HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolb, H.-J. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood J. Am. Soc. Hematol. 2008, 112, 4371–4383. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Maeda, Y.; Liu, C.; Krijanovski, O.I.; Korngold, R.; Ferrara, J.L. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat. Med. 2005, 11, 1244–1249. [Google Scholar] [CrossRef]
- Rezvani, K.; Yong, A.S.; Savani, B.N.; Mielke, S.; Keyvanfar, K.; Gostick, E.; Price, D.A.; Douek, D.C.; Barrett, A.J. Graft-versus-leukemia effects associated with detectable Wilms tumor-1–specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2007, 110, 1924–1932. [Google Scholar]
- Pierini, F.; Lenz, T.L. Divergent allele advantage at human MHC genes: Signatures of past and ongoing selection. Mol. Biol. Evol. 2018, 35, 2145–2158. [Google Scholar] [CrossRef]
- Reche, P.A.; Reinherz, E.L. Sequence variability analysis of human class I and class II MHC molecules: Functional and structural correlates of amino acid polymorphisms. J. Mol. Biol. 2003, 331, 623–641. [Google Scholar] [CrossRef]
- Paul, S.; Weiskopf, D.; Angelo, M.A.; Sidney, J.; Peters, B.; Sette, A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 2013, 191, 5831–5839. [Google Scholar] [CrossRef]
- Chowell, D.; Krishna, C.; Pierini, F.; Makarov, V.; Rizvi, N.A.; Kuo, F.; Morris, L.G.; Riaz, N.; Lenz, T.L.; Chan, T.A. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat. Med. 2019, 25, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Abelin, J.G.; Keskin, D.B.; Sarkizova, S.; Hartigan, C.R.; Zhang, W.; Sidney, J.; Stevens, J.; Lane, W.; Zhang, G.L.; Eisenhaure, T.M. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 2017, 46, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Berlin, C.; Kowalewski, D.; Schuster, H.; Mirza, N.; Walz, S.; Handel, M.; Schmid-Horch, B.; Salih, H.; Kanz, L.; Rammensee, H. Mapping the HLA ligandome landscape of acute myeloid leukemia: A targeted approach toward peptide-based immunotherapy. Leukemia 2015, 29, 647–659. [Google Scholar] [CrossRef]
- Grantham, R. Amino acid difference formula to help explain protein evolution. Science 1974, 185, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Gratwohl, A. The EBMT risk score. Bone Marrow Transplant. 2012, 47, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Kim, H.T.; Cutler, C.S.; Ho, V.T.; Koreth, J.; Ritz, J.; Alyea, E.P.; Antin, J.H.; Soiffer, R.J. A prognostic score for patients with acute leukemia or myelodysplastic syndromes undergoing allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 2008, 14, 28–35. [Google Scholar] [CrossRef]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R. Reduced mortality after allogeneic hematopoietic-cell transplantation. New Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef]
- Chowell, D.; Morris, L.G.; Grigg, C.M.; Weber, J.K.; Samstein, R.M.; Makarov, V.; Kuo, F.; Kendall, S.M.; Requena, D.; Riaz, N. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018, 359, 582–587. [Google Scholar] [CrossRef]
- Kowalewski, D.J.; Schuster, H.; Backert, L.; Berlin, C.; Kahn, S.; Kanz, L.; Salih, H.R.; Rammensee, H.-G.; Stevanovic, S.; Stickel, J.S. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc. Natl. Acad. Sci. USA 2015, 112, E166–E175. [Google Scholar] [CrossRef] [PubMed]
- Nagorsen, D.; Scheibenbogen, C.; Marincola, F.M.; Letsch, A.; Keilholz, U. Natural T cell immunity against cancer. Clin. Cancer Res. 2003, 9, 4296–4303. [Google Scholar]
- Stevanović, S.; Pasetto, A.; Helman, S.R.; Gartner, J.J.; Prickett, T.D.; Howie, B.; Robins, H.S.; Robbins, P.F.; Klebanoff, C.A.; Rosenberg, S.A. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017, 356, 200–205. [Google Scholar] [CrossRef]
