Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient and Tumor Characteristics
2.2. Cell Culture
2.3. Mutation and LOH Analysis, Exome Sequencing and Varbank Analysis
2.4. Cell Migration and Invasiveness
2.5. Protein Extraction, Proteome Blot Analyses and Western Blot Analysis
2.6. Immunofluorescence Analysis
2.7. Reporter Assays in WT Cells
2.8. Statistical Analyses
3. Results
3.1. Description of the 11 Cell Lines with Different WT1 Mutations
3.2. Karyotype, LOH, aCGH Analysis and Exome Sequencing of Wilms Cell Lines
3.3. Wilms5: An Unusual Case
3.4. Analysis of Cell Lines without CTNNB1 Mutations
3.5. Comparison of Wilms3 Cells with and without CTNNB1 Mutations
3.6. Immortalization
3.7. Analysis of Differentiation Potential of the WT1 Mutant Wilms Tumor Cell Lines
3.8. Migration and Invasiveness
3.9. Protein Activation Status of the WT1 Mutant Wilms Tumor Cells Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumacher, V.; Schneider, S.; Figge, A.; Wildhardt, G.; Harms, D.; Schmidt, D.; Weirich, A.; Ludwig, R.; Royer-Pokora, B. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl. Acad. Sci. USA 1997, 94, 3972–3977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiti, S.; Alam, R.; Amos, C.I.; Huff, V. Frequent association of β-catenin and WT1 mutations in Wilms tumors. Cancer Res. 2000, 60, 6288–6292. [Google Scholar] [PubMed]
- Royer-Pokora, B.; Weirich, A.; Schumacher, V.; Uschkereit, C.; Beier, M.; Leuschner, I.; Graf, N.; Autschbach, F.; Schneider, D.; von Harrach, M. Clinical relevance of mutations in the Wilms tumor suppressor 1 gene WT1 and the cadherin-associated protein beta1 gene CTNNB1 for patients with Wilms tumors: Results of long-term surveillance of 71 patients from International Society of Pediatric Oncology Study 9/Society for Pediatric Oncology. Cancer 2008, 113, 1080–1089. [Google Scholar] [PubMed]
- Garvin, A.J.; Surrette, F.; Hintz, D.S.; Rudisill, M.T.; Sens, M.A.; Sens, D.A. The in vitro growth and characterization of the skeletal muscle component of Wilms’ tumor. Am. J. Pathol. 1985, 121, 298–310. [Google Scholar] [PubMed]
- Garvin, A.J.; Sullivan, J.L.; Bennet, D.D.; Stanley, W.S.; Inabnett, T.; Sens, D.A. The in vitro growth, heterotransplantation, and immunohistochemical characterization of the blastemal component of Wilms’ tumor. Am. J. Pathol. 1987, 129, 353–363. [Google Scholar]
- Hazen-Martin, D.J.; Garvin, J.; Gansler, T.; Tarnowski, B.I.; Sens, D.A. Morphology and growth characteristics of epithelial cells from classic Wilms’ tumors. Am. J. Pathol. 1993, 142, 893–905. [Google Scholar]
- Hazen-Martin, D.J.; Re, G.G.; Garvin, A.J.; Sens, D.A. Distinctive properties of an anaplastic Wilms’ tumor and its associated epithelial cell line. Am. J. Pathol. 1994, 144, 1023–1034. [Google Scholar]
