High-Throughput Evaluation of Mechanical Exfoliation Using Optical Classification of Two-Dimensional Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Background
2.2. Software Overview
2.2.1. Image Processing Pipeline
2.2.2. GPU Acceleration
2.2.3. Automatic Background Masking
2.2.4. Data Export and Statistical Analysis
3. Results
3.1. Performance Benchmarking
3.2. Classification Accuracy
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
CPU | Central processing unit |
CuPy | GPU-accelerated numerical computations library for Python |
DBSCAN | Density-based spatial clustering of applications with noise |
GMM-EM | Gaussian mixture model with expectation maximization |
GPU | Graphics processing unit |
MoS2 | Molybdenum disulfide |
MoSe2 | Molybdenum diselenide |
PDMS | Polydimethylsiloxane |
RGB | Red, green, blue |
SiO2 | Silicon dioxide |
Appendix A
Appendix A.1. Python Code and Packages
- CuPy version 13.5.1 for GPU accelerated numerical computations;
- NumPy version 2.2.5 for numerical computations;
- OpenCV version 4.10.0 for image preprocessing;
- Matplotlib version 3.10.1 for visualization.
Appendix A.2. Accuracy Validation
References
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sulleiro, M.V.; Dominguez-Alfaro, A.; Alegret, N.; Silvestri, A.; Gómez, I.J. 2D Materials towards sensing technology: From fundamentals to applications. Sens. Bio-Sens. Res. 2022, 38, 100540. [Google Scholar] [CrossRef]
- Huffstutler, J.D.; Wasala, M.; Richie, J.; Barron, J.; Winchester, A.; Ghosh, S.; Yang, C.; Xu, W.; Song, L.; Kar, S.; et al. High Performance Graphene-Based Electrochemical Double Layer Capacitors Using 1-Butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate Ionic Liquid as an Electrolyte. Electronics 2018, 7, 229. [Google Scholar] [CrossRef]
- Planillo, J.; Alves, F. Fabrication and Characterization of Micrometer Scale Graphene Structures for Large-Scale Ultra-Thin Electronics. Electronics 2022, 11, 752. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Weiss, N.; Duan, X.; Cheng, H.C.; Huang, Y.; Duan, X. Van der Waals Heterostructures and Devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Islam, M.A.; Serles, P.; Kumral, B.; Demingos, P.G.; Qureshi, T.; Meiyazhagan, A.; Puthirath, A.B.; Abdullah, M.S.B.; Faysal, S.R.; Ajayan, P.M.; et al. Exfoliation mechanisms of 2D materials and their applications. Appl. Phys. Rev. 2022, 9, 041301. [Google Scholar] [CrossRef]
- Gao, E.; Lin, S.Z.; Qin, Z.; Buehler, M.J.; Feng, X.Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 2018, 115, 248–262. [Google Scholar] [CrossRef]
- Sterbentz, R.M.; Haley, K.L.; Island, J.O. Universal Image Segmentation for Optical Identification of 2D Materials. Sci. Rep. 2021, 11, 5808. [Google Scholar] [CrossRef] [PubMed]
- Leger, P.A.; Ramesh, A.; Ulloa, T.; Wu, Y. Machine Learning Enabled Fast Optical Identification and Characterization of 2D Materials. Sci. Rep. 2024, 14, 27808. [Google Scholar] [CrossRef] [PubMed]
- Uslu, J.L.; Ouaj, T.; Tebbe, D.; Nekrasov, A.; Bertram, J.H.; Schütte, M.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Waldecker, L.; et al. An Open-Source Robust Machine Learning Platform for Real-Time Detection and Classification of 2D Material Flakes. Mach. Learn. Sci. Technol. 2024, 5, 015027. [Google Scholar] [CrossRef]
- Gasbarro, A.; Masuda, Y.S.D.; Ordonez, R.C.; Weldon, J.A.; Lubecke, V.M. Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures. Electronics 2025, 14, 533. [Google Scholar] [CrossRef]
- Wu, K.L.; Yang, M.S. Mean Shift-Based Clustering. Pattern Recognit. 2007, 40, 3035–3052. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
- Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable Parallel Programming with CUDA. Queue 2008, 6, 40–53. [Google Scholar] [CrossRef]
- Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In Proceedings of the Workshop on Machine Learning Systems (LearningSys) in The Thirty-First Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Niwano, M.; Murata, K.L.; Adachi, R.; Wang, S.; Tachibana, Y.; Yatsu, Y.; Kawai, N.; Shimokawabe, T.; Itoh, R. A GPU-accelerated image reduction pipeline. Publ. Astron. Soc. Jpn. 2020, 73, 14–24. [Google Scholar] [CrossRef]
- Chabib, A.; Witz, J.F.; Gosselet, P.; Magnier, V. GCPU_OpticalFlow: A GPU accelerated Python software for strain measurement. SoftwareX 2024, 26, 101688. [Google Scholar] [CrossRef]
- Zheng, X.; Ye, H.; Tang, Y. Image Bi-Level Thresholding Based on Gray Level-Local Variance Histogram. Entropy 2017, 19, 191. [Google Scholar] [CrossRef]
- Hao, X.; Liu, X.; Liu, Y.; Cui, Y.; Lei, T. Infrared Small-Target Detection Based on Background-Suppression Proximal Gradient and GPU Acceleration. Remote Sens. 2023, 15, 5424. [Google Scholar] [CrossRef]
Operation | Optimization |
---|---|
Overall Execution Order | CPU sequential iterations → GPU parallelized batches |
Multivariate Gaussian Computation 1,2 | |
Mean-Shift Distance Computation 1,3,4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasbarro, A.; Masuda, Y.-S.D.; Lubecke, V.M. High-Throughput Evaluation of Mechanical Exfoliation Using Optical Classification of Two-Dimensional Materials. Micromachines 2025, 16, 1084. https://doi.org/10.3390/mi16101084
Gasbarro A, Masuda Y-SD, Lubecke VM. High-Throughput Evaluation of Mechanical Exfoliation Using Optical Classification of Two-Dimensional Materials. Micromachines. 2025; 16(10):1084. https://doi.org/10.3390/mi16101084
Chicago/Turabian StyleGasbarro, Anthony, Yong-Sung D. Masuda, and Victor M. Lubecke. 2025. "High-Throughput Evaluation of Mechanical Exfoliation Using Optical Classification of Two-Dimensional Materials" Micromachines 16, no. 10: 1084. https://doi.org/10.3390/mi16101084
APA StyleGasbarro, A., Masuda, Y.-S. D., & Lubecke, V. M. (2025). High-Throughput Evaluation of Mechanical Exfoliation Using Optical Classification of Two-Dimensional Materials. Micromachines, 16(10), 1084. https://doi.org/10.3390/mi16101084