [CrossRef]
- Ponzoni, M.; Ferreri, A.J.M.; Guidoboni, M.; Lettini, A.A.; Cangi, M.G.; Pasini, E.; Sacchi, L.; Pecciarini, L.; Grassi, S.; Dal Cin, E.; et al. Chlamydia Infection and Lymphomas: Association Beyond Ocular Adnexal Lymphomas Highlighted by Multiple Detection Methods. Clin. Cancer Res. 2008, 14, 5794–5800. [Google Scholar] [CrossRef] [Green Version]
- Ferreri, A.J.M.; Guidoboni, M.; Ponzoni, M.; De Conciliis, C.; Dell’Oro, S.; Fleischhauer, K.; Caggiari, L.; Lettini, A.A.; Dal Cin, E.; Ieri, R.; et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J. Natl. Cancer Inst. 2004, 96, 586–594. [Google Scholar] [CrossRef]
- Goodlad, J.R.; Davidson, M.M.; Hollowood, K.; Ling, C.; MacKenzie, C.; Christie, I.; Batstone, P.J.; Ho-Yen, D.O. Primary cutaneous B-cell lymphoma and Borrelia burgdorferi infection in patients from the highlands of Scotland. Am. J. Surg. Pathol. 2000, 24, 1279–1285. [Google Scholar] [CrossRef]
- Cerroni, L.; Zöchling, N.; Pütz, B.; Kerl, H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J. Cutan. Pathol. 1997, 24, 457–461. [Google Scholar] [CrossRef]
- Lecuit, M.; Abachin, E.; Martin, A.; Poyart, C.; Pochart, P.; Suarez, F.; Bengoufa, D.; Feuillard, J.; Lavergne, A.; Gordon, J.I.; et al. Immunoproliferative Small Intestinal Disease Associated with Campylobacter jejuni. N. Engl. J. Med. 2004, 350, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Adam, P.; Czapiewski, P.; Colak, S.; Kosmidis, P.; Tousseyn, T.; Sagaert, X.; Boudova, L.; Okoń, K.; Morresi-Hauf, A.; Agostinelli, C.; et al. Prevalence of Achromobacter xylosoxidans in pulmonary mucosa-associated lymphoid tissue lymphoma in different regions of Europe. Br. J. Haematol. 2014, 164, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Wöhrer, S.; Troch, M.; Streubel, B.; Zwerina, J.; Skrabs, C.; Formanek, M.; Hauff, W.; Hoffmann, M.; Müllauer, L.; Chott, A.; et al. MALT lymphoma in patients with autoimmune diseases: A comparative analysis of characteristics and clinical course. Leukemia 2007, 21, 1812–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanina, N.; Bejar, R.; Choi, M.; Goodman, A.; Wieduwilt, M.; Mulroney, C.; Kim, L.; Yeerna, H.; Tamayo, P.; Vergilio, J.A.; et al. Comprehensive genomic profiling reveals diverse but actionable molecular portfolios across hematologic malignancies: Implications for next generation clinical trials. Cancers 2019, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussell, T.; Isaacson, P.G.; Spencer, J. Proliferation and differentiation of tumour cells from B-cell lymphoma of mucosa-associated lymphoid tissue in vitro. J. Pathol. 1993, 169, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Noy, A.; de Vos, S.; Thieblemont, C.; Martin, P.; Flowers, C.R.; Morschhauser, F.; Collins, G.P.; Ma, S.; Coleman, M.; Peles, S.; et al. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood 2017, 129, 2224–2232. [Google Scholar] [CrossRef]
- Aarts, W.M.; Bende, R.J.; Steenbergen, E.J.; Kluin, P.M.; Ooms, E.C.M.; Pals, S.T.; Van Noesel, C.J.M. Variable heavy chain gene analysis of follicular lymphomas: Correlation between heavy chain isotype expression and somatic mutation load. Blood 2000, 95, 2922–2929. [Google Scholar] [CrossRef]
- Hallas, C.; Greiner, A.; Peters, K.; Müller-Hermelink, H.K. Immunoglobulin V(H) genes of high-grade mucosa-associated lymphoid tissue lymphomas show a high load of somatic mutations and evidence of antigen-dependent affinity maturation. Lab. Investig. 1998, 78, 277–287. [Google Scholar] [PubMed]
- Qin, Y.; Greiner, A.; Trunk, M.J.F.; Schmausser, B.; Ott, M.M.; Müller-Hermelink, H.K. Somatic Hypermutation in Low-Grade Mucosa-Associated Lymphoid Tissue-Type B-Cell Lymphoma. Blood 1995, 86, 3528–3534. [Google Scholar] [CrossRef] [PubMed]
- Bende, R.J.; Aarts, W.M.; Riedl, R.G.; De Jong, D.; Pals, S.T.; Van Noesel, C.J.M. Among B cell non-Hodgkin’s lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J. Exp. Med. 2005, 201, 1229–1241. [Google Scholar] [CrossRef]
- Du, M.; Diss, T.C.; Xu, C.; Peng, H.; Isaacson, P.G.; Pan, L. Ongoing mutation in MALT lymphoma immunoglobulin gene suggests that antigen stimulation plays a role in the clonal expansion. Leukemia 1996, 10, 1190–1197. [Google Scholar]
- Bertoni, F.; Cazzaniga, G.; Bosshard, G.; Roggero, E.; Barbazza, R.; De Boni, M.; Capella, C.; Pedrinis, E.; Cavalli, F.; Biondi, A.; et al. Immunoglobulin heavy chain diversity genes rearrangement pattern indicates that MALT-type gastric lymphoma B cells have undergone an antigen selection process. Br. J. Haematol. 1997, 97, 830–836. [Google Scholar] [CrossRef]
- Tierens, A.; Delabie, J.; Pittaluga, S.; Driessen, A.; De Wolf-Peeters, C.; DeWolf-Peeters, C. Mutation analysis of the rearranged immunoglobulin heavy chain genes of marginal zone cell lymphomas indicates an origin from different marginal zone B lymphocyte subsets. Blood 1998, 91, 2381–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xochelli, A.; Bikos, V.; Polychronidou, E.; Galigalidou, C.; Agathangelidis, A.; Charlotte, F.; Moschonas, P.; Davis, Z.; Colombo, M.; Roumelioti, M.; et al. Disease-biased and shared characteristics of the immunoglobulin gene repertoires in marginal zone B cell lymphoproliferations. J. Pathol. 2019, 247, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Craig, V.J.; Arnold, I.; Gerke, C.; Huynh, M.Q.; Wündisch, T.; Neubauer, A.; Renner, C.; Falkow, S.; Müller, A. Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 2010, 115, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Du, M.-Q. Mucosa-associated lymphoid tissue lymphoma of various sites: Common molecular mechanisms but different players. Ann. Lymphoma 2020, 4, 8. [Google Scholar] [CrossRef]
- Bende, R.J.; Janssen, J.; Beentjes, A.; Wormhoudt, T.A.M.; Wagner, K.; Haacke, E.A.; Kroese, F.G.M.; Guikema, J.E.; van Noesel, C.J.M. Salivary gland MALT lymphomas of Sjögren’s syndrome patients in majority express rheumatoid factors affinity-selected for IgG. Arthritis Rheumatol. 2020, in press. [Google Scholar] [CrossRef]
- Hoogeboom, R.; Bende, R.J.; Van Noesel, C.J.M. MALT lymphoma-derived rheumatoid factors are nonpolyreactive high-affinity antibodies. Blood 2010, 116, 1818–1819. [Google Scholar] [CrossRef] [Green Version]
- Coupland, S.E.; Foss, H.D.; Anagnostopoulos, I.; Hummel, M.; Stein, H. Immunoglobulin V(H) gene expression among extranodal marginal zone B-cell lymphomas of the ocular adnexa. Investig. Ophthalmol. Vis. Sci. 1999, 40, 555–562. [Google Scholar]
- Mannami, T.; Yoshino, T.; Oshima, K.; Takase, S.; Kondo, E.; Ohara, N.; Nakagawa, H.; Ohtsuki, H.; Harada, M.; Akagi, T. Clinical, histopathological, and immunogenetic analysis of ocular adnexal lymphoproliferative disorders: Characterization of MALT lymphoma and reactive lymphoid hyperplasia. Mod. Pathol. 2001, 14, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Bahler, D.W.; Szankasi, P.; Kulkarni, S.; Tubbs, R.R.; Cook, J.R.; Swerdlow, S.H. Use of similar immunoglobulin VH gene segments by MALT lymphomas of the ocular adnexa. Mod. Pathol. 2009, 22, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Moody, S.; Escudero-Ibarz, L.; Wang, M.; Clipson, A.; Ruiz, E.O.; Dunn-Walters, D.; Xue, X.; Zeng, N.; Robson, A.; Chuang, S.-S.; et al. Significant association between TNFAIP3 inactivation and biased immunoglobulin heavy chain variable region 4-34 usage in mucosa-associated lymphoid tissue lymphoma. J. Pathol. 2017, 243, 3–8. [Google Scholar] [CrossRef]
