Brain Tumor Resection in Elderly Patients: Potential Factors of Postoperative Worsening in a Predictive Outcome Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Surgical Protocol
2.2. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Surgical Complications
3.3. Functional Outcome
3.4. Univariate and Multivariate Analysis
4. Discussion
4.1. Complications and Other Possible Predicting Factors
4.2. The Impact of Surgical Complexity on Outcome
4.3. Does Age Matter?
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Grade | Description |
---|---|
Grade I | Any non-life-threatening deviation from normal postoperative course, not requiring invasive treatment |
Grade Ia | Complication requiring no drug treatment |
Grade Ib | Complication requiring drug treatment |
Grade II | Complication requiring invasive treatment such as surgical, endoscopic, or endovascular interventions |
Grade IIa | Complication requiring intervention without general anesthesia |
Grade IIb | Complication requiring intervention with general anesthesia |
Grade III | Life-threatening complications requiring management in the ICU |
Grade IIIa | Complication involving single organ failure |
Grade IIIb | Complication involving multiple organ failure |
Grade IV | Complication resulting in death |
Surgical Complications | Adverse events that are directly related to surgery or surgical technique |
Medical Complications | Adverse events that are not directly related to surgery or surgical technique |
References
- Partridge, J.S.L.; Harari, D.; Dhesi, J.K. Frailty in the older surgical patient: A review. Age Ageing 2012, 41, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eurostat Population Structure and Ageing-Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing#Median_age_is_highest_in_Italy (accessed on 9 May 2020).
- Strandell, H.; Wolff, P. The EU in the World-2018 Edition; Publications Office of the European Union: Luxembourg, 2018; ISBN 9789279864841. [Google Scholar]
- Eurostat Regional Yearbook-Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Eurostat_regional_yearbook (accessed on 9 May 2020).
- Chibbaro, S.; Di Rocco, F.; Makiese, O.; Mirone, G.; Marsella, M.; Lukaszewicz, A.C.; Vicaut, E.; Turner, B.; Hamdi, S.; Spiriev, T.; et al. Neurosurgery and elderly: Analysis through the years. Neurosurg. Rev. 2011, 34, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Thakur, J.D.; Mallari, R.J.; Corlin, A.; Yawitz, S.; Huang, W.; Eisenberg, A.; Sivakumar, W.; Krauss, H.R.; Griffiths, C.; Barkhoudarian, G.; et al. Minimally invasive surgical treatment of intracranial meningiomas in elderly patients (≥65 years): Outcomes, readmissions, and tumor control. Neurosurg. Focus 2020, 49, E17. [Google Scholar] [CrossRef] [PubMed]
- Maldaner, N.; Sarnthein, J.; Bozinov, O.; Regli, L.; Neidert, M.C. Neurosurgery in Octogenarians: A Prospective Study of Perioperative Morbidity, Mortality, and Complications in Elderly Patients. World Neurosurg. 2018, 110, e287–e295. [Google Scholar] [CrossRef]
- Corniola, M.V.; Lemée, J.-M.; Meling, T.R. Resection of meningiomas in octogenarians: A comparison with a younger geriatric population. Neurosurg. Focus 2020, 49, E18. [Google Scholar] [CrossRef]
- Ius, T.; Somma, T.; Altieri, R.; Angileri, F.F.; Barbagallo, G.M.; Cappabianca, P.; Certo, F.; Cofano, F.; D’Elia, A.; Della Pepa, G.M.; et al. Is age an additional factor in the treatment of elderly patients with glioblastoma? A new stratification model: An Italian Multicenter Study. Neurosurg. Focus 2020, 49, E13. [Google Scholar] [CrossRef]
