A Novel Fabric Strain Sensor Array with Hybrid Deep Learning for Accurate Knee Movement Recognition
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of Knee Fabric Sensor
2.2. Data Collection and Experimentation
2.3. Posture Examples and Corresponding Resistive Line Diagram Results
2.4. Posture Triple Classification Model and Its Prediction
3. Results
3.1. Results After Processing 3 CSV Files with a Random Forest Algorithm
3.2. Results for All 30 CSV Files with Deep Learning Model
3.3. Results on the Effect of Sensor Importance Under the Channel Attention Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ricotti, V.; Kadirvelu, B.; Selby, V.; Festenstein, R.; Mercuri, E.; Voit, T.; Faisal, A.A. Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy. Nat. Med. 2023, 29, 95–103. [Google Scholar] [CrossRef]
- Seçkin, A.C.; Ates, B.; Seçkin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.X.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M. Respiration rate and volume measurements using wearable strain sensors. npj Digit. Med. 2019, 2, 8. [Google Scholar] [CrossRef]
- Zhu, X.J.; Liu, W.; Qian, J.Y.; Zhuang, H.R.; Zhang, W.D.; Cao, J.; Zhang, G.A.; Yang, Y.J.; Cai, Y.; Shi, Y.C.; et al. A Novel Wearable Knee Joint Angle Monitoring Sensor Utilizing Mach-Zehnder Interferometer with Triple-Clad Fiber. IEEE Sens. J. 2024, 24, 2785–2791. [Google Scholar] [CrossRef]
- Harindranath, A.; Arora, M. Effect of sensor noise characteristics and calibration errors on the choice of IMU-sensor fusion algorithms. Sens. Actuators A-Phys. 2024, 379, 115850. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P.; Kumar, S. Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosens. Bioelectron. 2024, 254, 116232. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, S.W.; Lee, G.; Yoon, J.; Kim, S.; Hong, J.H.; Jo, S.C.; Jeong, U. Fabrication of practical deformable displays: Advances and challenges. Light Sci. Appl. 2023, 12, 61. [Google Scholar] [CrossRef]
- Huang, X.X.; Xue, Y.N.; Ren, S.Y.; Wang, F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review. Sensors 2023, 23, 9047. [Google Scholar] [CrossRef]
- Xu, L.G.; Huang, Z.K.; Deng, Z.S.; Du, Z.K.; Sun, T.L.; Guo, Z.H.; Yue, K. A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Adv. Mater. 2021, 33, 2105306. [Google Scholar] [CrossRef]
- Li, T.L.; Wang, Q.A.; Cao, Z.C.; Zhu, J.L.; Wang, N.; Li, R.; Meng, W.; Liu, Q.; Yu, S.F.; Liao, X.Q.; et al. Nerve-Inspired Optical Waveguide Stretchable Sensor Fusing Wireless Transmission and AI Enabling Smart Tele-Healthcare. Adv. Sci. 2025, 12, e2410395. [Google Scholar] [CrossRef]
- Kim, D.H.; Lu, N.S.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.D.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef]
- Lu, N.S.; Lu, C.; Yang, S.X.; Rogers, J. Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050. [Google Scholar] [CrossRef]
- Dong, H.X.; Wang, Z.H.; Yang, C.; Chang, Y.Y.; Wang, Y.D.; Li, Z.; Deng, Y.G.; He, Z.Z. Liquid Metal-Based Flexible Sensing and Wireless Charging System for Smart Tire Strain Monitoring. IEEE Sens. J. 2024, 24, 1304–1312. [Google Scholar] [CrossRef]
- Luo, Y.F.; Abidian, M.R.; Ahn, J.H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.N.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Wang, P.W.; Ma, X.H.; Lin, Z.Q.; Chen, F.; Chen, Z.J.; Hu, H.; Xu, H.L.; Zhang, X.Y.; Shi, Y.Q.; Huang, Q.Y.; et al. Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 2024, 15, 887. [Google Scholar] [CrossRef]