- van Maldegem, F.; Wormhoudt, T.A.M.; Mulder, M.M.S.; Oud, M.E.C.M.; Schilder-Tol, E.; Musler, A.R.; Aten, J.; Saeed, P.; Kersten, M.J.; Pals, S.T.; et al. Chlamydia psittaci-negative ocular adnexal marginal zone B-cell lymphomas have biased VH4-34 immunoglobulin gene expression and proliferate in a distinct inflammatory environment. Leukemia 2012, 26, 1647–1653. [Google Scholar] [CrossRef] [PubMed]
- Dagklis, A.; Ponzoni, M.; Govi, S.; Cangi, M.G.; Pasini, E.; Charlotte, F.; Vino, A.; Doglioni, C.; Davi, F.; Lossos, I.S.; et al. Immunoglobulin gene repertoire in ocular adnexal lymphomas: Hints on the nature of the antigenic stimulation. Leukemia 2012, 26, 814–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, C.; Chida, A.S.; Adlowitz, D.; Silver, L.; Fox, E.; Jenks, S.A.; Palmer, E.; Wang, Y.; Heimburg-Molinaro, J.; Li, Q.-Z.; et al. Molecular Basis of 9G4 B Cell Autoreactivity in Human Systemic Lupus Erythematosus. J. Immunol. 2013, 191, 4926–4939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.; Ikpatt, O.F.; Dubovy, S.R.; Lossos, C.; Natkunam, Y.; Chapman-Fredricks, J.R.; Fan, Y.-S.; Lossos, I.S. Molecular and genomic aberrations in Chlamydophila psittaci negative ocular adnexal marginal zone lymphomas. Am. J. Hematol. 2013, 88, 730–735. [Google Scholar] [CrossRef] [Green Version]
- Thiede, C.; Alpen, B.; Morgner, A.; Schmidt, M.; Ritter, M.; Ehninger, G.; Stolte, M.; Bayerdörffer, E.; Neubauer, A. Ongoing somatic mutations and clonal expansions after cure of Helicobacter pylori infection in gastric mucosa-assiociated lymphoid tissue B-cell lymphoma. J. Clin. Oncol. 1998, 16, 3822–3831. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, M.; Tabibian-Keissar, H.; Schiby, G.; Shahaf, G.; Pickman, Y.; Hazanov, L.; Rosenblatt, K.; Dunn-Walters, D.K.; Barshack, I.; Mehr, R. Immunoglobulin gene repertoire diversification and selection in the stomach—From gastritis to gastric lymphomas. Front. Immunol. 2014, 5, 264. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Nakamura, N.; Kuze, T.; Ono, N.; Abe, M. Multiple lymphomatous polyposis of the gastrointestinal tract is a heterogenous group that includes mantle cell lymphoma and follicular lymphoma: Analysis of somatic mutation of immunoglobulin heavy chain gene variable region. Hum. Pathol. 1999, 30, 581–587. [Google Scholar] [CrossRef]
- Matsubara, J.; Ono, M.; Negishi, A.; Ueno, H.; Okusaka, T.; Furuse, J.; Furuta, K.; Sugiyama, E.; Saito, Y.; Kaniwa, N.; et al. Identification of a predictive biomarker for hematologic toxicities of gemcitabine. J. Clin. Oncol. 2009, 27, 2261–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuma, H.; Nakamura, T.; Uemura, N.; Chiba, T.; Sugiyama, T.; Asaka, M.; Akamatsu, T.; Ueda, R.; Eimoto, T.; Goto, H.; et al. Immunoglobulin VH gene analysis in gastric MALT lymphomas. Mod. Pathol. 2007, 20, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Bertoni, F.; Copie-Bergman, C.; Ferreri, A.J.M.; Ponzoni, M. Chronic inflammation and extra-nodal marginal-zone lymphomas of MALT-type. Semin. Cancer Biol. 2014, 24, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Bhatt, S.; Lu, X.; Guo, F.; Veelken, H.; Hsu, D.K.; Liu, F.T.; Alvarez Cubela, S.; Kunkalla, K.; Vega, F.; et al. Chlamydophila psittaci-negative ocular adnexal marginal zone lymphomas express self polyreactive B-cell receptors. Leukemia 2015, 29, 1587–1599. [Google Scholar] [CrossRef]
- Du, M.Q. MALT lymphoma: Recent advances in aetiology and molecular genetics. J. Clin. Exp. Hematop. 2007, 47, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Streubel, B.; Simonitsch-Klupp, I.; Müllauer, L.; Lamprecht, A.; Huber, D.; Siebert, R.; Stolte, M.; Trautinger, F.; Lukas, J.; Püspök, A.; et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 2004, 18, 1722–1726. [Google Scholar] [CrossRef] [Green Version]
- Farinha, P.; Gascoyne, R.D. Molecular Pathogenesis of Mucosa-Associated Lymphoid Tissue Lymphoma. J. Clin. Oncol. 2005, 23, 6370–6378. [Google Scholar] [CrossRef]
- Ruefli-Brasse, A.A.; French, D.M.; Dixit, V.M. Regulation of NF-κB-Dependent Lymphocyte Activation and Development by Paracaspase. Science 2003, 302, 1581–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, P.C.; Yonezumi, M.; Inohara, N.; McAllister-Lucas, L.M.; Abazeed, M.E.; Chen, F.F.; Yamaoka, S.; Seto, M.; Núñez, G. Bcl10 and MALT1, Independent Targets of Chromosomal Translocation in MALT Lymphoma, Cooperate in a Novel NF-κB Signaling Pathway. J. Biol. Chem. 2001, 276, 19012–19019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akagi, T.; Motegi, M.; Tamura, A.; Suzuki, R.; Hosokawa, Y.; Suzuki, H.; Ota, H.; Nakamura, S.; Morishima, Y.; Taniwaki, M.; et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999, 18, 5785–5794. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.; Yin, Y.; Borowsky, A.; Kuo, F.; Nourmand, N.; Koontz, J.; Reynolds, C.; Soreng, L.; Griffin, C.; Graeme-Cook, F.; et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 1999, 59, 6205–6213. [Google Scholar] [PubMed]
- Baens, M.; Maes, B.; Steyls, A.; Geboes, K.; Marynen, P.; De Wolf-Peeters, C. The product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am. J. Pathol. 2000, 156, 1433–1439. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Izquierdo, D.; Buchonnet, G.; Siebert, R.; Gascoyne, R.D.; Climent, J.; Karran, L.; Marin, M.; Blesa, D.; Horsman, D.; Rosenwald, A.; et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 2003, 101, 4539–4546. [Google Scholar] [CrossRef] [PubMed]
- Ruland, J.; Duncan, G.S.; Wakeham, A.; Mak, T.W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 2003, 19, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Remstein, E.D.; James, C.D.; Kurtine, P.J. Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am. J. Pathol. 2000, 156, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Lucas, P.C.; Kuffa, P.; Gu, S.; Kohrt, D.; Kim, D.S.L.; Siu, K.; Jin, X.; Swenson, J.; McAllister-Lucas, L.M. A dual role for the API2 moiety in API2-MALT1-dependent NF-kappaB activation: Heterotypic oligomerization and TRAF2 recruitment. Oncogene 2007, 26, 5643–5654. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Du, M.-Q.; Dixit, V.M. Constitutive NF-??B activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 2005, 7, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Baens, M.; Fevery, S.; Sagaert, X.; Noels, H.; Hagens, S.; Broeckx, V.; Billiau, A.D.; De Wolf-Peeters, C.; Marynen, P. Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res. 2006, 66, 5270–5277. [Google Scholar] [CrossRef] [Green Version]
- Dierlamm, J.; Baens, M.; Wlodarska, I.; Stefanova-Ouzounova, M.; Hernandez, J.M.; Hossfeld, D.K.; De Wolf-Peeters, C.; Hagemeijer, A.; Van den Berghe, H.; Marynen, P. The Apoptosis Inhibitor Gene API2 and a Novel 18q Gene, MLT, Are Recurrently Rearranged in the t(11;18)(q21;q21) Associated With Mucosa-Associated Lymphoid Tissue Lymphomas. Blood 1999, 93, 3601–3609. [Google Scholar] [CrossRef]