- Ferroli, P.; Broggi, M.; Schiavolin, S.; Acerbi, F.; Bettamio, V.; Caldiroli, D.; Cusin, A.; La Corte, E.; Leonardi, M.; Raggi, A.; et al. Predicting functional impairment in brain tumor surgery: The Big Five and the Milan Complexity Scale. Neurosurg. Focus 2015, 39, E14. [Google Scholar] [CrossRef] [Green Version]
- Brinjikji, W.; Rabinstein, A.A.; Lanzino, G.; Kallmes, D.F.; Cloft, H.J. Effect of age on outcomes of treatment of unruptured cerebral aneurysms: A study of the national inpatient sample 2001–2008. Stroke 2011, 42, 1320–1324. [Google Scholar] [CrossRef] [Green Version]
- Kanamaru, H.; Kawakita, F.; Asada, R.; Miura, Y.; Shiba, M.; Toma, N.; Suzuki, H. Prognostic factors varying with age in patients with aneurysmal subarachnoid hemorrhage. J. Clin. Neurosci. 2020, 76, 118–125. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Reponen, E.; Tuominen, H.; Korja, M. Evidence for the use of preoperative risk assessment scores in elective cranial neurosurgery: A systematic review of the literature. Anesth. Analg. 2014, 119, 420–432. [Google Scholar] [CrossRef]
- Chow, R.; Bruera, E.; Temel, J.S.; Krishnan, M.; Im, J.; Lock, M. Inter-rater reliability in performance status assessment among healthcare professionals: An updated systematic review and meta-analysis. Support. Care Cancer 2020, 28, 2071–2078. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Landriel Ibañez, F.A.; Hem, S.; Ajler, P.; Vecchi, E.; Ciraolo, C.; Baccanelli, M.; Tramontano, R.; Knezevich, F.; Carrizo, A. A new classification of complications in neurosurgery. World Neurosurg. 2011, 75, 709–711. [Google Scholar] [CrossRef]
- Ferroli, P.; Brock, S.; Leonardi, M.; Schiavolin, S.; Acerbi, F.; Broggi, M. Complications in neurosurgery: Application of Landriel Ibañez classification and preliminary considerations on 1000 cases. World Neurosurg. 2014, 82, E576–E577. [Google Scholar] [CrossRef]
- Saladino, A.; Lamperti, M.; Mangraviti, A.; Legnani, F.G.; Prada, F.U.; Casali, C.; Caputi, L.; Borrelli, P.; DiMeco, F. The semisitting position: Analysis of the risks and surgical outcomes in a contemporary series of 425 adult patients undergoing cranial surgery. J. Neurosurg. 2017, 127, 867–876. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Vetrano, I.G.; Sattin, T.; Falco, J.; de Laurentis, C.; Zattra, C.M.; Bosio, L.; Rossini, Z.; Broggi, M.; Schiariti, M.; et al. Use of ICG videoangiography and FLOW 800 analysis to identify the patient-specific venous circulation and predict the effect of venous sacrifice: A retrospective study of 172 patients. Neurosurg. Focus 2018, 45, E7. [Google Scholar] [CrossRef]
- Acerbi, F.; Vetrano, I.G.; Sattin, T.; de Laurentis, C.; Bosio, L.; Rossini, Z.; Broggi, M.; Schiariti, M.; Ferroli, P. The role of indocyanine green videoangiography with FLOW 800 analysis for the surgical management of central nervous system tumors: An update. Neurosurg. Focus 2018, 44, E6. [Google Scholar] [CrossRef] [Green Version]
