Coupling CFD and Machine Learning to Assess Flow Properties in Porous Scaffolds for Tissue Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Scaffold Construction
2.2. Boundary Conditions and Numerical Schemes
2.3. Meshing
2.4. Machine Learning Methods
3. Results
3.1. Statistical Analysis
3.2. Correlation Analysis
3.3. Predictive Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vacanti, C.A. The history of tissue engineering. J. Cell. Mol. Med. 2006, 10, 569–576. [Google Scholar] [CrossRef]
- Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008, 17, 467–479. [Google Scholar] [CrossRef]
- Olson, J.L.; Atala, A.; Yoo, J.J. Tissue Engineering: Current Strategies and Future Directions. Chonnam Med. J. 2011, 47, 1–13. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Qu, H.; Fu, H.; Han, Z.; Sun, Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019, 9, 26252–26262. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, X.; Yin, S.; Liu, L.; Liu, X.; Zhao, G.; Ma, W.; Qi, W.; Ren, Z.; Liao, H.; et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater. Sci. Eng. C 2020, 106, 110289. [Google Scholar] [CrossRef]
- Melchels, F.P.; Tonnarelli, B.; Olivares, A.L.; Martin, I.; Lacroix, D.; Feijen, J.; Wendt, D.J.; Grijpma, D.W. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 2011, 32, 2878–2884. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.; Dunlop, J.W.C.; Fernandes, P.R.; Castro, A.P.G. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc. R. Soc. A Math. Phys. Eng. Sci. 2022, 478, 20210607. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.; Ozalp, M.; Blanquer, S.B.; Onel, S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur. J. Mech. B/Fluids 2020, 79, 376–385. [Google Scholar] [CrossRef]
- Fu, M.; Wang, F.; Lin, G. Design and research of bone repair scaffold based on two-way fluid-structure interaction. Comput. Methods Programs Biomed. 2021, 204, 106055. [Google Scholar] [CrossRef]
- Rabiatul, A.A.R.; Fatihhi, S.J.; Md Saad, A.P.; Zakaria, Z.; Harun, M.N.; Kadir, M.R.A.; Öchsner, A.; Zaman, T.K.; Syahrom, A. Fluid–structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression. Biomech. Model. Mechanobiol. 2021, 20, 957–968. [Google Scholar] [CrossRef]
- Suffo, M.; López-Marín, C.J. A Comparative Study of Turbulence Methods Applied to the Design of a 3D-Printed Scaffold and the Selection of the Appropriate Numerical Scheme to Simulate the Scaffold for Tissue Engineering. Appl. Sci. 2022, 12, 191. [Google Scholar] [CrossRef]
- Manescu, V.; Paltanea, G.; Antoniac, A.; Gruionu, L.G.; Robu, A.; Vasilescu, M.; Laptoiu, S.A.; Bita, A.I.; Popa, G.M.; Cocosila, A.L.; et al. Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants. Materials 2024, 17, 830. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Q.; Huang, J.; Zhang, Z.; Wang, X.; Han, Q.; Shi, Y.; Ji, R.; Li, Y. Design and manufacturing of biomimetic scaffolds for bone repair inspired by bone trabeculae. Comput. Biol. Med. 2023, 165, 107369. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, J.; Guan, Y.; Sun, L.; Kang, Y. Internal flow field analysis of heterogeneous porous scaffold for bone tissue engineering. Comput. Methods Biomech. Biomed. Eng. 2023, 26, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, S.; Ishida, F.; Yamamoto, A.; Shimizu, S.; Sakaida, H.; Toyoda, M.; Kashiwagi, N.; Suzuki, H. Machine Learning Classification of Cerebral Aneurysm Rupture Status with Morphologic Variables and Hemodynamic Parameters. Radiol. Artif. Intell. 2020, 2, e190077. [Google Scholar] [CrossRef] [PubMed]