- Kumar, S.; Harrison, C.J.; Heighway, J.; Marsden, H.B.; West, D.C.; Jones, P.M. A cell line from Wilms’ tumour with deletion in short arm of chromosome II. Int. J. Cancer 1987, 40, 499–504. [Google Scholar] [CrossRef]
- Wegert, J.; Bausenwein, S.; Roth, S.; Graf, N.; Geissinger, E.; Gessler, M. Characterization of primary Wilms tumor cultures as an in vitro model. Genes Chromosomes Cancer 2011, 51, 92–104. [Google Scholar] [CrossRef]
- Theerakitthanakul, K.; Khrueathong, J.; Kruatong, J.; Graidist, P.; Raungrut, P.; Kayasut, K.; Sangkhathat, S. Senescence Process in Primary Wilms’ Tumor Cell Culture Induced by p53 Independent p21 Expression. J. Cancer 2016, 7, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
- Royer-Pokora, B.; Busch, M.; Beier, M.; Duhme, C.; de Torres, C.; Mora, J.; Brandt, A.; Royer, H.D. Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum. Mol. Genet. 2010, 19, 1651–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, A.; Löhers, K.; Beier, M.; Leube, B.; de Torres, C.; Mora, J.; Arora, P.; Jat, P.S.; Royer-Pokora, B. Establishment of a conditionally immortalized Wilms tumor cell line with a homozygous WT1 deletion within a heterozygous 11p13 deletion and UPD limited to 11p15. PLoS ONE 2016, 11, e0155561. [Google Scholar] [CrossRef] [PubMed]
- Uschkereit, C.; Perez, N.; de Torres, C.; Küff, M.; Mora, J.; Royer-Pokora, B. Different CTNNB1 mutations as molecular genetic proof for the independent origin of four Wilms tumors in a patient with a novel germ-line WT1 mutation. J. Med. Genet. 2007, 44, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. BWA-aln: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. GATK: The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Ramu, A.; Noordam, M.J.; Schwartz, R.S.; Wuster, A.; Hurles, M.E.; Cartwright, R.A.; Conrad, D.F. DENOVOGEAR: De novo indel and point mutation discovery and phasing. Nat. Methods 2013, 10, 985–987. [Google Scholar] [CrossRef] [Green Version]
- Gebäck, T.; Schulz, M.M.P.; Koumoutsakos, P.; Detmar, M. A novel and simple software tool for automated analysis of monolayer wound healing assays. BioTechniques 2008, 46, 265–274. [Google Scholar] [CrossRef]
- Zawel, L.; Dai, J.L.; Buckhaults, P.; Zhou, S.; Kinzler, K.W.; Vogelstein, B.; Kern, S.E. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1998, 1, 611–617. [Google Scholar] [CrossRef]
- Duhme, C.; Busch, M.; Heine, E.; de Torres, C.; Mora, J.; Royer-Pokora, B. WT1-Mutant Wilms Tumor Progression Is Associated with Diverting Clonal Mutations of CTNNB1. J. Pediatr. Hematol. Oncol. 2019. [Google Scholar] [CrossRef]
- Woods, A.W.; Berlow, N.E.; Ortiz, M.; Michalek, J.E.; Lathara, M.; Wright, H.; Royer-Pokora, B.; Yeger, H.; Veselska, R.; Houghton, P.; et al.; (Children’s Cancer Therapy Development Institute, Beaverton, OR, USA) Personal communication, 2020.