- Falco, J.; Cavallo, C.; Vetrano, I.G.; de Laurentis, C.; Siozos, L.; Schiariti, M.; Broggi, M.; Ferroli, P.; Acerbi, F. Fluorescein Application in Cranial and Spinal Tumors Enhancing at Preoperative MRI and Operated with a Dedicated Filter on the Surgical Microscope: Preliminary Results in 279 Patients Enrolled in the FLUOCERTUM Prospective Study. Front. Surg. 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Cordella, R.; Acerbi, F.; Broggi, M.; Vailati, D.; Nazzi, V.; Schiariti, M.; Tringali, G.; Ferroli, P.; Franzini, A.; Broggi, G. Intraoperative neurophysiological monitoring of the cortico-spinal tract in image-guided mini-invasive neurosurgery. Clin. Neurophysiol. 2013, 124, 1244–1254. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnthein, J.; Stieglitz, L.; Clavien, P.A.; Regli, L. A patient registry to improve patient safety: Recording general neurosurgery complications. PLoS ONE 2016, 11, e0163154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schär, R.T.; Tashi, S.; Branca, M.; Söll, N.; Cipriani, D.; Schwarz, C.; Pollo, C.; Schucht, P.; Ulrich, C.T.; Beck, J.; et al. How safe are elective craniotomies in elderly patients in neurosurgery today? A prospective cohort study of 1452 consecutive cases. J. Neurosurg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Shahrestani, S.; Lehrich, B.M.; Tafreshi, A.R.; Brown, N.J.; Lien, B.V.; Ransom, S.; Ransom, R.C.; Ballatori, A.M.; Ton, A.; Chen, X.T.; et al. The role of frailty in geriatric cranial neurosurgery for primary central nervous system neoplasms. Neurosurg. Focus 2020, 49, E15. [Google Scholar] [CrossRef] [PubMed]
- Hammers, R.; Anzalone, S.; Sinacore, J.; Origitano, T.C. Neurosurgical mortality rates: What variables affect mortality within a single institution and within a national database?—Clinical article. J. Neurosurg. 2010, 112, 257–264. [Google Scholar] [CrossRef]
- Elsamadicy, A.A.; Sergesketter, A.; Sampson, J.H.; Gottfried, O.N. Institutional Review of Mortality in 5434 Consecutive Neurosurgery Patients: Are We Improving? Neurosurgery 2017, 83, 1269–1276. [Google Scholar] [CrossRef]
- Watt, J.; Tricco, A.C.; Talbot-Hamon, C.; Pham, B.; Rios, P.; Grudniewicz, A.; Wong, C.; Sinclair, D.; Straus, S.E. Identifying older adults at risk of harm following elective surgery: A systematic review and meta-analysis. BMC Med. 2018, 16. [Google Scholar] [CrossRef] [Green Version]
- Phan, K.; Rao, P.J.; Dexter, M. Microvascular decompression for elderly patients with trigeminal neuralgia. J. Clin. Neurosci. 2016, 29, 7–14. [Google Scholar] [CrossRef]
- Amagasaki, K.; Watanabe, S.; Naemura, K.; Shono, N.; Nakaguchi, H. Safety of microvascular decompression for elderly patients with trigeminal neuralgia. Clin. Neurol. Neurosurg. 2016, 141, 77–81. [Google Scholar] [CrossRef]
- Schwartz, C.; Rautalin, I.; Niemelä, M.; Korja, M. Symptomatic peritumoral edema is associated with surgical outcome: A consecutive series of 72 supratentorial meningioma patients ≥ 80 years of age. J. Neurooncol. 2020, 148, 109–116. [Google Scholar] [CrossRef]
- Pilitsis, J.; Atwater, B.; Warden, D.; Deck, G.; Carroll, J.; Smith, J.; Ng, S.C.; Tseng, J. Outcomes in octogenarians with subdural hematomas. Clin. Neurol. Neurosurg. 2013, 115, 1429–1432. [Google Scholar] [CrossRef]
Variable | Score |
---|---|
Major brain vessel manipulation | |
No | 0 |
Yes | 1 |
Posterior fossa | |
No | 0 |
Yes | 1 |
Cranial nerve manipulation | |
No | 0 |
Yes | 2 |
Eloquent area | |
No | 0 |
Yes | 3 |
Tumor size | |
0–4 cm | 0 |
≥4.1 cm | 1 |
Total score | 0–8 |
Mean Age | 71 ± 4.6 |
---|---|
65–74 y.o. | 109 (76.2%) |
≥75 y.o. | 34 (23.8%) |
Diagnosis | |
Glioblastomas | 41 (28.7%) |
Meningiomas | 49 (34.3%) |
Adenomas | 15 (10.5%) |
Metastases | 12 (8.4%) |
Chordomas | 4 (2.8%) |
Craniopharyngiomas | 3 (2.1%) |
Low-grade gliomas | 2 (1.4%) |
Anaplastic astrocytomas | 2 (1.4%) |
Neurinomas | 2 (1.4%) |
Epidermoid cysts | 2 (1.4%) |
Other | 11 (7.7%) |
Tumor classification | |