- Wang, J.L.; Lu, C.H.; Zhang, K. Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 2020, 3, 80–100. [Google Scholar] [CrossRef]
- Liu, L.; Liang, X.H.; Wan, X.Q.; Kuang, X.J.; Zhang, Z.F.; Jiang, G.M.; Dong, Z.J.; Chen, C.Y.; Cong, H.L.; He, H.J. A Review on Knitted Flexible Strain Sensors for Human Activity Monitoring. Adv. Mater. Technol. 2023, 8, 2300820. [Google Scholar] [CrossRef]
- Chen, X.B.; Zhang, Z.L.; Shu, L.; Tao, X.M.; Xu, X.M. A novel double-sided fabric strain sensor array fabricated with a facile and cost-effective process. Sens. Actuators A-Phys. 2024, 370, 115208. [Google Scholar] [CrossRef]
- Borges, F.; Reis, P.R.; Pereira, D. A Comparison of Security and its Performance for Key Agreements in Post-Quantum Cryptography. IEEE Access 2020, 8, 142413–142422. [Google Scholar] [CrossRef]
- Huang, X.J.; Yuan, Y.L.; Liu, J.M.; He, J.; Shi, Y.X.; Gao, S.; Wu, J.; Xu, X.J.; Zhang, H.Q.; Li, P.; et al. AI-enhanced flexible ECG patch for accurate heart disease diagnosis, optimal wear positioning, and interactive medical consultation. Natl. Sci. Rev. 2025, 12, nwaf425. [Google Scholar] [CrossRef]
- Saboor, A.; Kask, T.; Kuusik, A.; Alam, M.M.; Le Moullec, Y.; Niazi, I.K.; Zoha, A.; Ahmad, R. Latest Research Trends in Gait Analysis Using Wearable Sensors and Machine Learning: A Systematic Review. IEEE Access 2020, 8, 167830–167864. [Google Scholar] [CrossRef]
- Reis, F.J.J.; Alaiti, R.K.; Vallio, C.S.; Hespanhol, L. Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz. J. Phys. Ther. 2024, 28, 101083. [Google Scholar] [CrossRef]
- Otamendi, J.; Zubizarreta, A.; Portillo, E. Machine learning-based gait anomaly detection using a sensorized tip: An individualized approach. Neural Comput. Appl. 2023, 35, 17443–17459. [Google Scholar] [CrossRef]
- Uddin, M.Z. A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. J. Parallel Distrib. Comput. 2019, 123, 46–53. [Google Scholar] [CrossRef]
- Musat, C.L.; Mereuta, C.; Nechita, A.; Tutunaru, D.; Voipan, A.E.; Voipan, D.; Mereuta, E.; Gurau, T.V.; Gurau, G.; Nechita, L.C. Diagnostic Applications of AI in Sports: A Comprehensive Review of Injury Risk Prediction Methods. Diagnostics 2024, 14, 2516. [Google Scholar] [CrossRef]
- Shyr, T.W.; Shie, J.W.; Jiang, C.H.; Li, J.J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors 2014, 14, 4050–4059. [Google Scholar] [CrossRef]
- Galli, V.; Ahmadizadeh, C.; Kunz, R.; Menon, C. Textile-Based Body Capacitive Sensing for Knee Angle Monitoring. Sensors 2023, 23, 9657. [Google Scholar] [CrossRef]
- Isaia, C.; McMaster, S.; McNally, D. The effect of washing on the electrical performance of knitted textile strain sensors for quantifying joint motion. J. Ind. Text. 2022, 51, 8528S–8548S. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Into Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.M.; Zhang, Y.F.; Han, X.M.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision. Artif. Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Liñán-Cembrano, G.; Lourenco, N.; Horta, N.; de la Rosa, J.M. Design Automation of Analog and Mixed-Signal Circuits Using Neural Networks—A Tutorial Brief. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1677–1682. [Google Scholar] [CrossRef]
