Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device
Abstract
:1. Introduction
2. System Setup and Its Working Principle
2.1. System Setup
2.2. Operating Procedures and Working Principle
3. Experimental
3.1. Microfluidic Chip Design and Fabrication
3.2. Sample Preparation
3.3. Particle and Cell Motion Monitoring
4. Results and Discussion
4.1. Automatic Single Cell Manipulation
4.2. Selective Single Particle Manipulation
4.3. Some Discussions on Flow Velocity and Throughput
4.4. Efficiency and Throughput
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Editorial Office. Method of the year 2013. Nat. Methods 2014, 11, 1. [Google Scholar] [CrossRef]
- Lim, B.; Reddy, V.; Hu, X.; Kim, K.; Jadhav, M.; Abedini-Nassab, R.; Noh, Y.W.; Lim, Y.T.; Yellen, B.B.; Kim, C. Magnetophoretic circuits for digital control of single particles and cells. Nat. Commun. 2014, 5, 3846. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Cheng, S.H.; Dressman, H.; Pittman, J.; Tsou, M.H.; Horng, C.F.; Bild, A.; Iversen, E.S.; Liao, M.; Chen, C.M.; et al. Gene expression predictors of breast cancer outcomes. Lancet 2003, 361, 1590–1596. [Google Scholar] [CrossRef]
- Li, W.H.; Llopis, J.; Whitney, M.; Zlokarnik, G.; Tsien, R.Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 1998, 392, 936–941. [Google Scholar] [PubMed]
- Rao, C.V.; Wolf, D.M.; Arkin, A.P. Control, exploitation and tolerance of intracellular noise. Nature 2002, 420, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Biran, I.; Walt, D.R. Simultaneously monitoring gene expression kinetics and genetic noise in single cells by optical well arrays. Anal. Chem. 2004, 76, 6282–6286. [Google Scholar] [CrossRef] [PubMed]
- Davey, H.M.; Kell, D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev. 1996, 60, 641–696. [Google Scholar] [PubMed]
- Eisenstein, M. Cell sorting: Divide and conquer. Nature 2006, 441, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, M.; Lombardini, M.; Faenza, A.; Rambelli, L.; Giulianelli, L.; Pecorari, N.; Guerrieri, R. Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosens. Bioelectron. 2009, 24, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Chavarria, E.M.; Tanyeri, M.; Schroeder, C.M. A microfluidic-based hydrodynamic trap for single particles. J. Vis. Exp. 2011, 47, e2517. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.N.; Fan, T.W.M.; Bousamra, M.; Higashi, R.M.; Yan, J.; Miller, D.M. Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. Omics 2011, 15, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009, 15, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.A.; Talasaz, A.H.; Zhang, H.; Coram, M.A.; Reddy, A.; Deng, G.; Teli, M.L.; Advani, R.H.; Carlson, R.W.; Molick, J.A.; et al. Single cell profiling of circulating tumor cells: Transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 2012, 7, e33788. [Google Scholar] [CrossRef] [PubMed]
- Ino, K.; Okochi, M.; Konishi, N.; Nakatochi, M.; Imai, R.; Shikida, M.; Ito, A.; Honda, H. Cell culture arrays using magnetic force-based cell patterning for dynamic single cell analysis. Lab Chip 2008, 8, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Henighan, T.; Chen, A.; Vieira, G.; Hauser, A.J.; Yang, F.Y.; Chalmers, J.J.; Sooryakumar, R. Manipulation of Magnetically Labeled and Unlabeled Cells with Mobile Magnetic Traps. Biophys. J. 2010, 98, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Byvank, T.; Chang, W.J.; Bharde, A.; Vieira, G.; Miller, B.L.; Chalmers, J.J.; Bashir, R.; Sooryakumar, R. On-chip magnetic separation and encapsulation of cells in droplets. Lab Chip 2013, 13, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yi, Y.; Yu, Y. Remote Control of T Cell Activation Using Magnetic Janus Particles. Angew. Chem. Int. Ed. 2016, 55, 7384–7387. [Google Scholar] [CrossRef] [PubMed]
- Gossett, D.R.; Weaver, W.M.; Mach, A.J.; Hur, S.C.; Tse, H.T.K.; Lee, W.; Amini, H.; Di Carlo, D. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 2010, 397, 3249–3267. [Google Scholar] [CrossRef] [PubMed]
- Voldman, J.; Gray, M.L.; Toner, M.; Schmidt, M.A. A Microfabrication-Based Dynamic Array Cytometer. Anal. Chem. 2002, 74, 3984–3990. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Frey, O.; Ottoz, D.S.; Rudolf, F.; Hierlemann, A. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells. Lab Chip 2012, 12, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Kim, S.H.; Nakamura, H.; Kaneda, S.; Fujii, T. Cancer cell analyses at the single cell-level using electroactive microwell array device. PLoS ONE 2015, 10, e0139980. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhu, R. Controllably moving individual living cell in an array by modulating signal phase difference based on dielectrophoresis. Biosens. Bioelectron. 2015, 68, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Wang, R.; Lam, S.S.; Hou, J.; Leung, A.Y.; Sun, D. Cell adhesion manipulation through single cell assembly for characterization of initial cell-to-cell interaction. Biomed. Eng. Online 2015, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, S.; Kong, M.; Wang, Z.; Costa, K.D.; Li, R.A.; Sun, D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011, 11, 3656–3662. [Google Scholar] [CrossRef] [PubMed]