Intra-axial | 64 (44.8%) |
Extra-axial | 79 (55.2%) |
Infratentorial | 19 (13.3%) |
Supratentorial | 124 (86.7%) |
Side | |
Left | 61 (42.7%) |
Right | 55 (38.5%) |
Bilateral/midline | 27 (18.9%) |
KPS scores (median; range) | |
Preoperative KPS | 90; 30–100 |
KPS at discharge | 80; 0–100 |
KPS at follow-up | 90; 0–100 |
Complications (Landriel classification) | |
No complications | 78 (54.5%) |
Grade I | 48 (73.8%) |
Grade II | 9 (13.8%) |
Grade III | 4 (6.2%) |
Grade IV | 4 (6.2%) |
Clinical Variables | Worsened at Discharge | Improved or Unchanged at Discharge | p-Value | Effect Size |
---|---|---|---|---|
Age | 70.7 ± 4.2 | 71.2 ± 4.8 | 0.739 | 0.10 |
Preoperative KPS (median; range) | 90; 60–100 | 90; 30–100 | 0.762 | 0.11 |
MCS | 3.3 ± 2.0 | 2.3 ± 2.1 | 0.005 * | 0.47 |
CCI | 5.1 ± 2.1 | 5.1 ± 1.4 | 0.440 | 0.02 |
BMI | 25.7 ± 3.9 | 26.3 ± 4.2 | 0.488 | 0.16 |
Smoke | - | - | 0.693 | 0.07 |
Yes | 6 (33.3%) | 12 (66.7%) | - | - |
No | 36 (28.8%) | 89 (71.2%) | - | - |
Previous radiotherapy | - | - | 0.606 | 0.09 |
Yes | 6 (25%) | 18 (75%) | - | - |
No | 36 (30.3%) | 83 (69.7%) | - | - |
Hypertension | - | - | 0.580 | 0.10 |
Yes | 22 (27.5%) | 58 (72.5%) | - | - |
No | 20 (31.7%) | 43 (68.3%) | - | - |
Complications | - | - | 0.000 * | 1.44 |
Yes | 38 (58.5%) | 27 (41.5%) | - | - |
No | 4 (5.1%) | 74 (94.9%) | - | - |
Clinical Variables | Worsened at Follow-Up | Improved or Unchanged at Follow-Up | p-Value | Effect Size |
---|---|---|---|---|
Age | 71.2 ± 4.6 | 71 ± 4.6 | 0.793 | 0.05 |
Preoperative KPS (median; range) | 90; 50–100 | 90; 30–100 | 0.550 | 0.16 |
MCS | 3 ± 1.7 | 2.5 ± 2.2 | 0.072 | 0.25 |
CCI | 5.1 ± 2.1 | 5.1 ± 1.5 | 0.836 | 0.05 |
BMI | 26.0 ± 3.9 | 26.1 ± 4.2 | 0.968 | 0.03 |
Smoke | - | - | 0.024 | na |
Yes | 0 (0%) | 18 (100%) | - | - |
No | 29 (23.2%) | 96 (76.8%) | - | - |
Previous radiotherapy | - | - | 1.000 | 0.01 |
Yes | 5 (20.8%) | 19 (79.2%) | - | - |
No | 24 (20.2%) | 95 (79.8%) | - | - |
Hypertension | - | - | 0.177 | 0.28 |
Yes | 13 (16.3%) | 67 (83.8%) | - | - |
No | 16 (25.4%) | 47 (74.6%) | - | - |
Complication | - | - | 0.000 * | 1.24 |
Yes | 24 (36.9%) | 41 (63.1%) | - | - |
No | 5 (6.4%) | 73 (93.6%) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferroli, P.; Vetrano, I.G.; Schiavolin, S.; Acerbi, F.; Zattra, C.M.; Schiariti, M.; Leonardi, M.; Broggi, M. Brain Tumor Resection in Elderly Patients: Potential Factors of Postoperative Worsening in a Predictive Outcome Model. Cancers 2021, 13, 2320. https://doi.org/10.3390/cancers13102320
Ferroli P, Vetrano IG, Schiavolin S, Acerbi F, Zattra CM, Schiariti M, Leonardi M, Broggi M. Brain Tumor Resection in Elderly Patients: Potential Factors of Postoperative Worsening in a Predictive Outcome Model. Cancers. 2021; 13(10):2320. https://doi.org/10.3390/cancers13102320
Chicago/Turabian StyleFerroli, Paolo, Ignazio Gaspare Vetrano, Silvia Schiavolin, Francesco Acerbi, Costanza Maria Zattra, Marco Schiariti, Matilde Leonardi, and Morgan Broggi. 2021. "Brain Tumor Resection in Elderly Patients: Potential Factors of Postoperative Worsening in a Predictive Outcome Model" Cancers 13, no. 10: 2320. https://doi.org/10.3390/cancers13102320
APA StyleFerroli, P., Vetrano, I. G., Schiavolin, S., Acerbi, F., Zattra, C. M., Schiariti, M., Leonardi, M., & Broggi, M. (2021). Brain Tumor Resection in Elderly Patients: Potential Factors of Postoperative Worsening in a Predictive Outcome Model. Cancers, 13(10), 2320. https://doi.org/10.3390/cancers13102320