- Cui, C.L.; Yao, J.Y.; Xia, H. Data Augmentation: A Multi-Perspective Survey on Data, Methods, and Applications. CMC Comput. Mater. Contin. 2025, 85, 4275–4306. [Google Scholar] [CrossRef]
- Iwana, B.K.; Uchida, S. An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 2021, 16, e0254841. [Google Scholar] [CrossRef]
- Bai, Y.Z.; Zhou, Y.L.; Wu, X.Y.; Yin, M.F.; Yin, L.T.; Qu, S.Y.; Zhang, F.; Li, K.; Huang, Y.A. Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways. Nano-Micro Lett. 2025, 17, 64. [Google Scholar] [CrossRef]
- Chen, Z.H.; Lin, W.S.; Zhang, C.R.; Xu, Y.J.; Wei, C.; Hu, H.Q.; Liao, X.Q.; Chen, Z. Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation. Adv. Fiber Mater. 2024, 6, 229–242. [Google Scholar] [CrossRef]
- Fan, W.J.; Li, C.; Li, X.S.; Tian, H. Highly Sensitive Fabric Sensors Based on Scale-like Wool Fiber for Multifunctional Health Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 28806–28816. [Google Scholar] [CrossRef]
- Bergmann, J.H.M.; Anastasova-Ivanova, S.; Spulber, I.; Gulati, V.; Georgiou, P.; McGregor, A. An Attachable Clothing Sensor System for Measuring Knee Joint Angles. IEEE Sens. J. 2013, 13, 4090–4097. [Google Scholar] [CrossRef]
- Papi, E.; Spulber, I.; Kotti, M.; Georgiou, P.; McGregor, A.H. Smart Sensing System for Combined Activity Classification and Estimation of Knee Range of Motion. IEEE Sens. J. 2015, 15, 5535–5544. [Google Scholar] [CrossRef]
- Xiang, H.; Li, Y.F.; Liao, Q.L.; Xia, L.; Wu, X.D.; Zhou, H.; Li, C.M.; Fan, X. Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing. Energies 2024, 17, 2627. [Google Scholar] [CrossRef]
- Teague, C.N.; Hersek, S.; Töreyin, H.; Millard-Stafford, M.L.; Jones, M.L.; Kogler, G.F.; Sawka, M.N.; Inan, O.T. Novel Methods for Sensing Acoustical Emissions from the Knee for Wearable Joint Health Assessment. IEEE Trans. Biomed. Eng. 2016, 63, 1581–1590. [Google Scholar] [CrossRef]
- Faisal, A.; Majumder, S.; Scott, R.; Mondal, T.; Cowan, D.; Deen, M.J. A Simple, Low-Cost Multi-Sensor-Based Smart Wearable Knee Monitoring System. IEEE Sens. J. 2021, 21, 8253–8266. [Google Scholar] [CrossRef]
- Huang, F.; Zhu, Y.T.; Shi, L.; Teo, M.Y.; Kandasamy, S.; Aw, K. Capacitive stretch sensors for knee motion and muscle activity tracking for gait analysis. Sens. Actuators A-Phys. 2025, 390. [Google Scholar] [CrossRef]
- Papi, E.; Bo, Y.N.; McGregor, A.H. A flexible wearable sensor for knee flexion assessment during gait. Gait Posture 2018, 62, 480–483. [Google Scholar] [CrossRef]
- Abro, Z.A.; Zhang, Y.F.; Chen, N.L.; Hong, C.Y.; Lakho, R.A.; Halepoto, H. A novel flex sensor-based flexible smart garment for monitoring body postures. J. Ind. Text. 2019, 49, 262–274. [Google Scholar] [CrossRef]
- Yuan, J.F.; Zhang, Y.Z.; Wei, C.S.; Zhu, R. A Fully Self-Powered Wearable Leg Movement Sensing System for Human Health Monitoring. Adv. Sci. 2023, 10, e2303114. [Google Scholar] [CrossRef]
- Munro, B.J.; Campbell, T.E.; Wallace, G.G.; Steele, J.R. The intelligent knee sleeve: A wearable biofeedback device. Sens. Actuators B-Chem. 2008, 131, 541–547. [Google Scholar] [CrossRef]
- Chhoeum, V.; Kim, Y.; Min, S.D. Estimation of Knee Joint Angle Using Textile Capacitive Sensor and Artificial Neural Network Implementing with Three Shoe Types at Two Gait Speeds: A Preliminary Investigation. Sensors 2021, 21, 5484. [Google Scholar] [CrossRef]