- Rosebeck, S.; Madden, L.; Jin, X.; Gu, S.; Apel, I.J.; Appert, A.; Hamoudi, R.A.; Noels, H.; Sagaert, X.; Loo, P.V.; et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 2011, 331, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Du, M.-Q.; McAllister-Lucas, L.M.; Lucas, P.C.; Bailey, N.G.; Hogaboam, C.M.; Lim, M.S.; Elenitoba-Johnson, K.S.J. Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2–MALT1 in MALT lymphoma. Nat. Commun. 2015, 6, 5908. [Google Scholar] [CrossRef]
- Streubel, B.; Seitz, G.; Stolte, M.; Birner, P.; Chott, A.; Raderer, M. MALT lymphoma associated genetic aberrations occur at different frequencies in primary and secondary intestinal MALT lymphomas. Gut 2006, 55, 1581–1585. [Google Scholar] [CrossRef] [Green Version]
- Remstein, E.D.; Kurtin, P.J.; Einerson, R.R.; Paternoster, S.F.; Dewald, G.W. Primary pulmonary MALT lymphomas show frequent and heterogeneous cytogenetic abnormalities, including aneuploidy and translocations involving API2 and MALT1 and IGH and MALT1. Leukemia 2004, 18, 156–160. [Google Scholar] [CrossRef]
- Gallardo, F.; Bellosillo, B.; Espinet, B.; Pujol, R.M.; Estrach, T.; Servitje, O.; Romagosa, V.; Barranco, C.; Boluda, S.; García, M.; et al. Aberrant nuclear BCL10 expression and lack of t(11;18)(q21;q21) in primary cutaneous marginal zone B-cell lymphoma. Hum. Pathol. 2006, 37, 867–873. [Google Scholar] [CrossRef]
- Schreuder, M.I.; Hoefnagel, J.J.; Jansen, P.M.; van Krieken, J.H.J.M.; Willemze, R.; Hebeda, K.M. FISH analysis of MALT lymphoma-specific translocations and aneuploidy in primary cutaneous marginal zone lymphoma. J. Pathol. 2005, 205, 302–310. [Google Scholar] [CrossRef]
- Dierlamm, J.; Baens, M.; Stefanova-Ouzounova, M.; Hinz, K.; Wlodarska, I.; Maes, B.; Steyls, A.; Driessen, A.; Verhoef, G.; Gaulard, P.; et al. Detection of t(11;18)(q21;q21) by interphase fluorescence in situ hybridization using API2 and MLTspecific probes. Blood 2000, 96, 2215–2218. [Google Scholar] [CrossRef]
- Murga Penas, E.M.; Hinz, K.; Röser, K.; Copie-Bergman, C.; Wlodarska, I.; Marynen, P.; Hagemeijer, A.; Gaulard, P.; Löning, T.; Hossfeld, D.K.; et al. Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia 2003, 17, 2225–2229. [Google Scholar] [CrossRef] [Green Version]
- Takino, H.; Li, C.; Hu, S.; Kuo, T.-T.; Geissinger, E.; Muller-Hermelink, H.K.; Kim, B.; Swerdlow, S.H.; Inagaki, K. Primary cutaneous marginal zone B-cell lymphoma: A molecular and clinicopathological study of cases from Asia, Germany, and the United States. Mod. Pathol. 2008, 21, 1517–1526. [Google Scholar] [CrossRef] [Green Version]
- Dierlamm, J.; Murga Penas, E.; Daibata, M.; Tagushi, H.; Hinz, K.; Baens, M.; Cools, J.; Schilling, G.; Michaux, L.; Marynen, P.; et al. The novel t(11;12;18)(q21;q13;q21) represents a variant translocation of the t(11;18)(q21;q21) associated with MALT-type lymphoma. Leukemia 2002, 16, 1863–1864. [Google Scholar] [CrossRef] [Green Version]
- Kubonishi, I.; Sugito, S.; Kobayashi, M.; Asahi, Y.; Tsuchiya, T.; Yamashiro, T.; Miyoshi, I. A unique chromosome translocation, t(11;12;18)(q21;q13;q21) [correction of t(11;12;18)(q13;q13;q12)], in primary lung lymphoma. Cancer Genet. Cytogenet. 1995, 82, 54–56. [Google Scholar] [CrossRef]
- Murga Penas, E.M.; Callet-Bauchu, E.; Ye, H.; Hinz, K.; Albert, N.; Copie-Bergman, C.; Gazzo, S.; Berger, F.; Salles, G.; Bokemeyer, C.; et al. The translocations t(6;18;11)(q24;q21;q21) and t(11;14;18)(q21;q32;q21) lead to a fusion of the API2 and MALT1 genes and occur in MALT lymphomas. Haematologica 2007, 92, 405–409. [Google Scholar] [CrossRef]
- Alpen, B.; Neubauer, A.; Dierlamm, J.; Marynen, P.; Thiede, C.; Bayerdörffer, E.; Stolte, M. Translocation t(11;18) absent in early gastric marginal zone B-cell lymphoma of MALT type responding to eradication of Helicobacter pylori infection. Blood 2000, 95, 4014–4015. [Google Scholar] [CrossRef]
- Liu, H.; Ye, H.; Ruskone-Fourmestraux, A.; De Jong, D.; Pileri, S.; Thiede, C.; Lavergne, A.; Boot, H.; Caletti, G.; Wündisch, T.; et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002, 122, 1286–1294. [Google Scholar] [CrossRef]
- Montalban, C.; Santón, A.; Redondo, C.; García-Cosio, M.; Boixeda, D.; Vazquez-Sequeiros, E.; Norman, F.; de Argila, C.M.; Alvarez, I.; Abraira, V.; et al. Long-term persistence of molecular disease after histological remission in low-grade gastric MALT lymphoma treated with H. pylori eradication. Lack of association with translocation t(11;18): A 10-year updated follow-up of a prospective study. Ann. Oncol. 2005, 16, 1539–1544. [Google Scholar] [CrossRef]
- Nakamura, S.; Matsumoto, T.; Nakamura, S.; Jo, Y.; Fujisawa, K.; Suekane, H.; Yao, T.; Tsuneyoshi, M.; Iida, M. Chromosomal translocation t(11;18)(q21;q21) in gastrointestinal mucosa associated lymphoid tissue lymphoma. J. Clin. Pathol. 2003, 56, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Iwano, M.; Okazaki, K.; Uchida, K.; Nakase, H.; Ohana, M.; Matsushima, Y.; Inagaki, H.; Chiba, T. Characteristics of gastric B-cell lymphoma of mucosa-associated lymphoid tissue type involving multiple organs. J. Gastroenterol. 2004, 39, 739–746. [Google Scholar] [CrossRef]
- Yeh, K.H.; Kuo, S.H.; Chen, L.T.; Mao, T.L.; Doong, S.L.; Wu, M.S.; Hsu, H.C.; Tzeng, Y.S.; Chen, C.L.; Lin, J.T.; et al. Nuclear expression of BCL10 or nuclear factor kappa B helps predict Helicobacter pylori-independent status of low-grade gastric mucosa-associated lymphoid tissue lymphomas with or without t(11;18)(q21;q21 ). Blood 2005, 106, 1037–1041. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Ye, H.; Bacon, C.M.; Goatly, A.; Liu, H.; Banham, A.H.; Ventura, R.; Matsumoto, T.; Iida, M.; Ohji, Y.; et al. Clinical impact of genetic aberrations in gastric MALT lymphoma: A comprehensive analysis using interphase fluorescence in situ hybridisation. Gut 2007, 56, 1358–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Liu, H.; Attygalle, A.; Wotherspoon, A.C.; Nicholson, A.G.; Charlotte, F.; Leblond, V.; Speight, P.; Goodlad, J.; Lavergne-Slove, A.; et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: Significant association with CagA strains of H. pylori in gastric MALT lymphoma. Blood 2003, 102, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.H.; Chen, L.T.; Yeh, K.H.; Wu, M.S.; Hsu, H.C.; Yeh, P.Y.; Mao, T.L.; Chen, C.L.; Doong, S.L.; Lin, J.T.; et al. Nuclear expression of BCL10 or nuclear factor kappa B predicts Helicobacter pylori-independent status of early-stage, high-grade gastric mucosa-associated lymphoid tissue lymphomas. J. Clin. Oncol. 2004, 22, 3491–3497. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Gong, L.; Liu, H.; Ruskone-Fourmestraux, A.; De Jong, D.; Pileri, S.; Thiede, C.; Lavergne, A.; Boot, H.; Caletti, G.; et al. Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H. pylori eradication. Gut 2006, 55, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyoda, K.; Maeshima, A.M.; Nomoto, J.; Suzuki, T.; Yuda, S.; Yamauchi, N.; Taniguchi, H.; Makita, S.; Fukuhara, S.; Munakata, W.; et al. Mucosa-associated lymphoid tissue lymphoma with t(11;18)(q21;q21) translocation: Long-term follow-up results. Ann. Hematol. 2019, 98, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Liu, C.; Ye, H.; Gong, L.; Zheng, J.; Li, M.; Huang, X.; Huang, X.; Huang, Y.; Shi, Y.; et al. BCL10 nuclear expression and t(11;18)(q21;q21) indicate nonresponsiveness to Helicobacter pylori eradication of Chinese primary gastric MALT lymphoma. Int. J. Hematol. 2009, 88, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Salar, A.; Bellosillo, B.B.; Serrano, S.; Besses, C. Persistent residual disease in t(11;18)(q21;q21) positive gastric mucosa-associated lymphoid tissue lymphoma treated with chemotherapy or rituximab. J. Clin. Oncol. 2005, 23, 7361–7362. [Google Scholar] [CrossRef]
