Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Utility Data and Assumptions
3.2. Sources of Utility Data Reported by Included Studies
3.3. Impact of Utility on the Cost-Effectiveness Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Felice, F.; Marchetti, C.; Musella, A.; Palaia, I.; Perniola, G.; Musio, D.; Muzii, L.; Tombolini, V.; Benedetti Panici, P. Bilateral risk-reduction mastectomy in BRCA1 and BRCA2 mutation carriers: A meta-analysis. Ann. Surg. Oncol. 2015, 22, 2876–2880. [Google Scholar] [CrossRef]
- Domchek, S.M.; Friebel, T.M.; Singer, C.F.; Evans, D.G.; Lynch, H.T.; Isaacs, C.; Garber, J.E.; Neuhausen, S.L.; Matloff, E.; Eeles, R.; et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. Jama 2010, 304, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, R.; Abdelraheim, A.; Johnson, M.; Rosenthal, A.N.; Benjamin, E.; Brunell, C.; Burnell, M.; Side, L.; Gessler, S.; Saridogan, E.; et al. Outcome of risk-reducing salpingo-oophorectomy in BRCA carriers and women of unknown mutation status. Bjog 2011, 118, 814–824. [Google Scholar] [CrossRef]
- Nelson, H.D.; Pappas, M.; Zakher, B.; Mitchell, J.P.; Okinaka-Hu, L.; Fu, R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: A systematic review to update the U.S. Preventive Services Task Force recommendation. Ann. Intern. Med. 2014, 160, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Col, N.F. The use of gene tests to detect hereditary predisposition to chronic disease: Is cost-effectiveness analysis relevant? Med. Decis Mak. 2003, 23, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Koldehoff, A.; Danner, M.; Civello, D.; Rhiem, K.; Stock, S.; Muller, D. Cost-Effectiveness of Targeted Genetic Testing for Breast and Ovarian Cancer: A Systematic Review. Value Health J. Int. Soc. Pharm. Outcomes Res. 2021, 24, 303–312. [Google Scholar] [CrossRef]
- Drummond, M.F.; Sculpher, M.J.; Claxton, K.; Stoddart, G.L.; Torrance, G.W. Methods for the Economic Evaluation of Health Care Programmes; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Rai, G. Pharmacoeconomics in healthcare. In Pharmaceutical Medicine and Translational Clinical Research, 1st ed.; Chapter 33; Academic Press: Cambridge, MA, USA, 2018; pp. 465–472. [Google Scholar]
- Brouwer, W.B.; Culyer, A.J.; van Exel, N.J.; Rutten, F.F. Welfarism vs. extra-welfarism. J. Health Econ. 2008, 27, 325–338. [Google Scholar] [CrossRef]
- Nord, E.; Daniels, N.; Kamlet, M. QALYs: Some challenges. Value Health: J. Int. Soc. Pharm. Outcomes Res. 2009, 12 (Suppl. S1), S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.C.; Torrance, G.; McGuire, A. QALYs: The basics. Value Health: J. Int. Soc. Pharm. Outcomes Res. 2009, 12 (Suppl. S1), S5–S9. [Google Scholar] [CrossRef]
- Arnold, D.; Girling, A.; Stevens, A.; Lilford, R. Comparison of direct and indirect methods of estimating health state utilities for resource allocation: Review and empirical analysis. BMJ 2009, 339, b2688. [Google Scholar] [CrossRef]