- Amigo, N.; Valencia, A.; Wu, W.; Patnaik, S.; Finol, E. Cerebral aneurysm rupture status classification using statistical and machine learning methods. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 2021, 235, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Moradi, H.; Al-Hourani, A.; Concilia, G.; Khoshmanesh, F.; Nezami, F.R.; Needham, S.; Baratchi, S.; Khoshmanesh, K. Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning. Biophys. Rev. 2023, 15, 19–33. [Google Scholar] [CrossRef]
- Schwarz, E.L.; Pegolotti, L.; Pfaller, M.R.; Marsden, A.L. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. Biophys. Rev. 2023, 4, 011301. [Google Scholar] [CrossRef]
- Jurado, X.; Reiminger, N.; Benmoussa, M.; Vazquez, J.; Wemmert, C. Deep learning methods evaluation to predict air quality based on Computational Fluid Dynamics. Expert Syst. Appl. 2022, 203, 117294. [Google Scholar] [CrossRef]
- Lee, H.; Rim, D. Assessment of airborne transmitted infection risk in classrooms using computational fluid dynamics and machine learning-based surrogate modeling. J. Build. Eng. 2024, 97, 110760. [Google Scholar] [CrossRef]
- Bixel, M.G.; Kusumbe, A.P.; Ramasamy, S.K.; Sivaraj, K.K.; Butz, S.; Vestweber, D.; Adams, R.H. Flow Dynamics and HSPC Homing in Bone Marrow Microvessels. Cell Rep. 2017, 18, 1804–1816. [Google Scholar] [CrossRef]
- Salles, S.; Shepherd, J.; Vos, H.J.; Renaud, G. Revealing Intraosseous Blood Flow in the Human Tibia With Ultrasound. JBMR Plus 2021, 5, e10543. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Podder, C. Hemodynamical behavior analysis of anemic, diabetic, and healthy blood flow in the carotid artery. Heliyon 2024, 10, e26622. [Google Scholar] [CrossRef]
- Sacco, F.; Paun, B.; Lehmkuhl, O.; Iles, T.L.; Iaizzo, P.A.; Houzeaux, G.; Vázquez, M.; Butakoff, C.; Aguado-Sierra, J. Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations. Front. Physiol. 2018, 9, 458. [Google Scholar] [CrossRef]
- Alvarado-Hernández, F.; Mihalcea, E.; Jimenez, O.; Macías, R.; Olmos, L.; López-Baltazar, E.A.; Guevara-Martinez, S.; Lemus-Ruiz, J. Design of Ti64/Ta Hybrid Materials by Powder Metallurgy Mimicking Bone Structure. Materials 2023, 16, 4372. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.W.; Giannopoulos, A.A.; Pugachev, A.; Shiri, I.; Haeberlin, A.; Räber, L.; Obrist, D.; Gräni, C. Application of Patient-Specific Computational Fluid Dynamics in Anomalous Aortic Origin of Coronary Artery: A Systematic Review. J. Cardiovasc. Dev. Dis. 2023, 10, 384. [Google Scholar] [CrossRef]
- Binzoni, T.; Tchernin, D.; Hyacinthe, J.N.; Van De Ville, D.; Richiardi, J. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals. Physiol. Meas. 2013, 34, N25. [Google Scholar] [CrossRef] [PubMed]
- Usiskin, I.M.; Mitchell, G.F.; Bouxsein, M.L.; Liu, C.T.; Kiel, D.P.; Samelson, E.J. Vascular function and skeletal fragility: A study of tonometry, brachial hemodynamics, and bone microarchitecture. J. Bone Miner. Res. 2024, 39, 906–917. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Proceedings of the 10th International Conference on Neural Information Processing Systems (NIPS’96), Cambridge, MA, USA, 3–5 December 1996; pp. 155–161. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kramer, O. K-Nearest Neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013; pp. 13–23. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 532–538. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Teo, J.C.; Teoh, S.H. Permeability study of vertebral cancellous bone using micro-computational fluid dynamics. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 417–423. [Google Scholar] [CrossRef]
- Basri, H.; Nasution, J.D.; Syahrom, A.; Sulong, M.A.; Saad, A.P.M.; Prakoso, A.T.; Aminin, F. The effect of flow rate characteristic on biodegradation of bone scaffold. Malays. J. Fundam. Appl. Sci. 2017, 13, 546–552. [Google Scholar] [CrossRef]