- Lévy, M.; Copie-Bergman, C.; Gameiro, C.; Chaumette, M.T.; Delfau-Larue, M.H.; Haioun, C.; Charachon, A.; Hemery, F.; Gaulard, P.; Leroy, K.; et al. Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J. Clin. Oncol. 2005, 23, 5061–5066. [Google Scholar] [CrossRef]
- Martinelli, G.; Laszlo, D.; Ferreri, A.J.M.M.; Pruneri, G.; Ponzoni, M.; Conconi, A.; Crosta, C.; Pedrinis, E.; Bertoni, F.; Calabrese, L.; et al. Clinical activity of rituximab in gastric marginal zone non-Hodgkin’s lymphoma resistant to or not eligible for anti-Helicobacter pylori therapy. J. Clin. Oncol. 2005, 23, 1979–1983. [Google Scholar] [CrossRef]
- Lévy, M.; Copie-Bergman, C.; Molinier-Frenkel, V.; Riou, A.; Haioun, C.; Gaulard, P.; Delfau-Larue, M.-H.H.; Sobhani, I.; Leroy, K.; Delchier, J.-C.C. Treatment of t(11;18)-positive gastric mucosa-associated lymphoid tissue lymphoma with rituximab and chlorambucil: Clinical, histological, and molecular follow-up. Leuk. Lymphoma 2010, 51, 284–290. [Google Scholar] [CrossRef]
- Salar, A.; Domingo-Domenech, E.; Panizo, C.; Nicolás, C.; Bargay, J.; Muntañola, A.; Canales, M.; Bello, J.L.; Sancho, J.M.; Tomás, J.F.; et al. First-line response-adapted treatment with the combination of bendamustine and rituximab in patients with mucosa-associated lymphoid tissue lymphoma (MALT2008-01): A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2014, 1, e104–e111. [Google Scholar] [CrossRef]
- Ruskone-Fourmestraux, A.; Fischbach, W.; Aleman, B.M.P.; Boot, H.; Du, M.Q.; Megraud, F.; Montalban, C.; Raderer, M.; Savio, A.; Wotherspoon, A.; et al. EGILS consensus report. Gastric extranodal marginal zone B-cell lymphoma of MALT. Gut 2011, 60, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Zucca, E.; Arcaini, L.; Buske, C.; Johnson, P.W.; Ponzoni, M.; Raderer, M.; Ricardi, U.; Salar, A.; Stamatopoulos, K.; Thieblemont, C.; et al. Marginal zone lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Nakata, M.; Maekawa, M.; Takahashi, M.; Fujii, H.; Matsuno, Y.; Mitsuhiro, F.; Hiroyuki, O.; Daizo, S.; Takeaki, T.; et al. Detection of t(11; 18) in MALT-type lymphoma with dual-color fluorescence in situ hybridization and reverse transcriptase-polymerase chain reaction analysis. Diagn. Mol. Pathol. 2001, 10, 207–213. [Google Scholar] [CrossRef]
- Fecteau, J.F.; Néron, S. CD40 stimulation of human peripheral B lymphocytes: Distinct response from naive and memory cells. J. Immunol. 2003, 171, 4621–4629. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, Z.J. Signaling to NF-kappaB: Regulation by ubiquitination. Cold Spring Harb. Perspect. Biol. 2010, 2, a003350. [Google Scholar]
- Du, M.-Q. MALT lymphoma: Genetic abnormalities, immunological stimulation and molecular mechanism. Best Pract. Res. Clin. Haematol. 2017, 30, 13–23. [Google Scholar] [CrossRef]
- Takada, S.; Yoshino, T.; Taniwaki, M.; Nakamura, N.; Nakamine, H.; Oshima, K.; Sadahira, Y.; Inagaki, H.; Oshima, K.; Tadaatsu, A. Involvement of the chromosomal translocation t(11;18) in some mucosa-associated lymphoid tissue lymphomas and diffuse large B-cell lymphomas of the ocular adnexa: Evidence from multiplex reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization on using formalin-fixed, paraffin-embedded specimens. Mod. Pathol. 2003, 16, 445–452. [Google Scholar] [PubMed]
- Streubel, B.; Lamprecht, A.; Dierlamm, J.; Cerroni, L.; Stolte, M.; Ott, G.; Raderer, M.; Chott, A. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003, 101, 2335–2339. [Google Scholar] [CrossRef]
- Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat. Rev. Immunol. 2004, 4, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Gong, L.; Liu, H.; Hamoudi, R.A.; Shirali, S.; Ho, L.; Chott, A.; Streubel, B.; Siebert, R.; Gesk, S.; et al. MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J. Pathol. 2005, 205, 293–301. [Google Scholar] [CrossRef]
- Achuthan, R.; Bell, S.M.; Carr, I.M.; Leek, J.P.; Roberts, P.; Horgan, K.; Markham, A.F.; Selby, P.J.; MacLennan, K.A. BCL10 in malignant lymphomas—An evaluation using fluorescence in situ hybridization. J. Pathol. 2002, 196, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Coornaert, B.; Baens, M.; Heyninck, K.; Bekaert, T.; Haegman, M.; Staal, J.; Sun, L.; Chen, Z.J.; Marynen, P.; Beyaert, R. T cell antigen receptor stimulation induces MALT1 paracaspase—Mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 2008, 9, 263–271. [Google Scholar] [CrossRef]
- Düwel, M.; Welteke, V.; Oeckinghaus, A.; Baens, M.; Kloo, B.; Ferch, U.; Darnay, B.G.; Ruland, J.; Marynen, P.; Krappmann, D. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J. Immunol. 2009, 182, 7718–7728. [Google Scholar] [CrossRef] [PubMed]
- Kirchhofer, D.; Vucic, D. Protease activity of MALT1: A mystery unravelled. Biochem. J. 2012, 444, e3–e5. [Google Scholar] [CrossRef]
- Hailfinger, S.; Nogai, H.; Pelzer, C.; Jaworski, M.; Cabalzar, K.; Charton, J.E.; Guzzardi, M.; Décaillet, C.; Grau, M.; Dörken, B.; et al. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc. Natl. Acad. Sci. USA 2011, 108, 14596–14601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tusche, M.W.; Ward, L.A.; Vu, F.; McCarthy, D.; Quintela-Fandino, M.; Ruland, J.; Gommerman, J.L.; Mak, T.W. Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J. Exp. Med. 2009, 206, 2671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wei, M.; Liang, Q.; Johnson, D.; Dow, N.; Nelson, A.; Aguilera, N.; Auerbach, A.; Wang, G. The t(14;18)(q32;q21)/IGH-MALT1 translocation in gastrointestinal extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). Histopathology 2014, 64, 791–798. [Google Scholar] [CrossRef]
- Tanimoto, K.; Sekiguchi, N.; Yokota, Y.; Kaneko, A.; Watanabe, T.; Maeshima, A.M.; Matsuno, Y.; Harada, M.; Tobinai, K.; Kobayashi, Y. Fluorescence in situhybridization (FISH) analysis of primary ocular adnexal MALT lymphoma. BMC Cancer 2006, 6, 249. [Google Scholar] [CrossRef] [Green Version]
- Wongchaowart, N.T.; Kim, B.; Hsi, E.D.; Swerdlow, S.H.; Tubbs, R.R.; Cook, J.R. t(14;18)(q32;q21) involving IGH and MALT1 is uncommon in cutaneous MALT lymphomas and primary cutaneous diffuse large B-cell lymphomas. J. Cutan. Pathol. 2006, 33, 286–292. [Google Scholar] [CrossRef]