- Ewara, E.M.; Zaric, G.S.; Welch, S.; Sarma, S. Cost-effectiveness of first-line treatments for patients with KRAS wild-type metastatic colorectal cancer. Curr. Oncol. 2014, 21, e541–e550. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, M.; Green, C.; Thompson-Coon, J.; Liu, Z.; Welch, K.; Moxham, T.; Stein, K. Cost-effectiveness of temsirolimus for first line treatment of advanced renal cell carcinoma. Value Health J. Int. Soc. Pharm. Outcomes Res. 2010, 13, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Ara, R.; Wailoo, A. Using health state utility values in models exploring the cost-effectiveness of health technologies. Value Health J. Int. Soc. Pharm. Outcomes Res. 2012, 15, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Ara, R.; Brazier, J.E. Populating an economic model with health state utility values: Moving toward better practice. Value Health J. Int. Soc. Pharm. Outcomes Res. 2010, 13, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Brazier, J.; Ara, R.; Azzabi, I.; Busschbach, J.; Chevrou-Séverac, H.; Crawford, B.; Cruz, L.; Karnon, J.; Lloyd, A.; Paisley, S.; et al. Identification, Review, and Use of Health State Utilities in Cost-Effectiveness Models: An ISPOR Good Practices for Outcomes Research Task Force Report. Value Health 2019, 22, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.; Danner, M.; Schmutzler, R.; Engel, C.; Wassermann, K.; Stollenwerk, B.; Stock, S.; Rhiem, K. Economic modeling of risk-adapted screen-and-treat strategies in women at high risk for breast or ovarian cancer. Eur. J. Health Econ. Hepac Health Econ. Prev. Care 2019, 20, 739–750. [Google Scholar] [CrossRef]
- Simoes Correa-Galendi, J.; Del Pilar Estevez Diz, M.; Stock, S.; Müller, D. Economic Modelling of Screen-and-Treat Strategies for Brazilian Women at Risk of Hereditary Breast and Ovarian Cancer. Appl Health Econ. Health Policy 2021, 19, 97–109. [Google Scholar] [CrossRef]
- Sun, L.; Brentnall, A.; Patel, S.; Buist, D.S.M.; Bowles, E.J.A.; Evans, D.G.R.; Eccles, D.; Hopper, J.; Li, S.; Southey, M.; et al. A Cost-effectiveness Analysis of Multigene Testing for All Patients With Breast Cancer. JAMA Oncol. 2019, 5, 1718–1730. [Google Scholar] [CrossRef]
- Tengs, T.O.; Berry, D. The cost effectiveness of testing for the BRCA1 and BRCA2 breast-ovarian cancer susceptibility genes. Dis. Manag. Clin. Outcomes 2000, 2, 15–24. [Google Scholar]
- Asphaug, L.; Melberg, H.O. The Cost-Effectiveness of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer in Norway. Mdm Policy Pr. 2019, 4, 2381468318821103. [Google Scholar] [CrossRef]
- Eccleston, A.; Bentley, A.; Dyer, M.; Strydom, A.; Vereecken, W.; George, A.; Rahman, N. A Cost-Effectiveness Evaluation of Germline BRCA1 and BRCA2 Testing in UK Women with Ovarian Cancer. Value Health J. Int. Soc. Pharm. Outcomes Res. 2017, 20, 567–576. [Google Scholar] [CrossRef]
- Hurry, M.; Eccleston, A.; Dyer, M.; Hoskins, P. Canadian cost-effectiveness model of BRCA-driven surgical prevention of breast/ovarian cancers compared to treatment if cancer develops. Int J. Technol Assess. Health Care 2020, 36, 104–112. [Google Scholar] [CrossRef]
- Moya-Alarcon, C.; Gonzalez-Dominguez, A.; Simon, S.; Perez-Roman, I.; Gonzalez-Martin, A.; Bayo-Lozano, E.; Sanchez-Heras, A.B. Cost-utility analysis of germline BRCA1/2 testing in women with high-grade epithelial ovarian cancer in Spain. Clin. Transl Oncol 2019, 21, 1076–1084. [Google Scholar] [CrossRef]
- Li, Y.; Arellano, A.R.; Bare, L.A.; Bender, R.A.; Strom, C.M.; Devlin, J.J. A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. Value Health J. Int. Soc. Pharm. Outcomes Res. 2017, 20, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Familial Breast Cancer: Full Cost Effectiveness Evidence Review & Reports; Update of clinical guideline 14 and 41. 2013. Available online: https://www.nice.org.uk/guidance/cg164 (accessed on 13 July 2021). Last updated: 20 November 2019.