- Robinson, J.; Guethlein, L.A.; Cereb, N.; Yang, S.Y.; Norman, P.J.; Marsh, S.G.; Parham, P. Distinguishing functional polymorphism from random variation in the sequences of > 10,000 HLA-A,-B and-C alleles. PLoS Genet. 2017, 13, e1006862. [Google Scholar] [CrossRef]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 2017, 171, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Aptsiauri, N.; Ruiz-Cabello, F.; Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: The road to escape from T-cell responses. Curr. Opin. Immunol. 2018, 51, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Christopher, M.J.; Petti, A.A.; Rettig, M.P.; Miller, C.A.; Chendamarai, E.; Duncavage, E.J.; Klco, J.M.; Helton, N.M.; O’Laughlin, M.; Fronick, C.C. Immune escape of relapsed AML cells after allogeneic transplantation. New Engl. J. Med. 2018, 379, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Johnson, B.A., III; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 2017, 17, 209. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Doherty, P.C.; Zinkernagel, R.M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 1975, 256, 50–52. [Google Scholar] [CrossRef]
- Penn, D.J.; Damjanovich, K.; Potts, W.K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 2002, 99, 11260–11264. [Google Scholar] [CrossRef]
- Thursz, M.R.; Thomas, H.C.; Greenwood, B.M.; Hill, A.V. Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat. Genet. 1997, 17, 11–12. [Google Scholar] [CrossRef]
- Zheng, H.; Matte-Martone, C.; Li, H.; Anderson, B.E.; Venketesan, S.; Sheng Tan, H.; Jain, D.; McNiff, J.; Shlomchik, W.D. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood J. Am. Soc. Hematol. 2008, 111, 2476–2484. [Google Scholar] [CrossRef]
- Zheng, H.; Matte-Martone, C.; Jain, D.; McNiff, J.; Shlomchik, W.D. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. J. Immunol. 2009, 182, 5938–5948. [Google Scholar] [CrossRef]
- Stevanović, S.; Griffioen, M.; Nijmeijer, B.; Van Schie, M.; Stumpf, A.; Rutten, C.; Willemze, R.; Falkenburg, J. Human allo-reactive CD4+ T cells as strong mediators of anti-tumor immunity in NOD/scid mice engrafted with human acute lymphoblastic leukemia. Leukemia 2012, 26, 312–322. [Google Scholar] [CrossRef][Green Version]
- Stevanović, S.; van Bergen, C.A.; Van Luxemburg-Heijs, S.A.; Van der Zouwen, B.; Jordanova, E.S.; Kruisselbrink, A.B.; van de Meent, M.; Harskamp, J.C.; Claas, F.H.; Marijt, E.W. HLA class II upregulation during viral infection leads to HLA-DP–directed graft-versus-host disease after CD4+ donor lymphocyte infusion. Blood J. Am. Soc. Hematol. 2013, 122, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Chakraverty, R.; Eom, H.-S.; Sachs, J.; Buchli, J.; Cotter, P.; Hsu, R.; Zhao, G.; Sykes, M. Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood 2006, 108, 2106–2113. [Google Scholar] [CrossRef]
- Borst, J.; Ahrends, T.; Bąbała, N.; Melief, C.J.; Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2018, 18, 635–647. [Google Scholar] [CrossRef]
- Lenz, T.L. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evol. Int. J. Org. Evol. 2011, 65, 2380–2390. [Google Scholar] [CrossRef] [PubMed]
- Petersdorf, E.W.; Gooley, T.; Malkki, M.; Anasetti, C.; Martin, P.; Woolfrey, A.; Smith, A.; Mickelson, E.; Hansen, J.A. The biological significance of HLA-DP gene variation in haematopoietic cell transplantation. Br. J. Haematol. 2001, 112, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Piersma, S.J.; Welters, M.J.; Van Der Hulst, J.M.; Kloth, J.N.; Kwappenberg, K.M.; Trimbos, B.J.; Melief, C.J.; Hellebrekers, B.W.; Fleuren, G.J.; Kenter, G.G. Human papilloma virus specific T cells infiltrating cervical cancer and draining lymph nodes show remarkably frequent use of HLA-DQ and–DP as a restriction element. Int. J. Cancer 2008, 122, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, K.E.; Goswami, M.; Hourigan, C.S.; Oetjen, K.A. Immunological effects of hypomethylating agents. Expert Rev. Hematol. 2017, 10, 745–752. [Google Scholar] [CrossRef]