- Marsan, M.; Van den Eynden, G.; Limame, R.; Neven, P.; Hauspy, J.; Van Dam, P.A.; Vergote, I.; Dirix, L.Y.; Vermeulen, P.B.; Van der Laere, S.J. A core invasiveness gene signature reflects epithelial to mesenchymal transition but not metastatic potential in breast cancer cell lines and tissue samples. PLoS ONE 2014, 9, e89262. [Google Scholar] [CrossRef]
- Argast, G.M.; Krueger, J.S.; Thomson, S.; Sujka-Kwok, I.; Carey, K.; Silva, S.; O’Connor, M.; Mercado, P.; Mulford, I.J.; Young, G.D.; et al. Inducible expression of TGFβ, snail and Zeb1 recapitulates EMT in vitro and in vivo in a NSCLC model. Clin. Exp. Metastasis 2011, 7, 593–614. [Google Scholar] [CrossRef] [PubMed]
- Fukuzawa, R.; Heathcott, R.W.; More, H.E.; Reeve, A. Sequential WT1 and CTNNB1 mutations and alterations of β-Catenin localisation in intralobar nephrogenic rests and associated Wilms tumors: Two case studies. J. Clin. Pathol. 2007, 60, 1013–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, M.; Schwindt, H.; Brandt, A.; Beier, M.; Gorldt, N.; Romaniuk, P.; Toska, E.; Roberts, S.; Royer, H.-D.; Royer-Pokora, B. Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation. Hum. Mol. Genet. 2014, 23, 3958–3974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, F.; Boucher, S.; Koh, S.; Sastry, K.S.R.; Chase, L.; Lakshmipathy, U.; Choong, C.; Yang, Z.; Vemuri, M.C.; Rao, M.S.; et al. PDGF, TGF-beta, and FGF Signaling Is Important for Differentiation and Growth of Mesenchymal Stem Cells (MSCs): Transcriptional Profiling Can Identify Markers and Signaling Pathways Important in Differentiation of MSCs Into Adipogenic, Chondrogenic, and Osteogenic Lineages. Blood 2008, 112, 295–307. [Google Scholar] [PubMed]
- Mattila, P.K.; Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 2008, 9, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Melenhorst, W.B.W.H.; Mulder, G.M.; Xi, Q.; Hoenderop, J.G.J.; Kimura, K.; Eguchi, S.; van Goor, H. Epidermal Growth Factor Receptor Signaling in the Kidney: Key Roles in Physiology and Disease. Hypertension 2008, 52, 987–993. [Google Scholar] [CrossRef]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signaling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar]
- Hu, Q.; Gao, F.; Tian, W.; Ruteshouser, E.C.; Wang, Y.; Lazar, A.; Stewart, J.; Strong, L.C.; Behringer, R.R.; Huff, V. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J. Clin. Investig. 2011, 121, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Schmahl, J.; Raymond, C.R.; Soriano, P. PDGF Signaling Specificity Is Mediated Through Multiple Immediate Early Genes. Nat. Genet. 2007, 39, 52–60. [Google Scholar] [CrossRef]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.A.; Högnason, T.; Ren, J.; Stefánsson, K.; Ratan, R.R. The epidermal growth factor receptor associates with and recruits phosphatidylinositol 3-kinase to the platelet-derived growth factor beta receptor. J. Biol. Chem. 1998, 12, 6885–6891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Haendeler, J.; Hojo, Y.; Yamamoto, K.; Berk, B.C. Receptor heterodimerization: Essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol. Cell Biol. 2001, 21, 6387–6394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heldin, C.H.; Moustakas, A. Role of Smads in TGFb signaling. Cell Tissue Res. 2012, 347, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Oxburgh, L.; Chu, G.C.; Michael, S.K.; Robertson, E.J. TGFbeta superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population. Development 2004, 131, 4593–4605. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Massagué, J. Mechanisms of TGFb Signaling from Cell Membrane to the Nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Minamoto, T.; Buschmann, T.; Habelhah, H.; Matusevich, E.; Tahara, H.; Boerresen-Dale, A.L.; Harris, C.; Sidransky, D.; Ronai, Z. Distinct pattern of p53 phosphorylation in human tumors. Oncogene 2001, 20, 3341–3347. [Google Scholar] [CrossRef] [Green Version]
- Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; et al. Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer. Cell 2007, 131, 1190–1203. [Google Scholar] [CrossRef] [Green Version]
Cell Line | WT1 Mutation Status in Blood DNA of Patient * | CTNNB1 Mutation in Tumor | WT1 Mutation Status in Cell Lines * | LOH | CTNNB1 Mutation in Cell Lines | Patient Treatment before Surgery and Tumor Sampling | |
---|---|---|---|---|---|---|---|
1 | Wilms1-2r second tumor, right | germ line WT1 c.149 C > A, p.S50X | right bulk tumor: p.S45F | homozygous c.149 C > A, p.S50X | 11p11-11pter | heterozygous TCT > TTT, p.S45F | 1 year without chemotherapy § |
2 | Wilms1-2l second tumor, left | germ line WT1 c.149 C > A, p.S50X | left bulk tumor: p.S45C | homozygous c.149 C > A, p.S50X | not analyzed | heterozygous TCT > TGT, p.S45C | 1 year without chemotherapy |
3 | Wilms2 | germ line WT1 c.1084 C > T, p.R362X | microdissected: p.ΔS45, p.S45Y, p.S45F; bulk tumor: p.S45F | homozygous c.149 C > A, p.R362X | 11p11-11pter | heterozygous TCT > TAT, p.S45Y | no chemotherapy |
4 | Wilms3 | WT1 wild type | microdissected p.T41A; bulk tumor: p.T41A | homozygous c.1293-1294insA, p.V432SfsX87 | 11p11-11pter | wild type, early passage ACC > GCC, p.T41A, cells with mutation are lost during culturing | 4 weeks ACTD and VCR |
5 | Wilms4 WAGR | del 11p13 | bulk tumor: p.ΔS45 | hemizygous c.1311-1312insC, p.H438PfsX79 | no LOH in 11p | heterozygous del TCT, p.ΔS45 | no chemotherapy |
6 | Wilms5 | germ line WT1 c.1168 C > T, p.R390X | wild type # | homozygous c.1296-1299delGC, p.R433PfsX84 | LOH 11p11-11pter loss of R390X, | wild type | 5 weeks ACTD and VCR |
7 | Wilms6 bilateral tumor | germ line WT1 c.1168 C > T, p.R390X | left bulk tumor: homozygous p.ΔS45 | homozygous c.1168 C > T, p.R390X | 11p11-11pter | homozygous del TCT, p.ΔS45 | 4 weeks ACTD and VCR, 4 weeks Dox |
8 | Wilms8 bilateral tumor | germ line WT1 c.1168 C > T, p.R390X | left bulk tumor: p.S45A | homozygous c.1168 C > T, p.R390X | not analyzed | heterozygous TCT > GCT, p.S45A | >7 weeks |
9 | Wilms10T, primary tumor | WT1 wild type | primary bulk tumor: heterozygous ACC > GCC p.T41A | homozygous del WT1 within del11p13 | no LOH in 11p13 UPD in 11p15 | homozygous del TCT, p.ΔS45, UPD 3p | no chemotherapy |
10 | Wilms10M, metastasis | WT1 wild type | lung nodule: heterozygous p.ΔS45, less wild type (mixed population) | homozygous del WT1 within del11p13 | no LOH in 11p13 UPD in 11p15 | homozygous del TCT, p.ΔS45, UPD 3p | >6 months, ACTD, VCR, Dox and radiotherapy |
11 | Wilms11 | WT1 wild type | bulk tumor: heterozygous p.S45F | homozygous c.901 C > T, p.R301X | not analyzed | 4 different cell cultures all wild type | no chemotherapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royer-Pokora, B.; Busch, M.A.; Tenbusch, S.; Schmidt, M.; Beier, M.; Woods, A.D.; Thiele, H.; Mora, J. Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers 2021, 13, 60. https://doi.org/10.3390/cancers13010060
Royer-Pokora B, Busch MA, Tenbusch S, Schmidt M, Beier M, Woods AD, Thiele H, Mora J. Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers. 2021; 13(1):60. https://doi.org/10.3390/cancers13010060
Chicago/Turabian StyleRoyer-Pokora, Brigitte, Maike Anna Busch, Sarah Tenbusch, Mathias Schmidt, Manfred Beier, Andrew D. Woods, Holger Thiele, and Jaume Mora. 2021. "Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations" Cancers 13, no. 1: 60. https://doi.org/10.3390/cancers13010060
APA StyleRoyer-Pokora, B., Busch, M. A., Tenbusch, S., Schmidt, M., Beier, M., Woods, A. D., Thiele, H., & Mora, J. (2021). Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers, 13(1), 60. https://doi.org/10.3390/cancers13010060