Editorial Perspective: Advancements in Microfluidics and Biochip Technologies
Funding
Conflicts of Interest
References
- Chi, J.; Wu, D.; Su, M.; Song, Y. All-Printed Nanophotonic Biochip for Point-of-Care Testing of Biomarkers. Sci. Bull. 2022, 67, 1191–1193. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.G.; Condelipes, P.G.M.; Rosa, R.R.; Chu, V.; Conde, J.P. Scalable Processing of Cyclic Olefin Copolymer (COC) Microfluidic Biochips. Micromachines 2023, 14, 1837. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.S.; Sim, D.B.; Lee, J.H.; Kim, B.H. Fabrication of Micro Carbon Mold for Glass-Based Micro Hole Array. Micromachines 2024, 15, 194. [Google Scholar] [CrossRef]
- Su, R.; Wang, F.; McAlpine, M.C. 3D Printed Microfluidics: Advances in Strategies, Integration, and Applications. Lab Chip 2023, 23, 1279–1299. [Google Scholar] [CrossRef]
- Yao, Y.; Qiu, D.; Liu, H.; Yang, Z.; Liu, X.; Yang, Y.; Dong, C. A Reliable and Secure Mobile Cyber-Physical Digital Microfluidic Biochip for Intelligent Healthcare. IEEE Access 2023, 11, 137990–137998. [Google Scholar] [CrossRef]
- Kawakami, T.; Shiro, C.; Nishikawa, H.; Kong, X.; Tomiyama, H.; Yamashita, S. A Deep Reinforcement Learning Approach to Droplet Routing for Erroneous Digital Microfluidic Biochips. Sensors 2023, 23, 8924. [Google Scholar] [CrossRef]
- Arrabito, G.; Gulli, D.; Alfano, C.; Pignataro, B. “Writing Biochips”: High-Resolution Droplet-to-Droplet Manufacturing of Analytical Platforms. Analyst 2022, 147, 1294–1312. [Google Scholar] [CrossRef] [PubMed]
- Shiro, C.; Nishikawa, H.; Kong, X.; Tomiyama, H.; Yamashita, S.; Roy, S. Shape-Dependent Velocity Based Droplet Routing on MEDA Biochips. IEEE Access 2022, 10, 122423–122430. [Google Scholar] [CrossRef]
- Liang, T.C.; Chang, Y.C.; Zhong, Z.; Bigdeli, Y.; Ho, T.Y.; Chakrabarty, K.; Fair, R. Dynamic Adaptation Using Deep Reinforcement Learning for Digital Microfluidic Biochips. ACM Trans. Des. Autom. Electron. Syst. 2024, 29, 2020. [Google Scholar] [CrossRef]
- Tanev, G.; Svendsen, W.E.; Madsen, J. BiowareCFP: An Application-Agnostic Modular Reconfigurable Cyber-Fluidic Platform. Micromachines 2022, 13, 249. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, C.M.J.; Toepfer, C.N.; Lu, X.; Bayley, H. Microscale Droplet Assembly Enables Biocompatible Multifunctional Modular Iontronics. Science 2024, 386, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Qiu, J.; Wang, Y.; Wang, M.; Zhang, Y.; Han, L. Rapid and High-Throughput SARS-CoV-2 RNA Detection without RNA Extraction and Amplification by Using a Microfluidic Biochip. Chem. Eur. J. 2022, 28, e202104054. [Google Scholar] [CrossRef] [PubMed]
- Hormsombut, T.; Rijiravanich, P.; Surareungchai, W.; Kalasin, S. Highly Sensitive and Selective Antibody Microarrays Based on a Cy5-Antibody Complexes Coupling ES-Biochip for E. Coli and Salmonella Detection. RSC Adv. 2022, 12, 24760–24768. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, Y.; Cheng, J. Biochips under COVID-19: A New Stage of Well-Grounded Development and Accelerated Translation. Sci. Bull. 2022, 67, 1823–1826. [Google Scholar] [CrossRef]
- Beydoun, N.; Niberon, Y.; Arnaud, L.; Proust, J.; Nomenyo, K.; Zeng, S.; Lerondel, G.; Bruyant, A. Stabilization of Copper-Based Biochips with Alumina for Biosensing Application. Biosensors 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xie, Y. Research on Dual-Technology Fusion Biosensor Chip Based on RNA Virus Medical Detection. Micromachines 2022, 13, 1523. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, Y.-S.; Lee, E.; Shi, D.; Lee, C.-Y.; Diao, J. Monitoring Escherichia Coli in Water through Real-Time Loop-Mediated Isothermal Amplification on Biochips. Micromachines 2024, 15, 1112. [Google Scholar] [CrossRef]