- Tardif, M.; Jager, J.B.; Marcoux, P.R.; Uchiyamada, K.; Picard, E.; Hadji, E.; Peyrade, D. Single-cell bacterium identification with a SOI optical microcavity. Appl. Phys. Lett. 2016, 109, 133510. [Google Scholar] [CrossRef]
- Chen, P.; Feng, X.; Du, W.; Liu, B.F. Microfluidic chips for cell sorting. Front. Biosci. 2008, 13, 2464–2483. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Khalili, A.; Ahmad, M.R.; Takeuchi, M.; Nakajima, M.; Hasegawa, Y.; Mohamed Zulkifli, R. A Microfluidic Device for Hydrodynamic Trapping and Manipulation Platform of a Single Biological Cell. Appl. Sci. 2016, 6, 40. [Google Scholar] [CrossRef]
- Zhou, Y.; Basu, S.; Wohlfahrt, K.J.; Lee, S.F.; Klenerman, D.; Laue, E.D.; Seshia, A.A. A microfluidic platform for trapping, releasing and super-resolution imaging of single cells. Sens. Actuators B Chem. 2016, 232, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Chabert, M.; Viovy, J.L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl. Acad. Sci. USA 2008, 105, 3191–3196. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Mao, Z.; Chen, Y.; Xie, Z.; Lata, J.P.; Li, P.; Ren, L.; Liu, J.; Yang, J.; Dao, M.; et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2016, 113, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Lin, S.C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef] [PubMed]
- Barani, A.; Paktinat, H.; Janmaleki, M.; Mohammadi, A.; Mosaddegh, P.; Fadaei-Tehrani, A.; Sanati-Nezhad, A. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens. Bioelectron. 2016, 85, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, A.; Khosroushahi, A.Y. Single-cell analysis based on lab on a chip fluidic system. Anal. Methods 2015, 7, 8524–8533. [Google Scholar] [CrossRef]
- Lo, S.J.; Yao, D.J. Get to understand more from single-cells: Current studies of microfluidic-based techniques for single-cell analysis. Int. J. Mol. Sci. 2015, 16, 16763–16777. [Google Scholar] [CrossRef] [PubMed]
- Reece, A.; Xia, B.; Jiang, Z.; Noren, B.; McBride, R.; Oakey, J. Microfluidic techniques for high throughput single cell analysis. Curr. Opin. Biotechnol. 2016, 40, 90–96. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Edgar, J.S.; Jeffries, G.D.; Lorenz, R.M.; Shelby, J.P.; Chiu, D.T. Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Anal. Chem. 2005, 77, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.S.; Mao, X.; Huang, T.J. Surface acoustic wave (SAW) acoustophoresis: Now and beyond. Lab Chip 2012, 12, 2766–2770. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kang, Y.; Wang, Y.N.; Xu, D.; Li, D.; Li, D. Microfluidic differential resistive pulse sensors. Electrophoresis 2008, 29, 2754–2759. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, H.; Chon, C.H.; Pan, X.; Li, D. Nanoparticle detection by microfluidic resistive pulse sensor with a submicron sensing gate and dual detecting channels-two stage differential amplifier. Sens. Actuators B Chem. 2011, 155, 930–936. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, H.; Chon, C.H.; Chen, S.; Pan, X.; Li, D. Counting bacteria on a microfluidic chip. Anal. Chim. Acta 2010, 681, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Gregg, E.C.; Steidley, K.D. Electrical counting and sizing of mammalian cells in suspension. Biophys. J. 1965, 5, 393–405. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft lithography. Ann. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
Parameters | Values | Units |
---|---|---|
Dielectric constant of the liquid εf | 80 | - |
Dielectric permittivity in vacuum ε0 | 8.85 × 10−12 | F/m |
Viscosity of the liquid μ | 1 × 10−3 | Pa.s |
Density of the liquid ρ | 1 × 103 | kg/m3 |
Zeta potential of channel walls ζw | −50 | mV |
V1 | 0.25 | cm2 |
V2 | 0.747 | cm2 |
P0 | 1.01 × 105 | Pa |
Liquid level difference △H | 1.25 | mm |
Area of the well S | 4 | mm2 |
∆V (mm3) | Flow Velocity (mm/s) |
---|---|
0.14 | 1.580 |
0.12 | 1.379 |
0.1 | 1.176 |
0.08 | 0.974 |
0.06 | 0.773 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Song, Z.; Yan, Y.; Song, Y.; Pan, X.; Wang, Q. Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device. Micromachines 2017, 8, 172. https://doi.org/10.3390/mi8060172
Shen Y, Song Z, Yan Y, Song Y, Pan X, Wang Q. Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device. Micromachines. 2017; 8(6):172. https://doi.org/10.3390/mi8060172
Chicago/Turabian StyleShen, Yigang, Zhenyu Song, Yimo Yan, Yongxin Song, Xinxiang Pan, and Qi Wang. 2017. "Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device" Micromachines 8, no. 6: 172. https://doi.org/10.3390/mi8060172
APA StyleShen, Y., Song, Z., Yan, Y., Song, Y., Pan, X., & Wang, Q. (2017). Automatic and Selective Single Cell Manipulation in a Pressure-Driven Microfluidic Lab-On-Chip Device. Micromachines, 8(6), 172. https://doi.org/10.3390/mi8060172