- Akita, J.; Shinmura, T.; Sakurazawa, S.; Yanagihara, K.; Kunita, M.; Toda, M.; Iwata, K. Wearable electromyography measurement system using cable-free network system on conductive fabric. Artif. Intell. Med. 2008, 42, 99–108. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Caccese, J.B.; Kiourti, A. Wearable Loop Sensor for Bilateral Knee Flexion Monitoring. Sensors 2024, 24, 1549. [Google Scholar] [CrossRef]
- Xie, W.Q.; He, M.; Zheng, S.Y.; Li, H.Z.; Jin, H.F.; Ji, B.Z.; Yang, G.; Li, Y.S. Clinical application research of intelligent monitoring system for knee rehabilitation: A randomized controlled trial. J. Orthop. Surg. Res. 2024, 19, 477. [Google Scholar] [CrossRef]
- Tedesco, S.; Torre, O.M.; Belcastro, M.; Torchia, P.; Alfieri, D.; Khokhlova, L.; Komaris, S.D.; O’Flynn, B. Design of a Multi-Sensors Wearable Platform for Remote Monitoring of Knee Rehabilitation. IEEE Access 2022, 10, 98309–98328. [Google Scholar] [CrossRef]
- Rivera, B.; Cano, C.; Luis, I.; Elias, D.A. A 3D-Printed Knee Wearable Goniometer with a Mobile-App Interface for Measuring Range of Motion and Monitoring Activities. Sensors 2022, 22, 763. [Google Scholar] [CrossRef]
- Ramkumar, P.N.; Haeberle, H.S.; Ramanathan, D.; Cantrell, W.A.; Navarro, S.M.; Mont, M.A.; Bloomfield, M.; Patterson, B.M. Remote Patient Monitoring Using Mobile Health for Total Knee Arthroplasty: Validation of a Wearable and Machine Learning-Based Surveillance Platform. J. Arthroplast. 2019, 34, 2253–2259. [Google Scholar] [CrossRef]
- Huang, Y.P.; Liu, Y.Y.; Hsu, W.H.; Lai, L.J.; Lee, M.S. Monitoring and Assessment of Rehabilitation Progress on Range of Motion After Total Knee Replacement by Sensor-Based System. Sensors 2020, 20, 1703. [Google Scholar] [CrossRef]
- Neumann-Langen, M.V.; Ochs, B.G.; Lützner, J.; Postler, A.; Kirschberg, J.; Sehat, K.; Selig, M.; Grupp, T.M. Musculoskeletal Rehabilitation: New Perspectives in Postoperative Care Following Total Knee Arthroplasty Using an External Motion Sensor and a Smartphone Application for Remote Monitoring. J. Clin. Med. 2023, 12, 7163. [Google Scholar] [CrossRef]
- Bell, K.M.; Onyeukwu, C.; McClincy, M.P.; Allen, M.; Bechard, L.; Mukherjee, A.; Hartman, R.A.; Smith, C.; Lynch, A.D.; Irrgang, J.J. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee. Sensors 2019, 19, 1021. [Google Scholar] [CrossRef]
- Allseits, E.; Kim, K.J.; Bennett, C.; Gailey, R.; Gaunaurd, I.; Agrawal, V. A Novel Method for Estimating Knee Angle Using Two Leg-Mounted Gyroscopes for Continuous Monitoring with Mobile Health Devices. Sensors 2018, 18, 2759. [Google Scholar] [CrossRef]
- Ma, Z.T.; Fang, L.; Fang, C.; Chen, F.; Xing, S.P.; Chai, B.; Zheng, Z.J.; Wang, S.J. Intelligent wearable system design for personalized knee motion and swelling monitoring in osteoarthritis care. Cell Rep. Phys. Sci. 2025, 6, 102438. [Google Scholar] [CrossRef]
- Lou, N.; Diao, Y.A.; Chen, Q.Q.; Ning, Y.K.; Li, G.Q.; Liang, S.Y.; Li, G.L.; Zhao, G.R. A Portable Wearable Inertial System for Rehabilitation Monitoring and Evaluation of Patients with Total Knee Replacement. Front. Neurorobotics 2022, 16, 836184. [Google Scholar] [CrossRef]
- El Fezazi, M.; Achmamad, A.; Jbari, A.; Jilbab, A. IoT-Based System Using IMU Sensor Fusion for Knee Telerehabilitation Monitoring. IEEE Sens. J. 2025, 25, 11906–11914. [Google Scholar] [CrossRef]