- Hess, L.M.; Brady, W.E.; Havrilesky, L.J.; Cohn, D.E.; Monk, B.J.; Wenzel, L.; Cella, D. Comparison of methods to estimate health state utilities for ovarian cancer using quality of life data: A Gynecologic Oncology Group study. Gynecol. Oncol. 2013, 128, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.L.; Huston, A.; Fau-Noyes, K.; Noyes, K. Cost-effectiveness of testing for breast cancer susceptibility genes. Value in Health 2009, 12, 207–216. [Google Scholar] [CrossRef][Green Version]
- Kwon, J.S.; Tinker, A.V.; Hanley, G.E.; Pansegrau, G.; Sun, S.; Carey, M.S.; Schrader, I. BRCA mutation testing for first-degree relatives of women with high-grade serous ovarian cancer. Gynecol. Oncol. 2019, 152, 459–464. [Google Scholar] [CrossRef]
- Tuffaha, H.W.; Mitchell, A.; Ward, R.L.; Connelly, L.; Butler, J.R.G.; Norris, S.; Scuffham, P.A. Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers. Genet. Med. Off. J. Am. Coll. Med Genet. 2018, 20, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, M.; Surh, L.; Humphreys, L.; Verma, S.; Logan, D.; Hunter, A.; Allanson, J. Measuring women’s preferences for breast cancer treatments and BRCA1/BRCA2 testing. Qual Life Res. 2001, 10, 595–607. [Google Scholar] [CrossRef]
- Conner-Spady, B.L.; Cumming, C.; Nabholtz, J.M.; Jacobs, P.; Stewart, D. A longitudinal prospective study of health-related quality of life in breast cancer patients following high-dose chemotherapy with autologous blood stem cell transplantation. Bone Marrow Transplant. 2005, 36, 251–259. [Google Scholar] [CrossRef][Green Version]
- De Haes, J.C.; de Koning, H.J.; van Oortmarssen, G.J.; van Agt, H.M.; de Bruyn, A.E.; van Der Maas, P.J. The impact of a breast cancer screening programme on quality-adjusted life-years. Int. J. Cancer 1991, 49, 538–544. [Google Scholar] [CrossRef]
- Geiger, A.M.; Nekhlyudov, L.; Herrinton, L.J.; Rolnick, S.J.; Greene, S.M.; West, C.N.; Harris, E.L.; Elmore, J.G.; Altschuler, A.; Liu, I.L.; et al. Quality of life after bilateral prophylactic mastectomy. Ann. Surg. Oncol. 2007, 14, 686–694. [Google Scholar] [CrossRef]
- Gerard, K.; Dobson, M.; Hall, J. Framing and labelling effects in health descriptions: Quality adjusted life years for treatment of breast cancer. J. Clin. Epidemiol. 1993, 46, 77–84. [Google Scholar] [CrossRef]
- Grann, V.R.; Jacobson, J.S.; Sundararajan, V.; Albert, S.M.; Troxel, A.B.; Neugut, A.I. The quality of life associated with prophylactic treatments for women with BRCA1/2 mutations. Cancer J. Sci Am. 1999, 5, 283–292. [Google Scholar]
- Grann, V.R.; Patel, P.; Bharthuar, A.; Jacobson, J.S.; Warner, E.; Anderson, K.; Warner, E.; Tsai, W.Y.; Hill, K.A.; Neugut, A.I.; et al. Breast cancer-related preferences among women with and without BRCA mutations. Breast Cancer Res. Treat. 2010, 119, 177–184. [Google Scholar] [CrossRef]
- Griffith, G.L.; Edwards, R.T.; Gray, J. Cancer genetics services: A systematic review of the economic evidence and issues. Br. J. Cancer 2004, 90, 1697–1703. [Google Scholar] [CrossRef][Green Version]
- Havrilesky, L.J.; Broadwater, G.; Davis, D.M.; Nolte, K.C.; Barnett, J.C.; Myers, E.R.; Kulasingam, S. Determination of quality of life-related utilities for health states relevant to ovarian cancer diagnosis and treatment. Gynecol. Oncol. 2009, 113, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Jansen, S.J.; Otten, W.; van de Velde, C.J.; Nortier, J.W.; Stiggelbout, A.M. The impact of the perception of treatment choice on satisfaction with treatment, experienced chemotherapy burden and current quality of life. Br. J. Cancer 2004, 91, 56–61. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lidgren, M.; Wilking, N.; Jönsson, B.; Rehnberg, C. Health related quality of life in different states of breast cancer. Qual Life Res. 2007, 16, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.; Nafees, B.; Narewska, J.; Dewilde, S.; Watkins, J. Health state utilities for metastatic breast cancer. Br. J. Cancer 2006, 95, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Peasgood, T.; Ward, S.E.; Brazier, J. Health-state utility values in breast cancer. Expert Rev. Pharm. Outcomes Res. 2010, 10, 553–566. [Google Scholar] [CrossRef]
- Polsky, D.; Keating, N.L.; Weeks, J.C.; Schulman, K.A. Patient choice of breast cancer treatment: Impact on health state preferences. Med. Care 2002, 40, 1068–1079. [Google Scholar] [CrossRef] [PubMed]
- Stein, K.; Sugar, C.; Velikova, G.; Stark, D. Putting the ‘Q’ in quality adjusted life years (QALYs) for advanced ovarian cancer—An approach using data clustering methods and the internet. Eur. J. Cancer 2007, 43, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Tengs, T.O.; Wallace, A. One thousand health-related quality-of-life estimates. Med. Care 2000, 38, 583–637. [Google Scholar] [CrossRef] [PubMed]
- Unic, I.; Stalmeier, P.F.; Verhoef, L.C.; van Daal, W.A. Assessment of the time-tradeoff values for prophylactic mastectomy of women with a suspected genetic predisposition to breast cancer. Med. Decis Mak. 1998, 18, 268–277. [Google Scholar] [CrossRef]
- Lerman, C.; Narod, S.; Schulman, K.; Hughes, C.; Gomez-Caminero, A.; Bonney, G.; Gold, K.; Trock, B.; Main, D.; Lynch, J.; et al. BRCA1 testing in families with hereditary breast-ovarian cancer. A prospective study of patient decision making and outcomes. JAMA 1996, 275, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- van Oostrom, I.; Meijers-Heijboer, H.; Lodder, L.N.; Duivenvoorden, H.J.; van Gool, A.R.; Seynaeve, C.; van der Meer, C.A.; Klijn, J.G.; van Geel, B.N.; Burger, C.W.; et al. Long-term psychological impact of carrying a BRCA1/2 mutation and prophylactic surgery: A 5-year follow-up study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 3867–3874. [Google Scholar] [CrossRef]
- Grann, V.R.; Panageas, K.S.; Whang, W.; Antman, K.H.; Neugut, A.I. Decision analysis of prophylactic mastectomy and oophorectomy in BRCA1-positive or BRCA2-positive patients. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1998, 16, 979–985. [Google Scholar] [CrossRef]
- Beran, T.M.; Stanton, A.L.; Kwan, L.; Seldon, J.; Bower, J.E.; Vodermaier, A.; Ganz, P.A. The trajectory of psychological impact in BRCA1/2 genetic testing: Does time heal? Ann. Behav Med. 2008, 36, 107–116. [Google Scholar] [CrossRef]
- Halbert, C.H.; Stopfer, J.E.; McDonald, J.; Weathers, B.; Collier, A.; Troxel, A.B.; Domchek, S. Long-term reactions to genetic testing for BRCA1 and BRCA2 mutations: Does time heal women’s concerns? J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 4302–4306. [Google Scholar] [CrossRef]
- Sie, A.S.; Spruijt, L.; van Zelst-Stams, W.A.; Mensenkamp, A.R.; Ligtenberg, M.J.; Brunner, H.G.; Prins, J.B.; Hoogerbrugge, N. High Satisfaction and Low Distress in Breast Cancer Patients One Year after BRCA-Mutation Testing without Prior Face-to-Face Genetic Counseling. J. Genet. Couns 2016, 25, 504–514. [Google Scholar] [CrossRef]
- PEBC’s Ovarian Oncology Guidelines Group. A systematic review of patient values, preferences and expectations for the treatment of recurrent ovarian cancer. Gynecol. Oncol. 2017, 146, 392–398. [Google Scholar] [CrossRef]
