A Novel Asymmetric High-Performance MEMS Pendulum Capacitive Accelerometer
Abstract
1. Introduction
2. Principle and Structure
3. Design and Simulations
3.1. Sensor Sensitive Unit
3.2. Damping Analysis
3.3. Process and Fabrication
3.4. Interface Circuit
4. Tests and Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.S.; Lu, C.W. Low-frequency compensation of piezoelectric accelerometers for motion control systems. J. Electr. Eng. Technol. 2021, 16, 2221–2234. [Google Scholar] [CrossRef]
- Fu, Y.C.; Han, G.W.; Gu, J.B.; Zhao, Y.M.; Ning, J.; Wei, Z.Y.; Yang, F.H.; Si, C.W. A High-Performance MEMS Accelerometer with an Improved TGV Process of Low Cost. Micromachines 2022, 13, 1071. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.K.; Liu, Y.F.; Dong, J.X. Design and Analysis of a High-g Capacitive Micro-Machined Accelerometer. Acta Armamentarii 2014, 35, 1860–1866. [Google Scholar]
- Narasimhan, V.; Li, H.; Jianmin, M. Micromachined high-g accelerometers: A review. J. Micromech. Microeng. 2015, 25, 03001. [Google Scholar] [CrossRef]
- Gao, C.F.; Wei, G.; Wang, L.; Wang, Q.; Liao, Z.K. A Systematic Calibration Modeling Method for Redundant INS with Multi-Sensors Non-Orthogonal Configuration. Micromachines 2022, 13, 1684. [Google Scholar] [CrossRef]
- Beitia, J.; Loisel, P.; Fell, C. Miniature accelerometer for high-dynamic, precision guided systems. In Proceedings of the 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, USA, 28–30 March 2017; pp. 35–38. [Google Scholar]
- Qi, Z.H.; Zhang, Z.Y. Analysis on Dynamic Performance of Torsional MEMS Capacitive Accelerometer. Microprocessors 2021, 42, 33–37. [Google Scholar]
- Ren, T.Q.; Zuo, J.Q.; Xu, L.; Li, L.; Wang, X.D. An assembly system for inertial pendulum components in miniature wire suspended pendulum accelerometers. J. Mech. Sci. Technol. 2024, 38, 3077–3088. [Google Scholar] [CrossRef]
- Bertolini, A.; DeSalvo, R.; Fidecaro, F.; Takamori, A. Monolithic folded pendulum accelerometers for seismic monitoring and active isolation systems. IEEE Trans. Geosci. Remote Sens. 2006, 44, 273–276. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.F.; Ma, Y.; Yu, J.B.; Liu, L.; Zhou, Z.B. Seismic noise effect suppression for the performance testing of high-precision space electrostatic accelerometers using a torsion pendulum with differential configuration. Meas. Sci. Technol. 2024, 35, 115105. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Tian, Y.; Zhao, B.; Wang, Y.Y. A new pendulous capacitive accelerometer with stress isolation structure. Piezoelectr. Coustoopt. 2016, 38, 847–850. [Google Scholar]
- Wu, J.Q.; Karimi, H.R.; Wu, B.; Shen, Y.T.; Huang, T.T.; Song, K.C. Convex parameterization of uncertain pendulous accelerometer with mixed H2/H∞ robust optimal control. Measurement 2024, 226, 113979. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, H.; Hao, Y.C. Study on the influence of pendulum convex plate on the partial value of quartz flexible accelerometer. In Proceedings of the 2023 2nd International Conference on Aerospace and Control Engineering, ICoACE 2023, Nanjing, China, 15–17 December 2023. [Google Scholar]
- Zhou, Y.; Zhang, Y.X.; Yao, Z.C.; Wu, T.; Su, Y.; Zhang, J. Microlever structure design and analysis of pendulum resonant accelerometer. J. Chin. Inert. Technol. 2024, 3, 290–299. [Google Scholar]