- Babar, M.; Tariq, M.U.; Qureshi, B.; Ullah, Z.; Arif, F.; Khan, Z. An Efficient and Hybrid Deep Learning-Driven Model to Enhance Security and Performance of Healthcare Internet of Things. IEEE Access 2025, 13, 22931–22945. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, X.; Guo, Y.; Chen, Z.; Cao, Y.; Du, W.; Xia, T.; Sepulveda, N.; Li, W. Self-powered highly stretchable ferroelectret nanogenerator towards intelligent sports. Nano Trends 2024, 8, 100053. [Google Scholar] [CrossRef]
- Cai, X.; Han, X.; Xie, J.; Cao, Y.; Li, W. Exploring the application of ferroelectret nanogenerators in medical engineering. FlexMat 2025, 2, 204–224. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Meng, L.X.; Shi, X.L.; Li, H.P.; Zhang, J.Z.; Sun, Q.Q.; Liu, X.Y.; Chen, J.Z.; Liu, S.R. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Lett. 2022, 14, 141. [Google Scholar] [CrossRef]
- Chen, X.B.; Wang, F.; Shu, L.; Tao, X.M.; Wei, L.; Xu, X.M.; Zeng, Q.; Huang, G.Z. A Single-material-printed, Low-cost design for a Carbon-based fabric strain sensor. Mater. Des. 2022, 221, 110926. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.L. A improved pooling method for convolutional neural networks. Sci. Rep. 2024, 14, 1589. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Takamido, R.; Yokoyama, K.; Yamamoto, Y. Hitting movement patterns organized by different pitching movement speeds as advanced kinematic information. Hum. Mov. Sci. 2022, 81, 102908. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liu, Y.J.; Duan, Y.F.; Li, X.C.; Zhang, X.R.; Ji, J.M.; Dong, E.R.; Zhang, Y.Y. USTC FLICAR: A sensors fusion dataset of LiDAR-inertial-camera for heavy-duty autonomous aerial work robots. Int. J. Robot. Res. 2023, 42, 1015–1047. [Google Scholar] [CrossRef]
- Renner, K.; Queen, R. Detection of age and gender differences in walking using mobile wearable sensors. Gait Posture 2021, 87, 59–64. [Google Scholar] [CrossRef]







| No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| Age | 23 | 25 | 22 | 27 | 25 | 24 | 26 | 23 | 23 | 23 |
| Height (cm) | 183 | 182 | 173 | 174 | 167 | 192 | 178 | 177 | 174 | 174 |
| Weight (kg) | 76 | 95 | 80 | 75 | 74 | 86 | 77 | 70 | 67 | 70 |
| Models | CNN | LSTM | CNN + BiLSTM + Attention |
|---|---|---|---|
| Accuracy | 0.79 | 0.67 | 0.95 |
| Recall rate | 0.77 | 0.66 | 0.94 |
| F1 score | 0.77 | 0.65 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, T.; Chen, X.; Wang, F. A Novel Fabric Strain Sensor Array with Hybrid Deep Learning for Accurate Knee Movement Recognition. Micromachines 2026, 17, 56. https://doi.org/10.3390/mi17010056
Chen T, Chen X, Wang F. A Novel Fabric Strain Sensor Array with Hybrid Deep Learning for Accurate Knee Movement Recognition. Micromachines. 2026; 17(1):56. https://doi.org/10.3390/mi17010056
Chicago/Turabian StyleChen, Tao, Xiaobin Chen, and Fei Wang. 2026. "A Novel Fabric Strain Sensor Array with Hybrid Deep Learning for Accurate Knee Movement Recognition" Micromachines 17, no. 1: 56. https://doi.org/10.3390/mi17010056
APA StyleChen, T., Chen, X., & Wang, F. (2026). A Novel Fabric Strain Sensor Array with Hybrid Deep Learning for Accurate Knee Movement Recognition. Micromachines, 17(1), 56. https://doi.org/10.3390/mi17010056