- Garcia, M.; Konoplev, S.; Morosan, C.; Abruzzo, L.V.; Bueso-Ramos, C.E.; Medeiros, L.J. MALT lymphoma involving the kidney: A report of 10 cases and review of the literature. Am. J. Clin. Pathol. 2007, 128, 464–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagavathi, S.; Greiner, T.C.; Kazmi, S.A.; Fu, K.; Sanger, W.G.; Chan, W.C. Extranodal marginal zone lymphoma of the dura mater with IgH/MALT1 translocation and review of literature. J. Hematop. 2008, 1, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuper-Hommel, M.J.J.; Schreuder, M.I.; Gemmink, A.H.; van Krieken, J.H.J.M. T(14;18)(q32;q21) involving MALT1 and IGH genes occurs in extranodal diffuse large B-cell lymphomas of the breast and testis. Mod. Pathol. 2013, 26, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.R.; Sherer, M.; Craig, F.E.; Shekhter-Levin, S.; Swerdlow, S.H. T(14;18)(q32;q21) involving MALT1 and IGH genes in an extranodal diffuse large B-cell lymphoma. Hum. Pathol. 2003, 34, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Maes, B.; Demunter, A.; Peeters, B.; De Wolf-Peeters, C. BCL10 mutation does not represent an important pathogenic mechanism in gastric MALT-type lymphoma, and the presence of the API2-MLT fusion is associated with aberrant nuclear BCL10 expression. Blood 2002, 99, 1398–1404. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Dogan, A.; Karran, L.; Willis, T.G.; Chen, L.; Wlodarska, I.; Dyer, M.J.; Isaacson, P.G.; Du, M.Q. BCL10 expression in normal and neoplastic lymphoid tissue. Nuclear localization in MALT lymphoma. Am. J. Pathol. 2000, 157, 1147–1154. [Google Scholar] [CrossRef]
- Streubel, B.; Vinatzer, U.; Lamprecht, A.; Raderer, M.; Chott, A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 2005, 19, 652–658. [Google Scholar] [CrossRef]
- Wlodarska, I.; Veyt, E.; De Paepe, P.; Vandenberghe, P.; Nooijen, P.; Theate, I.; Michaux, L.; Sagaert, X.; Marynen, P.; Hagemeijer, A.; et al. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 2005, 19, 1299–1305. [Google Scholar] [CrossRef] [Green Version]
- Fenton, J.A.L.; Schuuring, E.; Barrans, S.L.; Banham, A.H.; Rollinson, S.J.; Morgan, G.J.; Jack, A.S.; van Krieken, J.H.J.M.; Kluin, P.M. t(3;14)(p14;q32) Results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma. Genes Chromosom. Cancer 2006, 45, 164–168. [Google Scholar] [CrossRef]
- Vinatzer, U.; Gollinger, M.; Müllauer, L.; Raderer, M.; Chott, A.; Streubel, B. Mucosa-associated lymphoid tissue lymphoma: Novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin. Cancer Res. 2008, 14, 6426–6431. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.M.; Akasaka, T.; McPhail, E.; Manske, M.; Braggio, E.; Price-Troska, T.; Ziesmer, S.; Secreto, F.; Fonseca, R.; Gupta, M.; et al. t(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood 2012, 120, 3949–3957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baens, M.; Ferreiro, J.F.; Tousseyn, T.; Urbankova, H.; Michaux, L.; de Leval, L.; Dierickx, D.; Wolter, P.; Sagaert, X.; Vandenberghe, P.; et al. t(X;14)(p11.4;q32.33) is recurrent in marginal zone lymphoma and up-regulates GPR34. Haematologica 2012, 97, 184–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, S.; Liu, H.; Ye, H.; Martín-Subero, J.I.; Siebert, R.; Huang, W. Pulmonary mucosa-associated lymphoid tissue lymphoma with strong nuclear B-cell CLL/lymphoma 10 (BCL10) expression and novel translocation t(1;2)(p22;p12)/immunoglobulin κ chain-BCL10. J. Clin. Pathol. 2007, 60, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Keimpema, M.; Grüneberg, L.J.; Mokry, M.; Van Boxtel, R.; Van Zelm, M.C.; Coffer, P.; Pals, S.T.; Spaargaren, M. The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood 2015, 126, 2098–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Keimpema, M.; Grüneberg, L.J.; Mokry, M.; van Boxtel, R.; Koster, J.; Coffer, P.J.; Pals, S.T.; Spaargaren, M. FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells. Blood 2014, 124, 3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, Y.; Shiozawa, E.; Watanabe, N.; Homma, M.; Noh, J.Y.; Ito, K.; Takimoto, M.; Yamochi-Onizuka, T. t(3;14)(p14.1;q32)/FOXP1-IGH translocation in thyroid extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). Leuk. Res. 2020, 95, 106399. [Google Scholar] [CrossRef]
- Wu, F.; Watanabe, N.; Tzioni, M.-M.; Akarca, A.; Zhang, C.; Li, Y.; Chen, Z.; Cucco, F.; Carmell, N.; Noh, J.Y.; et al. Thyroid MALT lymphoma: Self-harm to gain potential T-cell help. Leukemia 2021, 35, 3497–3508. [Google Scholar] [CrossRef]
- Wotherspoon, A.C.; Pan, L.; Diss, T.C.; Isaacson, P.G. Cytogenetic study of B-cell lymphoma of mucosa-associated lymphoid tissue. Cancer Genet. Cytogenet. 1992, 58, 35–38. [Google Scholar] [CrossRef]
- Whang-Peng, J.; Knutsen, T.; Jaffe, E.; Raffeld, M.; Zhao, W.P.; Duffey, P.; Longo, D.L. Cytogenetic study of two cases with lymphoma of mucosa-associated lymphoid tissue. Cancer Genet. Cytogenet. 1994, 77, 74–80. [Google Scholar] [CrossRef]
- Dierlamm, J.; Michaux, L.; Wlodarska, I.; Pittaluga, S.; Zeller, W.; Stul, M.; Criel, A.; Thomas, J.; Boogaerts, M.; Delaere, P.; et al. Trisomy 3 in marginal zone B-cell lymphoma: A study based on cytogenetic analysis and fluorescence in situ hybridization. Br. J. Haematol. 1996, 93, 242–249. [Google Scholar] [CrossRef]
- Taji, S.; Nomura, K.; Matsumoto, Y.; Sakabe, H.; Yoshida, N.; Mitsufiji, S.; Nishida, K.; Horiike, S.; Nakamura, S.; Morita, M.; et al. Trisomy 3 may predict a poor response of gastric MALT lymphoma to Helicobacter pylori eradication therapy. World J. Gastroenterol. 2005, 11, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Ott, G.; Katzenberger, T.; Greiner, A.; Kalla, J.; Rosenwald, A.; Heinrich, U.; Ott, M.M.; Müller-Hermelink, H.K. The t(11;18)(q21;q21) Chromosome Translocation Is a Frequent and Specific Aberration in Low-Grade but not High-Grade Malignant Non-Hodgkin’s Lymphomas of the Mucosa-associated Lymphoid Tissue (MALT-) Type. AACR 1997, 57, 3944–3948. [Google Scholar]
- Clark, H.M.; Jones, D.B.; Wright, D.H. Cytogenetic and molecular studies of t(14;18) and t(14;19) in nodal and extranodal B-cell lymphoma. J. Pathol. 1992, 166, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Wotherspoon, A.C.; Finn, T.M.; Isaacson, P.G. Trisomy 3 in Low-Grade B-Cell Lymphomas of Mucosa-Associated Lymphoid Tissue. Blood 1995, 85, 2000–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, G.; Kalla, J.; Steinhoff, A.; Rosenwald, A.; Katzenberger, T.; Roblick, U.; Ott, M.M.; Müller-Hermelink, H.K. Trisomy 3 Is Not a Common Feature in Malignant Lymphomas of Mucosa-Associated Lymphoid Tissue Type. Am. J. Pathol. 1998, 153, 689. [Google Scholar] [CrossRef] [Green Version]
- Blanco, R.; Lyda, M.; Davis, B.; Kraus, M.; Fenoglio-Preiser, C. Trisomy 3 in gastric lymphomas of extranodal marginal zone B-cell (mucosa-associated lymphoid tissue) origin demonstrated by FISH in intact paraffin tissue sections. Hum. Pathol. 1999, 30, 706–711. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheung, A.N.; Chan, A.C.; Shen, D.H.; Xu, W.S.; Chung, L.P.; Ho, F.C. Detection of trisomy 3 in primary gastric B-cell lymphoma by using chromosome in situ hybridization on paraffin sections. Am. J. Clin. Pathol. 1998, 110, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Brynes, R.K.; Almaguer, P.D.; Leathery, K.E.; McCourty, A.; Arber, D.A.; Medeiros, L.J.; Nathwani, B.N. Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod. Pathol. 1996, 9, 995–1000. [Google Scholar] [PubMed]