- Li, P.; Qiang, L.; Han, Y.; Chu, Y.; Qiu, J.; Song, F.; Wang, M.; He, Q.; Zhang, Y.; Sun, M.; et al. A Sensitive and Portable Double-Layer Microfluidic Biochip for Harmful Algae Detection. Micromachines 2022, 13, 1759. [Google Scholar] [CrossRef]
- Han, J.; Kang, U.; Moon, E.Y.; Yoo, H.; Gweon, B. Imaging Technologies for Microfluidic Biochips. BioChip J. 2022, 16, 255–269. [Google Scholar] [CrossRef]
- Essaouiba, A.; Jellali, R.; Gilard, F.; Gakière, B.; Okitsu, T.; Legallais, C.; Sakai, Y.; Leclerc, E. Investigation of the Exometabolomic Profiles of Rat Islets of Langerhans Cultured in Microfluidic Biochip. Metabolites 2022, 12, 1270. [Google Scholar] [CrossRef]
- Prabowo, B.A.; Sousa, C.; Cardoso, S.; Freitas, P.; Fernandes, E. Labeling on a Chip of Cellular Fibronectin and Matrix Metallopeptidase-9 in Human Serum. Micromachines 2022, 13, 1722. [Google Scholar] [CrossRef] [PubMed]
- Sitkov, N.; Zimina, T.; Kolobov, A.; Sevostyanov, E.; Trushlyakova, V.; Luchinin, V.; Krasichkov, A.; Markelov, O.; Galagudza, M.; Kaplun, D. Study of the Fabrication Technology of Hybrid Microfluidic Biochips for Label-free Detection of Proteins. Micromachines 2022, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Stollmann, A.; Garcia-Guirado, J.; Hong, J.S.; Rüedi, P.; Im, H.; Lee, H.; Ortega Arroyo, J.; Quidant, R. Molecular Fingerprinting of Biological Nanoparticles with a Label-Free Optofluidic Platform. Nat. Commun. 2024, 15, 4109. [Google Scholar] [CrossRef]
- Rodoplu Solovchuk, D. Advances in AI-Assisted Biochip Technology for Biomedicine. Biomed. Pharmacother. 2024, 177, 116997. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, B.; Zhu, Z. Biochip Systems for Intelligence and Integration. Systems 2023, 11, 43. [Google Scholar] [CrossRef]
- Hua, H.; Zou, S.; Ma, Z.; Guo, W.; Fong, C.Y.; Khoo, B.L. A Deformability-Based Biochip for Precise Label-Free Stratification of Metastatic Subtypes Using Deep Learning. Microsyst. Nanoeng. 2023, 9, 120. [Google Scholar] [CrossRef]
- He, W.; Zhu, J.; Feng, Y.; Liang, F.; You, K.; Chai, H.; Sui, Z.; Hao, H.; Li, G.; Zhao, J.; et al. Neuromorphic-Enabled Video-Activated Cell Sorting. Nat. Commun. 2024, 15, 10792. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Zeng, Y.; Lu, Y.; Huang, Y.; Jin, Z.; Wang, Z.; Wang, Y.; Zang, X.; Chang, L.; Mu, W.; et al. Deep Learning-Enhanced Microwell Array Biochip for Rapid and Precise Quantification of Cryptococcus Subtypes. View 2024, 5, 20240032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, H.; Jeon, T.-J.; Kim, S.M. Editorial Perspective: Advancements in Microfluidics and Biochip Technologies. Micromachines 2025, 16, 77. https://doi.org/10.3390/mi16010077
Ryu H, Jeon T-J, Kim SM. Editorial Perspective: Advancements in Microfluidics and Biochip Technologies. Micromachines. 2025; 16(1):77. https://doi.org/10.3390/mi16010077
Chicago/Turabian StyleRyu, Hyunil, Tae-Joon Jeon, and Sun Min Kim. 2025. "Editorial Perspective: Advancements in Microfluidics and Biochip Technologies" Micromachines 16, no. 1: 77. https://doi.org/10.3390/mi16010077
APA StyleRyu, H., Jeon, T.-J., & Kim, S. M. (2025). Editorial Perspective: Advancements in Microfluidics and Biochip Technologies. Micromachines, 16(1), 77. https://doi.org/10.3390/mi16010077