- Attema, A.E.; Brouwer, W.B.F.; Claxton, K. Discounting in Economic Evaluations. PharmacoEconomics 2018, 36, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.; Oakley, J.E.; Brennan, A. Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: A nonparametric regression approach. Med. Decis Mak. 2014, 34, 311–326. [Google Scholar] [CrossRef]
- Zethraeus, N.; Borgström, F.; Ström, O.; Kanis, J.A.; Jönsson, B. Cost-effectiveness of the treatment and prevention of osteoporosis--a review of the literature and a reference model. Osteoporos Int 2007, 18, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Frederix, G.W.; Haji Ali Afzali, H.; Dasbach, E.J.; Ward, R.L. Development and Use of Disease-Specific (Reference) Models for Economic Evaluations of Health Technologies: An Overview of Key Issues and Potential Solutions. Pharmacoeconomics 2015, 33, 777–781. [Google Scholar] [CrossRef] [PubMed]
Search Terms and Scope | Study Selection Criteria | Quality Check | Assessment of HSU Relevance | Population Characteristics | Measure Used | Preference Weights | Descriptive Statistics about HSUs | Response Rate for the Measure Used | Extent of Missing Data or Lost to Follow-Up | Original Reference | Basis for Selecting HSUs | Method Used to Combine Estimates | Actual HSUs Used | Adjustments/Assumptions | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Simoes Correa Galendi et al. (Brazil, 2020) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Hurry et al. (Canada, 2020) | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Asphaug et al. (Norway, 2019) | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ⚠ | ✅ | ✅ | ✅ | ⚠ |
Sun et al. (U.S., 2019) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ✅ | ⚠ | ❌ | ✅ | ❌ |
Kwon et al. (Canada, 2019) | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ⚠ | ❌ | ❌ | ✅ | ✅ |
Moya-Alarcón et al. (Spain, 2019) | ⚠ | ✅ | ✅ | ✅ | ⚠ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Müller et al. (Germany, 2019) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Eccleston et al. (U.K., 2017) | NA | NA | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Li et al. (U.S., 2017) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ⚠ |
Tuffaha et al. (Australia, 2017) | NA | NA | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ✅ |
NICE (U.K., 2013) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
Kwon et al. (Canada, 2010) | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ⚠ | ✅ | ❌ | ✅ | ✅ |
Holland et al. (U.S., 2009) | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ✅ |
Tengs et al. (U.S., 2000) | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ❌ | ⚠ | ❌ | ❌ | ✅ | ⚠ | ✅ | ✅ | ⚠ |
Study | Utilities and Assumptions | Adjustment | Impact in One-Way Sensitivity Analysis | |||
---|---|---|---|---|---|---|
(i) Test Positive | (ii) Prophylactic Surgery | (iii) Cancer | (iv) Post Cancer | |||
Simoes Correa Galendi et al. (Brazil, 2020) | Complete regain within 4 years: 0.89 | Complete regain b within 4 years: RRM: 0.88 RRSO: 0.92 | BC: 0.66 Metastatic BC: 0.64 OC: 0.69 end-stage OC: 0.55 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age | Negligible c |
Hurry et al. (Canada, 2020) | 1.00 a | Disutility for one year: RRM: 0.88 RRSO: 0.95 Both interventions: 0.84 | BC: 0.71 OC: 0.50 | Partial regain within 5 years: BC: 0.77 OC: 0.72 | Age and target population | Not reported |
Asphaug et al. (Norway, 2019) | 0.995 | RRM: 0.97 RRSO: 0.92 Both interventions: 0.89 | BC stage I/II: 0.73 BC stage III/IV: 0.55 OC, local: 0.81 Metastatic OC (regional): 0.55 Metastatic OC (distal): 0.16 | Not reported | Age and target population | Not reported |