- Wei, Y.; Yang, J.H.; Li, P.F.; Zhang, X.W.; Liang, P. Analysis and Optimization Method of the Vibration Rectification Error of a Pendulous Accelerometer. IEEE Sens. J. 2021, 21, 19847–19856. [Google Scholar] [CrossRef]
- Zhang, W.M.; Meng, G.; Zhou, J.B. Characteristics analysis of squeezed film damping in MEMS. J. Vib. Shock 2006, 25, 41–45. [Google Scholar]
- Tao, Q.; Tang, B. A High-Linearity Closed-Loop Capacitive Micro-Accelerometer Based on Ring-Diode Capacitance Detection. Sensors 2023, 23, 1568. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Li, C.; Zhao, Y.L.; Bu, K.; Li, B. An All-Quartz Integrated Resonant Accelerometer with High Sensitivity and Stability: Design, Fabrication, and Measurement. IEEE Sens. J. 2024, 24, 5936–5949. [Google Scholar] [CrossRef]
- Huang, X.L.; Dong, X.S.; Zhen, D.G.; Hu, Y.W. Long-Term Degradation Evaluation of the Mismatch of Sensitive Capacitance in MEMS Accelerometers. Micromachines 2023, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Kaisar, T.; Yousuf, S.M.E.H.; Lee, J.; Qamar, A.; Mina, R.-Z.; Mandal, S. Five Low-Noise Stable Oscillators Referenced to the Same Multimode AlN/Si MEMS Resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2023, 70, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
Parameters | Design Value |
---|---|
Mass thickness | 100 μm |
Mass 1 length | 5000 μm |
Mass 1 width | 2100 μm |
Mass 2 length | 3000 μm |
Mass 2 width | 2600 μm |
Beam length | 1100 μm |
Beam width | 30 μm |
Material | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
single-crystal silicon | 2320 | 160 | 0.22 |
SET | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Frequency/Hz | 566.46 | 1967 | 2253.5 | 5778.5 | 9778.3 | 31,345 |
Degree (°) | Acceleration (g) | Measure Value (V) | Fitting Value (V) | Deviation Value (V) | Nonlinearity |
---|---|---|---|---|---|
0 | 1 | 1.225 | 1.216 | 0.009 | 0.7% |
30 | 0.866 | 1.048 | 1.049 | 0.001 | 0.08% |
60 | 0.5 | 0.582 | 0.592 | 0.01 | 0.8% |
90 | 0 | −0.041 | −0.032 | 0.009 | 0.7% |
120 | −0.5 | −0.659 | −0.656 | 0.003 | 0.24% |
150 | −0.866 | −1.112 | −1.113 | 0.001 | 0.08% |
180 | −1 | −1.273 | −1.28 | 0.007 | 0.56% |
Parameter | Paper | ADXL203 |
---|---|---|
measure range | ±2 g | ±1.7 g, ±5 g, or ±18 g |
sensitivity | 1.248 V/g | 1 V/g (normal) |
nonlinearity | 0.8% | 1.25% |
zero-bias stability | 0.610 mg | 25 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, G.; Jiang, J.; Wu, W.; Zhang, Z.; Cao, J.; Gao, Z.; Liu, H. A Novel Asymmetric High-Performance MEMS Pendulum Capacitive Accelerometer. Micromachines 2025, 16, 1122. https://doi.org/10.3390/mi16101122
Dong G, Jiang J, Wu W, Zhang Z, Cao J, Gao Z, Liu H. A Novel Asymmetric High-Performance MEMS Pendulum Capacitive Accelerometer. Micromachines. 2025; 16(10):1122. https://doi.org/10.3390/mi16101122
Chicago/Turabian StyleDong, Guangxian, Jia Jiang, Weixin Wu, Zhentao Zhang, Jin Cao, Zhang Gao, and Haitao Liu. 2025. "A Novel Asymmetric High-Performance MEMS Pendulum Capacitive Accelerometer" Micromachines 16, no. 10: 1122. https://doi.org/10.3390/mi16101122
APA StyleDong, G., Jiang, J., Wu, W., Zhang, Z., Cao, J., Gao, Z., & Liu, H. (2025). A Novel Asymmetric High-Performance MEMS Pendulum Capacitive Accelerometer. Micromachines, 16(10), 1122. https://doi.org/10.3390/mi16101122