- Dabaja, R.; Swanson, W.B.; Bak, S.Y.; Mendonca, G.; Mishina, Y.; Banu, M. Spatially distributed and interconnected porous architectures for dental implants. Int. J. Implant Dent. 2025, 11, 30. [Google Scholar] [CrossRef]
- Singh, S.P.; Shukla, M.; Srivastava, R. Lattice Modeling and CFD Simulation for Prediction of Permeability in Porous Scaffolds. Mater. Today Proc. 2018, 5, 18879–18886. [Google Scholar] [CrossRef]
- Karaman, D.; Ghahramanzadeh Asl, H. The effects of sheet and network solid structures of similar TPMS scaffold architectures on permeability, wall shear stress, and velocity: A CFD analysis. Med. Eng. Phys. 2023, 118, 104024. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-Wallis Test. In The Corsini Encyclopedia of Psychology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; p. 1. [Google Scholar] [CrossRef]
- Ostertagová, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, Y.; Ma, L.; Li, J. Flow performance of porous implants with different geometry: Line, surface, and volume structures. Int. J. Bioprint. 2023, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Rouquier, L.; Huang, X.; Potier, E.; Bensidhoum, M.; Hoc, T. Porosity and surface curvature effects on the permeability and wall shear stress of trabecular bone: Guidelines for biomimetic scaffolds for bone repair. Comput. Biol. Med. 2024, 177, 108630. [Google Scholar] [CrossRef] [PubMed]
- Kayri, M.; Kayri, I.; Gencoglu, M.T. The performance comparison of Multiple Linear Regression, Random Forest and Artificial Neural Network by using photovoltaic and atmospheric data. In Proceedings of the 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ceh, M.; Kilibarda, M.; Lisec, A.; Bajat, B. Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments. ISPRS Int. J. Geo-Inf. 2018, 7, 168. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeol. J. 2019, 27, 1081–1098. [Google Scholar] [CrossRef]
- Yuchi, W.; Gombojav, E.; Boldbaatar, B.; Galsuren, J.; Enkhmaa, S.; Beejin, B.; Naidan, G.; Ochir, C.; Legtseg, B.; Byambaa, T.; et al. Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city. Environ. Pollut. 2019, 245, 746–753. [Google Scholar] [CrossRef] [PubMed]
Model | Hyperparameters |
---|---|
Linear Regression (LR) | Tolerance: |
Support Vector Regression (SVR) | Kernel: Linear |
Gamma: scale | |
Tolerance: | |
K-nearest Neighbor Regression (KNN) | Number of neighbors: 4 |
Weights: Uniform | |
Random Forest (RN) | Number of estimators: 500 |
Criterion: Squared error | |
Max depth: 3 |
Property | s | Min | Max | |
---|---|---|---|---|
k (m2) | 4.111 | 3.620 | 1.330 | 20.81 |
(Pa) | 0.148 | 0.096 | 0.005 | 0.416 |
(Pa) | 0.004 | 0.003 | 0.001 | 0.013 |
(Pa) | 0.276 | 0.187 | 0.022 | 0.872 |
Pore Shape | k (m2) | (Pa) |
---|---|---|
Circular | ||
Square | ||
Hexagonal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Guerra, J.; González-Mederos, P.; Amigo, N. Coupling CFD and Machine Learning to Assess Flow Properties in Porous Scaffolds for Tissue Engineering. Micromachines 2025, 16, 1098. https://doi.org/10.3390/mi16101098
Rodríguez-Guerra J, González-Mederos P, Amigo N. Coupling CFD and Machine Learning to Assess Flow Properties in Porous Scaffolds for Tissue Engineering. Micromachines. 2025; 16(10):1098. https://doi.org/10.3390/mi16101098
Chicago/Turabian StyleRodríguez-Guerra, Jennifer, Pedro González-Mederos, and Nicolás Amigo. 2025. "Coupling CFD and Machine Learning to Assess Flow Properties in Porous Scaffolds for Tissue Engineering" Micromachines 16, no. 10: 1098. https://doi.org/10.3390/mi16101098
APA StyleRodríguez-Guerra, J., González-Mederos, P., & Amigo, N. (2025). Coupling CFD and Machine Learning to Assess Flow Properties in Porous Scaffolds for Tissue Engineering. Micromachines, 16(10), 1098. https://doi.org/10.3390/mi16101098