- Krugmann, J.; Tzankov, A.; Dirnhofer, S.; Fend, F.; Wolf, D.; Siebert, R.; Probst, P.; Erdel, M. Complete or partial trisomy 3 in gastro-intestinal MALT lymphomas co-occurs with aberrations at 18q21 and correlates with advanced disease stage: A study on 25 cases. World J. Gastroenterol. 2005, 11, 7384. [Google Scholar] [CrossRef] [PubMed]
- Dierlamm, J.; Rosenberg, C.; Stul, M.; Pittaluga, S.; Wlodarska, I.; Michaux, L.; Dehaen, M.; Verhoef, G.; Thomas, J.; De Kelver, W.; et al. Characteristic pattern of chromosomal gains and losses in marginal zone B cell lymphoma detected by comparative genomic hybridization. Leukemia 1997, 11, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, A.; Mian, M.; Chigrinova, E.; Arcaini, L.; Bhagat, G.; Novak, U.; Rancoita, P.M.V.; de Campos, C.P.; Forconi, F.; Gascoyne, R.D.; et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood 2011, 117, 1595–1604. [Google Scholar] [CrossRef]
- Dierlamm, J.; Wlodarska, I.; Michaux, L.; Stefanova, M.; Hinz, K.; Van Den Berghe, H.; Hagemeijer, A.; Hossfeld, D.K. Genetic abnormalities in marginal zone b-cell lymphoma. Hematol. Oncol. 2000, 18, 1–13. [Google Scholar] [CrossRef]
- Deutsch, A.J.A.; Aigelsreiter, A.; Steinbauer, E.; Fruhwirth, M.; Kerl, H.; Beham-Schmid, C.; Schaider, H.; Neumeister, P. Distinct signatures of B-cell homeostatic and activation-dependent chemokine receptors in the development and progression of extragastric MALT lymphomas. J. Pathol. 2008, 215, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Cascione, L.; Rinaldi, A.; Bruscaggin, A.; Tarantelli, C.; Arribas, A.J.; Kwee, I.; Pecciarini, L.; Mensah, A.A.; Spina, V.; Chung, E.Y.L.; et al. Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses. Haematologica 2019, 104, E558–E561. [Google Scholar] [CrossRef]
- Remstein, E.D.; Dogan, A.; Einerson, R.R.; Paternoster, S.F.; Fink, S.R.; Law, M.; Gordon, W.; Kurtin, P.J. The incidence and anatomic site specificity of chromosomal translocations in primary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) in North America. Am. J. Surg. Pathol. 2006, 30, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Joao, C.; Farinha, P.; Da Silva, M.G.; Martins, C.; Crespo, M.; Cabecadas, J. Cytogenetic abnormalities in MALT lymphomas and their precursor lesions from different organs. A fluorescence in situ hybridization (FISH) study. Histopathology 2007, 50, 217–224. [Google Scholar] [CrossRef]
- Dierlamm, J.; Pittaluga, S.; Wlodarska, I.; Stul, M.; Thomas, J.; Boogaerts, M.; Michaux, L.; Driessen, A.; Mecucci, C.; Cassiman, J. Marginal Zone B-Cell Lymphomas of Different Sites Share Similar Cytogenetic and Morphologic Features. Blood 1996, 87, 299–307. [Google Scholar] [CrossRef]
- Du, M.; Peng, H.; Singh, N.; Isaacson, P.G.; Pan, L. The Accumulation of p53 Abnormalities Is Associated With Progression of Mucosa-Associated Lymphoid Tissue Lymphoma. Blood 1995, 86, 4587–4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Chen, G.; Du, M.; Singh, N.; Isaacson, P.G.; Pan, L. Replication error phenotype and p53 gene mutation in lymphomas of mucosa-associated lymphoid tissue. Am. J. Pathol. 1996, 148, 643. [Google Scholar]
- Rødahl, E.; Lybæk, H.; Arnes, J.; Ness, G.O. Chromosomal imbalances in some benign orbital tumours. Acta Ophthalmol. Scand. 2005, 83, 385–391. [Google Scholar] [CrossRef]
- Matteucci, C.; Galieni, P.; Leoncini, L.; Lazzi, S.; Lauria, F.; Polito, E.; Martelli, M.; Mecucci, C. Typical genomic imbalances in primary MALT lymphoma of the orbit. J. Pathol. 2003, 200, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Chanudet, E.; Ye, H.; Ferry, J.; Bacon, C.; Adam, P.; Müller-Hermelink, H.; Radford, J.; Pileri, S.; Ichimura, K.; Collins, V.; et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J. Pathol. 2009, 217, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Honma, K.; Karnan, S.; Tagawa, H.; Kim, Y.D.; Oh, Y.L.; Seto, M.; Ko, Y.H. Genome-wide array-based comparative genomic hybridization of ocular marginal zone B cell lymphoma: Comparison with pulmonary and nodal marginal zone B cell lymphoma. Genes Chromosomes Cancer 2007, 46, 776–783. [Google Scholar] [CrossRef]
- Honma, K.; Tsuzuki, S.; Nakagawa, M.; Karnan, S.; Aizawa, Y.; Kim, W.S.; Kim, Y.-D.; Ko, Y.-H.; Seto, M. TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosomes Cancer 2008, 47, 1–7. [Google Scholar] [CrossRef]
- Honma, K.; Tsuzuki, S.; Nakagawa, M.; Tagawa, H.; Nakamura, S.; Morishima, Y.; Seto, M. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009, 114, 2467–2475. [Google Scholar] [CrossRef] [Green Version]
- Chanudet, E.; Huang, Y.; Ichimura, K.; Dong, G.; Hamoudi, R.A.; Radford, J.; Wotherspoon, A.C.; Isaacson, P.G.; Ferry, J.; Du, M.-Q. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 2010, 24, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Catrysse, L.; Vereecke, L.; Beyaert, R.; van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 2014, 35, 22–31. [Google Scholar] [CrossRef]
- Moody, S.; Thompson, J.S.; Chuang, S.S.; Liu, H.; Raderer, M.; Vassiliou, G.; Wlodarska, I.; Wu, F.; Cogliatti, S.; Robson, A.; et al. Novel GPR34 and CCR6 mutation and distinct genetic profiles in MALT lymphomas of different sites. Haematologica 2018, 103, 1329–1336. [Google Scholar] [CrossRef] [Green Version]
- Johansson, P.; Klein-Hitpass, L.; Grabellus, F.; Arnold, G.; Klapper, W.; Pförtner, R.; Dührsen, U.; Eckstein, A.; Dürig, J.; Küppers, R. Recurrent mutations in NF-κB pathway components, KMT2D, and NOTCH1/2 in ocular adnexal MALT-type marginal zone lymphomas. Oncotarget 2016, 7, 62627–62639. [Google Scholar] [CrossRef]
- Jung, H.; Yoo, H.Y.; Lee, S.H.; Shin, S.; Kim, S.C.; Lee, S.; Joung, J.-G.; Nam, J.-Y.; Ryu, D.; Yun, J.W.; et al. The mutational landscape of ocular marginal zone lymphoma identifies frequent alterations in TNFAIP3 followed by mutations in TBL1XR1 and CREBBP. Oncotarget 2017, 8, 17038–17049. [Google Scholar] [CrossRef] [Green Version]
- Cani, A.K.; Soliman, M.; Hovelson, D.H.; Liu, C.-J.; McDaniel, A.S.; Haller, M.J.; Bratley, J.; Rahrig, S.; Li, Q.; Briceño, C.A.; et al. Comprehensive Genomic Profiling of Orbital and Ocular Adnexal Lymphomas Identifies Frequent Alterations in MYD88 and Chromatin Modifiers: New Routes to Targeted Therapies. Mod. Pathol. 2016, 29, 685. [Google Scholar] [CrossRef] [Green Version]
- Behdad, A.; Zhou, X.Y.; Gao, J.; Raparia, K.; Dittman, D.; Green, S.J.; Qi, C.; Betz, B.; Bryar, P.; Chen, Q.; et al. High Frequency of MYD88 L265P Mutation in Primary Ocular Adnexal Marginal Zone Lymphoma and Its Clinicopathologic Correlation: A Study From a Single Institution. Arch. Pathol. Lab. Med. 2019, 143, 483–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.M.; Rinaldi, A.; Cavalli, A.; Mensah, A.A.; Ponzoni, M.; Gascoyne, R.D.; Bhagat, G.; Zucca, E.; Bertoni, F. MYD88 somatic mutations in MALT lymphomas. Br. J. Haematol. 2012, 158, 662–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Q.; Wang, M.; Moody, S.; Xue, X.; Huang, Y.; Bi, Y.; Du, M.Q. Distinct involvement of NF-κB regulators by somatic mutation in ocular adnexal malt lymphoma. Br. J. Haematol. 2013, 160, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.N.; Young, R.M.; Schmitz, R.; Jhavar, S.; Xiao, W.; Lim, K.H.; Kohlhammer, H.; Xu, W.; Yang, Y.; Zhao, H.; et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011, 470, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Zeng, N.; Chanudet, E.; Huang, Y.; Hamoudi, R.A.; Liu, H.; Dong, G.; Watkins, A.J.; Ley, S.C.; Zou, L.; et al. A20 inactivation in ocular adnexal MALT lymphoma. Haematologica 2012, 97, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Vela, V.; Juskevicius, D.; Gerlach, M.M.; Meyer, P.; Graber, A.; Cathomas, G.; Dirnhofer, S.; Tzankov, A. High throughput sequencing reveals high specificity of TNFAIP3 mutations in ocular adnexal marginal zone B-cell lymphomas. Hematol. Oncol. 2020, 38, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Ganapathi, K.A.; Jobanputra, V.; Iwamoto, F.; Jain, P.; Chen, J.; Cascione, L.; Nahum, O.; Levy, B.; Xie, Y.; Khattar, P.; et al. The genetic landscape of dural marginal zone lymphomas. Oncotarget 2016, 7, 43052. [Google Scholar] [CrossRef] [Green Version]