- Gang, A.; Frøsig, T.M.; Brimnes, M.; Lyngaa, R.; Treppendahl, M.; Grønbæk, K.; Dufva, I.; Thor Straten, P.; Hadrup, S.R. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J. 2014, 4, e197. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.E.; Braun, T.; Penza, S.L.; Beatty, P.; Cornetta, K.; Martino, R.; Drobyski, W.R.; Barrett, A.J.; Porter, D.L.; Giralt, S. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J. Clin. Oncol. 2002, 20, 405–412. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Gratwohl, A.; Schlenk, R.F.; Sierra, J.; Bornhaeuser, M.; Juliusson, G.; Råcil, Z.; Rowe, J.M.; Russell, N.; Mohty, M. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: An integrated-risk adapted approach. Nat. Rev. Clin. Oncol. 2012, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020, 48, D948–D955. [Google Scholar] [PubMed]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Patients (n = 171) | HEDtotal Low (n = 46) | HEDtotal High (n = 125) | p-Value |
---|---|---|---|---|
Follow-up after HSCT (mo.) | ||||
Median | 59.4 | 51.6 | 62.6 | |
Range | 2.1–173.3 | 2.1–173.3 | 5.5–127.8 | |
Age at Allo-HSCT (yr.) | ||||
Median | 56 | 59 | 55 | 0.30 † |
Range | 21–75 | 21–71 | 22–75 | |
Sex (no. (%)) | ||||
Male | 98 (57.3) | 28 (60.9) | 70 (56.0) | 0.57 ‡ |
Female | 73 (42.7) | 18 (39.1) | 55 (44.0) | |
Karnofsky index (no. (%)) | 0.23 § | |||
≥90 | 115 (67.3) | 31 (67.4) | 84 (67.2) | |
<90 | 35 (20.5) | 12 (26.1) | 23 (18.4) | |
n.a. | 21 (12.3) | 3 (6.5) | 18 (14.4) | |
WHO 2016 subtype (no. (%)) | ||||
RGN | 86 (50.3) | 21 (45.7) | 65 (52.0) | 0.22 § |
MDS-related | 31 (18.1) | 13 (28.3) | 18 (14.4) | |
Therapy-related | 8 (4.7) | 2 (4.3) | 6 (4.8) | |
NOS | 46 (26.9) | 10 (21.7) | 36 (28.8) | |
EBMT risk score (no. (%)) | ||||
1 | 3 (1.8) | 1 (2.2) | 2 (1.6) | 0.23 § |
2 | 28 (16.4) | 6 (13.0) | 22 (17.6) | |
3 | 52 (30.4) | 8 (17.4) | 44 (35.2) | |
4 | 32 (18.7) | 11 (23.9) | 21 (16.8) | |
5 | 38 (22.2) | 14 (30.4) | 24 (19.2) | |
6–7 | 10 (5.8) | 3 (6.5) | 7 (5.6) | |
n.a. | 8 (4.7) | 3 (6.5) | 5 (4.0) | |
ELN risk group ¶ (no. (%)) | ||||
Favorable | 19 (11.1) | 5 (10.9) | 14 (11.2) | 0.81 § |
Intermediate | 110 (64.3) | 32 (69.6) | 78 (62.4) | |
Adverse | 26 (15.2) | 9 (19.6) | 17 (13.6) | |
n.a. | 16 (9.4) | 0 (0.0) | 16 (12.8) | |
HSCT setting (no. (%)) | ||||
1st line consolidation | 106 (62.0) | 25 (54.3) | 81 (64.8) | 0.44 § |
Salvage therapy || | 42 (24.6) | 14 (30.4) | 28 (22.4) | |
Relapse | 23 (13.5) | 7 (15.2) | 16 (12.8) | |
Conditioning regimen (no. (%)) | ||||
FLAMSA | 10 (5.8) | 4 (8.7) | 6 (4.8) | 0.32 § |
FLAMSA-Flu/Bu | 41 (24.0) | 16 (34.8) | 25 (20.0) | |
Flu/TBI | 16 (9.4) | 4 (8.7) | 12 (9.6) | |
Cy/TBI | 19 (11.1) | 3 (6.5) | 16 (12.8) | |
Bu/Cy | 24 (14.0) | 5 (10.9) | 19 (15.2) | |
Flu/BCNU/Mel | 8 (4.7) | 1 (2.2) | 7 (5.6) | |
Flu/Bu | 27 (15.8) | 8 (17.4) | 19 (15.2) | |
Flu/Treosulfan | 18 (10.5) | 2 (4.3) | 16 (12.8) | |
Other | 8 (4.7) | 3 (6.5) | 5 (4.0) | |
Remission at HSCT (no. (%)) | 0.16 § | |||
CR/CRi | 103 (60.2) | 22 (47.8) | 81 (64.8) | |
PR | 23 (13.5) | 8 (17.4) | 15 (12.0) | |
RD | 37 (21.6) | 13 (28.3) | 24 (19.2) | |
n.a. | 8 (4.7) | 3 (6.5) | 5 (4.0) | |
Donor (no. (%)) | ||||
HLA-ident sibling | 63 (36.8) | 23 (50.0) | 40 (32.0) | 0.03 § |
HLA-ident foreign donor | 108 (63.2) | 23 (50.0) | 85 (68.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roerden, M.; Nelde, A.; Heitmann, J.S.; Klein, R.; Rammensee, H.-G.; Bethge, W.A.; Walz, J.S. HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers 2020, 12, 1835. https://doi.org/10.3390/cancers12071835
Roerden M, Nelde A, Heitmann JS, Klein R, Rammensee H-G, Bethge WA, Walz JS. HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers. 2020; 12(7):1835. https://doi.org/10.3390/cancers12071835
Chicago/Turabian StyleRoerden, Malte, Annika Nelde, Jonas S. Heitmann, Reinhild Klein, Hans-Georg Rammensee, Wolfgang A. Bethge, and Juliane S. Walz. 2020. "HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation" Cancers 12, no. 7: 1835. https://doi.org/10.3390/cancers12071835
APA StyleRoerden, M., Nelde, A., Heitmann, J. S., Klein, R., Rammensee, H.-G., Bethge, W. A., & Walz, J. S. (2020). HLA Evolutionary Divergence as a Prognostic Marker for AML Patients Undergoing Allogeneic Stem Cell Transplantation. Cancers, 12(7), 1835. https://doi.org/10.3390/cancers12071835