Sun et al. (United States, 2019) | - | RRM: 0.88 RRSO: 0.95 | Early BC/OC: 0.71/0.81 Advanced BC/OC: 0.65/0.55 Recurrent BC/OC: 0.45/0.50 End-stage OC: 0.16 | Partial and sustained regain: BC: 0.81 OC: 0.83 | None | Negligible |
Kwon et al. (Canada, 2019) | - | RRM: 0.82 RRSO: 0.68 | BC: 0.75 OC: 0.58 | Sustained decrease, as in (iii) | Age and target population | Not reported |
Moya-Alarcón et al. (Spain, 2019) | 1.00 a | Disutility for one year: RRM: 0.88 RRSO: 0.95 Both interventions: 0.84 | BC: 0.71 OC: 0.50 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age and target population | ICER changed by +/− 10% when varying cancer utilities |
Müller et al. (Germany, 2019) | Persistent decrease: 0.89 | Complete regain b within 4 years: RRM: 0.85 RRSO: 0.83 Both interventions: 0.78 | Early BC: 0.68 Metastatic BC: 0.63 Early OC: 0.52 End-stage OC: 0.16 | Partial regain within 5 years linearly: BC: 0.79 OC: 0.74 Sustained decrease from metastatic BC | Age | Negligible |
Eccleston et al. (United Kingdom, 2017) | 1.00 a | Disutility for one year: RRM: 0.88 RRSO: 0.95 Both interventions: 0.16 | BC: 0.71 OC: 0.50 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age and target population | Consideration of disutility due to a positive test result (−0.13) increased ICER by 40% |
Li et al. (United States, 2017) | Disutility for one year: 0.95 | Disutility for one year: RRM: 0.97 | BC: 0.68 OC: 0.65 | Persistent decrease for 5 years and complete regain after on: BC: 0.68 OC: 0.65 | Age and target population | Negligible |
Tuffaha et al. (Australia, 2017) | - | - | BC: 0.79 OC: 0.63 | Persistent decrease for 5 years and complete regain after on: BC: 0.79 OC: 0.63 | Age and target population | Negligible |
NICE (United Kingdom, 2013) | Disutility for one year: 0.995 | Disutility for one year: RRM: 0.97 RRSO: 0.92 Both interventions: 0.89 | BC: 0.71 OC: 0.50 | Partial regain within 5 years linearly: BC: 0.77 OC: 0.72 | Age and target population | Negligible |
Kwon et al. (Canada, 2010) | - | RRM: 0.82 RRSO: 0.86 Both interventions: 0.79 | BC: 0.77 OC: 0.65 | Sustained decrease, as in (iii) | Age and target population | Negligible |
Holland et al. (United States, 2009) | Complete regain within 5 years: 0.83 | Complete regain b at age 60: RRM: 0.82 RRSO: 0.68 | BC: 0.75 OC: 0.71 | Partial regain for BC within 3 years linearly: BC: 0.89 OC: 0.58 (sustained) | Age and target population | Sensitive to test result and prophylactic surgery |
Tengs et al. (United States, 2000) | - | RRM: 0.86 RRSO: 0.81 b Both interventions: 0.86 | BC: 0.89 OC: 0.82 Both: 0.82 | Sustained decrease, as in (iii) | None | ICER decreases by 50% when assuming no impact from prophylactic surgery |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões Corrêa Galendi, J.; Vennedey, V.; Kentenich, H.; Stock, S.; Müller, D. Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer. Cancers 2021, 13, 4879. https://doi.org/10.3390/cancers13194879
Simões Corrêa Galendi J, Vennedey V, Kentenich H, Stock S, Müller D. Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer. Cancers. 2021; 13(19):4879. https://doi.org/10.3390/cancers13194879
Chicago/Turabian StyleSimões Corrêa Galendi, Julia, Vera Vennedey, Hannah Kentenich, Stephanie Stock, and Dirk Müller. 2021. "Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer" Cancers 13, no. 19: 4879. https://doi.org/10.3390/cancers13194879
APA StyleSimões Corrêa Galendi, J., Vennedey, V., Kentenich, H., Stock, S., & Müller, D. (2021). Data on Utility in Cost–Utility Analyses of Genetic Screen-and-Treat Strategies for Breast and Ovarian Cancer. Cancers, 13(19), 4879. https://doi.org/10.3390/cancers13194879