- Agathangelidis, A.; Xochelli, A.; Stamatopoulos, K. A gene is known by the company it keeps: Enrichment of TNFAIP3 gene aberrations in MALT lymphomas expressing IGHV4-34 antigen receptors. J. Pathol. 2017, 243, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Vereecke, L.; Beyaert, R.; van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009, 30, 383–391. [Google Scholar] [CrossRef]
- Boone, D.L.; Turer, E.E.; Lee, E.G.; Ahmad, R.C.; Wheeler, M.T.; Tsui, C.; Hurley, P.; Chien, M.; Chai, S.; Hitotsumatsu, O.; et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 2004, 5, 1052–1060. [Google Scholar] [CrossRef]
- Thome, M.; Tschopp, J. TCR-induced NF-kappaB activation: A crucial role for Carma1, Bcl10 and MALT1. Trends Immunol. 2003, 24, 419–424. [Google Scholar] [CrossRef]
- Shi, J.H.; Sun, S.C. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front. Immunol. 2018, 9, 1849. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.; Lee, B.; Shin, S.H.; Yoo, H.Y.; Kim, S.J.; Kim, W.S.; Park, W.-Y.; Ko, Y.-H. Targeted deep sequencing of gastric marginal zone lymphoma identified alterations of TRAF3 and TNFAIP3 that were mutually exclusive for MALT1 rearrangement. Mod. Pathol. 2018, 31, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Cariappa, A.; Moran, S.T. Marginal Zone B Cells. Annu. Rev. Immunol. 2005, 23, 161–196. [Google Scholar] [CrossRef]
- Pillai, S.; Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol. 2009, 9, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Chiba, S.; Ichikawa, M.; Kunisato, A.; Asai, T.; Shimizu, K.; Yamaguchi, T.; Yamamoto, G.; Seo, S.; Kumano, K.; et al. Notch2 Is Preferentially Expressed in Mature B Cells and Indispensable for Marginal Zone B Lineage Development. Immunity 2003, 18, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Hampel, F.; Ehrenberg, S.; Hojer, C.; Draeseke, A.; Marschall-Schröter, G.; Kühn, R.; Mack, B.; Gires, O.; Vahl, C.J.; Schmidt-Supprian, M.; et al. CD19-independent instruction of murine marginal zone B-cell development by constitutive Notch2 signaling. Blood 2011, 118, 6321–6331. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shi, Y.; Weng, Y.; Lai, Q.; Luo, T.; Zhao, J.; Ren, G.; Li, W.; Pan, H.; Ke, Y.; et al. The Truncate Mutation of Notch2 Enhances Cell Proliferation through Activating the NF-κB Signal Pathway in the Diffuse Large B-Cell Lymphomas. PLoS ONE 2014, 9, e108747. [Google Scholar] [CrossRef] [Green Version]
- Puente, X.S.; Pinyol, M.; Quesada, V.; Conde, L.; Ordonez, G.R.; Villamor, N.; Escaramis, G.; Jares, P.; Bea, S.; Gonzalez-Diaz, M.; et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011, 475, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Arcaini, L.; Rossi, D.; Lucioni, M.; Nicola, M.; Bruscaggin, A.; Fiaccadori, V.; Riboni, R.; Ramponi, A.; Ferretti, V.V.; Cresta, S.; et al. The NOTCH pathway is recurrently mutated in diffuse large B-cell lymphoma associated with hepatitis C virus infection. Haematologica 2015, 100, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D.; Trifonov, V.; Fangazio, M.; Bruscaggin, A.; Rasi, S.; Spina, V.; Monti, S.; Vaisitti, T.; Arruga, F.; Famà, R.; et al. The coding genome of splenic marginal zone lymphoma: Activation of NOTCH2 and other pathways regulating marginal zone development. J. Exp. Med. 2012, 209, 1537–1551. [Google Scholar] [CrossRef] [Green Version]
- Kiel, M.J.; Velusamy, T.; Betz, B.L.; Zhao, L.; Weigelin, H.G.; Chiang, M.Y.; Huebner-Chan, D.R.; Bailey, N.G.; Yang, D.T.; Bhagat, G.; et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J. Exp. Med. 2012, 209, 1553–1565. [Google Scholar] [CrossRef] [Green Version]
- Karube, K.; Martínez, D.; Royo, C.; Navarro, A.; Pinyol, M.; Cazorla, M.; Castillo, P.; Valera, A.; Carrió, A.; Costa, D.; et al. Recurrent mutations of NOTCH genes in follicular lymphoma identify a distinctive subset of tumours. J. Pathol. 2014, 234, 423–430. [Google Scholar] [CrossRef]
- Kuksin, C.A.; Minter, L.M. The Link between Autoimmunity and Lymphoma: Does NOTCH Signaling Play a Contributing Role? Front. Oncol. 2015, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, P.; Klein-Hitpass, L.; Budeus, B.; Kuhn, M.; Lauber, C.; Seifert, M.; Roeder, I.; Pförtner, R.; Stuschke, M.; Dührsen, U.; et al. Identifying Genetic Lesions in Ocular Adnexal Extranodal Marginal Zone Lymphomas of the MALT Subtype by Whole Genome, Whole Exome and Targeted Sequencing. Cancers 2020, 12, 986. [Google Scholar] [CrossRef] [PubMed]
- Kiesewetter, B.; Copie-Bergman, C.; Levy, M.; Wu, F.; Dupuis, J.; Barau, C.; Arcaini, L.; Paulli, M.; Lucioni, M.; Bonometti, A.; et al. Genetic Characterization and Clinical Features of Helicobacter pylori Negative Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. Cancers 2021, 13, 2993. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wei, R.L.; Pi, Y.L.; Guo, Q. Significance of Bcl10 gene mutations in the clinical diagnosis of MALT-type ocular adnexal lymphoma in the Chinese population. Genet. Mol. Res. 2013, 12, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Shingleton, J.R.; Dave, S.S. TET2 Deficiency Sets the Stage for B-cell Lymphoma. Cancer Discov. 2018, 8, 1515–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.Q. MALT lymphoma: A paradigm of NF-κB dysregulation. Semin. Cancer Biol. 2016, 39, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.; Liu, T.; Zhang, H.; Zhou, X.; Jin, H.; Sun, M.; Yun, Z.; Luo, H.; Ni, Z.; Zhao, R.; et al. Whole-Exome Sequencing Reveals New Potential Mutations Genes for Primary Mucosa-Associated Lymphoid Tissue Lymphoma Arising From the Kidney. Front. Oncol. 2021, 10, 609839. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Mercado, M.; Manterola, L.; Lawrie, C.H. MicroRNAs in Lymphoma: Regulatory Role and Biomarker Potential. Curr. Genomics 2015, 16, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lisio, L.; Martinez, N.; Montes-Moreno, S.; Piris-Villaespesa, M.; Sanchez-Beato, M.; Piris, M.A. The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas. Blood 2012, 120, 1782–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrie, C.H. MicroRNAs and lymphomagenesis: A functional review. Br. J. Haematol. 2013, 160, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Craig, V.J.; Cogliatti, S.B.; Rehrauer, H.; Wündisch, T.; Müller, A. Epigenetic Silencing of MicroRNA-203 Dysregulates ABL1 Expression and Drives Helicobacter-Associated Gastric Lymphomagenesis. Cancer Res. 2011, 71, 3616–3624. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, A.; Quan, L.; Qu, Y.; Gu, A. Three novel microRNAs based on microRNA signatures for gastric mucosa-associated lymphoid tissue lymphoma. Neoplasma 2018, 65, 339–348. [Google Scholar] [CrossRef]
- Saito, Y.; Suzuki, H.; Tsugawa, H.; Imaeda, H.; Matsuzaki, J.; Hirata, K.; Hosoe, N.; Nakamura, M.; Mukai, M.; Saito, H.; et al. Overexpression of miR-142-5p and miR-155 in Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma Resistant to Helicobacter pylori Eradication. PLoS ONE 2012, 7, e47396. [Google Scholar] [CrossRef]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef]
- Babar, I.A.; Cheng, C.J.; Booth, C.J.; Liang, X.; Weidhaas, J.B.; Saltzman, W.M.; Slack, F.J. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. Natl. Acad. Sci. USA 2012, 109, E1695–E1704. [Google Scholar] [CrossRef] [Green Version]
- Fernández, C.; Bellosillo, B.; Ferraro, M.; Seoane, A.; Sánchez-González, B.; Pairet, S.; Pons, A.; Barranco, L.; Vela, M.C.; Gimeno, E.; et al. MicroRNAs 142-3p, miR-155 and miR-203 are deregulated in gastric MALT lymphomas compared to chronic gastritis. Cancer Genom. Proteom. 2017, 14, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Liu, X.; Cheng, J.; Li, Y.; Huang, X.; Li, Y.; Ma, X.; Yu, H.; Liu, H.; Wei, R. MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Chng, W.J.; Remstein, E.D.; Fonseca, R.; Bergsagel, P.L.; Vrana, J.A.; Kurtin, P.J.; Dogan, A. Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications. Blood 2009, 113, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Hamoudi, R.A.; Appert, A.; Ye, H.; Ruskone-Fourmestraux, A.; Streubel, B.; Chott, A.; Raderer, M.; Gong, L.; Wlodarska, I.; De Wolf-Peeters, C. Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: Insights into molecular mechanism. Leukemia 2010, 24, 1487–1497. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, H.; Meng, F.; He, L.; Zhang, J.; Xiao, D. Proteomic and transcriptomic studies of BGC823 cells stimulated with Helicobacter pylori isolates from gastric MALT lymphoma. PLoS ONE 2020, 15, e0238379. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, J.; Wang, Z.; Feng, Y.; Wei, Z.; Hou, X.; Xu, J.; He, Y.; Yang, D. Transcriptome hallmarks in Helicobacter pylori infection influence gastric cancer and MALT lymphoma. Epigenomics 2020, 12, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.B.; Jeffery, P.; Gahete, M.D.; Whiteside, E.; Walpole, C.; Maugham, M.; Jovanovic, L.; Gunter, J.; Williams, E.; Nelson, C.; et al. The long non-coding RNA GHSROS reprograms prostate cancer cell lines toward a more aggressive phenotype. PeerJ 2021, 9, e10280. [Google Scholar] [CrossRef]
- Lue, J.K.; Amengual, J.E.; O’Connor, O.A. Epigenetics and Lymphoma: Can We Use Epigenetics to Prime or Reset Chemoresistant Lymphoma Programs? Curr. Oncol. Rep. 2015, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Green, M.R. Harnessing lymphoma epigenetics to improve therapies. Blood 2020, 136, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Mondello, P.; Tadros, S.; Teater, M.; Fontan, L.; Chang, A.Y.; Jain, N.; Yang, H.; Singh, S.; Ying, H.-Y.; Chu, C.-S. Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. AACR 2020, 10, 440–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, M.K.L.; Au, W.Y.; Liang, R.; Srivastava, G.; Kwong, Y.L. Aberrant promoter methylation in gastric lymphomas. Haematologica 2003, 88, 231–232. [Google Scholar] [CrossRef]
- Rossi, D.; Capello, D.; Gloghini, A.; Franceschetti, S.; Paulli, M.; Bhatia, K.; Saglio, G.; Vitolo, U.; Pileri, S.A.; Esteller, M.; et al. Aberrant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica 2004, 89, 154–164. [Google Scholar]
- Takino, H.; Okabe, M.; Li, C.; Ohshima, K.; Yoshino, T.; Nakamura, S.; Ueda, R.; Eimoto, T.; Inagaki, H. p16/INK4a gene methylation is a frequent finding in pulmonary MALT lymphomas at diagnosis. Mod. Pathol. 2005, 18, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Dugge, R.; Wagener, R.; Möller, P.; Barth, T.F.E. Genome-wide DNA methylation analysis along the progression of gastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) type. Br. J. Haematol. 2021, 193, 369–374. [Google Scholar] [CrossRef]
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.R.; Stone, S.L.; Oran, A.R.; Sussman, R.T.; Bhattacharyya, S.; Morrissette, J.J.; Bagg, A. Targeted massively parallel sequencing of mature lymphoid neoplasms: Assessment of empirical application and diagnostic utility in routine clinical practice. Mod. Pathol. 2021, 34, 904–921. [Google Scholar] [CrossRef]
- Pillonel, V.; Juskevicius, D.; Bihl, M.; Stenner, F.; Halter, J.P.; Dirnhofer, S.; Tzankov, A. Routine next generation sequencing of lymphoid malignancies: Clinical utility and challenges from a 3-Year practical experience. Leuk. Lymphoma 2020, 61, 2568–2583. [Google Scholar] [CrossRef]
- Morschhauser, F.; Tilly, H.; Chaidos, A.; McKay, P.; Phillips, T.; Assouline, S.; Batlevi, C.L.; Campbell, P.; Ribrag, V.; Damaj, G.L.; et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: An open-label, single-arm, multicentre, phase 2 trial. Lancet. Oncol. 2020, 21, 1433–1442. [Google Scholar] [CrossRef]
Location | Antigen Exposure Association | IGHV Usage | Abnormality | Involved Genes | Copy Number Variations | Other Imbalances |
---|---|---|---|---|---|---|
GASTRIC | Helicobacter pylori Helicobacter heilmannii Campylobacter jejuni (small intestine) | IGHV4-34 IGHV3-7 IGHV1-69 IGHV1-2 IGHV3-23 | t(11;18)(q21;q21) 20–25% (intestinal 33%) t(1;14)(p22;q32) 4% | BIRC3-MALT1 IGHV-BCL10 | Trisomy 3 Trisomy 18 | TNFAIP3 deletion |
OCULARADNEXA | Chlamydia psittaci | IGHV4-34: 18% IGHV3-23: 12–17% IGHV3-30: 10–14% IGHV3-7: 9% | t(11;18)(q21;q21) 10% t(14;18)(q32;q21) 7% t(3;14)(p14.1;q32) | BIRC3-MALT1 IGHV-MALT1 IGHV-FOXP1 | Trisomy 18 6q gain 30% 3q gain 18q gain | TNFAIP3 deletion 19% |
THRYOID | Hashimoto thyroiditis | IGHV3-30 | t(3;14)(p14.1;q32) 7–56% t(14;18)(q32;q21) | IGHV-FOXP1 IGHV-MALT1 | Trisomy 3 | TNFAIP3 deletion 11% PD-L1 deletion 53% |
SALIVAL GLAND | Lymphoepithelial sialadenitis Sjögren syndrome | IGHV1-69/J4: 55% IGHV3-7/J3 15% IGHV4-59/J2(J5) IGHV3-30/JH4 | t(X;14)(p11.4;q32) | IGHV-GPR34 | TNFAIP3 deletion 8% | |
SKIN | Borrelia burgdorferi | IGHV1-69 IGHV4-59 IGHV3-30 | t(14;18)(q32;q21) 10% t(3;14)(p14.1;q32), | IGHV-MALT1 | ||
LUNG | Achromobacter xylosoxidans | IGHV3 IGHV4-34 | t(11;18)(q21;q21) 40% t(11;12;18)(q21;q13;q21) t(11;14;18)(q21;q32;q21) t(1;14)(p22;q32) 9% t(14;18)(q32;q21) 6–9% | BIRC3-MALT1 IGHV-BCL10 IGHV-MALT1 | 3q gain 18q gain |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Sevilla, J.J.; Salar, A. Recent Advances in the Genetic of MALT Lymphomas. Cancers 2022, 14, 176. https://doi.org/10.3390/cancers14010176
Rodríguez-Sevilla JJ, Salar A. Recent Advances in the Genetic of MALT Lymphomas. Cancers. 2022; 14(1):176. https://doi.org/10.3390/cancers14010176
Chicago/Turabian StyleRodríguez-Sevilla, Juan José, and Antonio Salar. 2022. "Recent Advances in the Genetic of MALT Lymphomas" Cancers 14, no. 1: 176. https://doi.org/10.3390/cancers14010176