Editorial for the Special Issue on Micromachined Acoustic Transducers for Audio-Frequency Range
1. Introduction
2. MEMS Microphones
2.1. Overview of Recent Developments
2.2. Future Research Areas to Address Knowledge Gaps in the Field
3. MEMS Speakers
4. MEMS in Hearing Aids and Implantable Devices
5. Measurement Methods for MEMS Devices
5.1. Extraction of MEMS Transducer Mechanical Properties
5.2. High-Frequency Calibration of MEMS Microphones
5.3. Measurement of MEMS Microphone Nonlinearities
6. Applications of MEMS Acoustic Devices
6.1. Acoustic Source Localization and Ranging
6.2. MEMS Microphone Arrays for Acoustic Imaging
6.3. Electrical Tuning of MEMS Acoustic Transducer Resonant Frequency
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sant, L.; Füldner, M.; Bach, E.; Conzatti, F.; Caspani, A.; Gaggl, R.; Baschirotto, A.; Wiesbauer, A. A 130 dB SPL 72dB SNR MEMS Microphone Using a Sealed-Dual Membrane Transducer and a Power-Scaling Read-Out ASIC. IEEE Sens. J. 2022, 22, 7825–7833. [Google Scholar] [CrossRef]
- Bach, E.; Gaggl, R.; Sant, L.; Buffa, C.; Stojanovic, S.; Straeussnigg, D.; Wiesbauer, A. 9.5 A 1.8 V true-differential 140 dB SPL full-scale standard CMOS MEMS digital microphone exhibiting 67 dB SNR. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 166–167. [Google Scholar] [CrossRef]
- SmartSound™ Digital Microphones. Available online: https://invensense.tdk.com/smartsound/digital/ (accessed on 27 November 2024).
- SmartSound™ Analog Microphones. Available online: https://invensense.tdk.com/smartsound/analog/ (accessed on 27 November 2024).
- Naderyan, V.; Lee, S.; Sharma, A.; Wakefield, N.; Kuntzman, M.; Ma, Y.; Da Silva, M.; Pedersen, M. MEMS microphone with 73 dBA SNR in a 4 mm × 3 mm × 1.2 mm Package. In Proceedings of the 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–25 June 2021; pp. 242–245. [Google Scholar] [CrossRef]
- Bosetti, G.; Bretthauer, C.; Bogner, A.; Krenzer, M.; Gierl, K.; Timme, H.J.; Heiss, H.; Schrag, G. A Novel High-SNR Full Bandwidth Piezoelectric MEMS Microphone Based on a Fully Clamped Aluminum Nitride Corrugated Membrane. In Proceedings of the 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 25–29 June 2023; pp. 366–369. [Google Scholar]
- Pezone, R.; Anzinger, S.; Baglioni, G.; Wasisto, H.S.; Sarro, P.M.; Steeneken, P.G.; Vollebregt, S. Highly-sensitive wafer-scale transfer-free graphene MEMS condenser microphones. Microsyst. Nanoeng. 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Anzinger, S.; Wasisto, H.S.; Basavanna, A.; Fueldner, M.; Dehé, A. Non-Linear Behavioral Modeling of Capacitive MEMS Microphones. In Proceedings of the 36th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 973–976. [Google Scholar] [CrossRef]
- Shubham, S.; Nawaz, M.; Song, X.; Seo, Y.; Zaman, M.F.; Kuntzman, M.L.; Pedersen, M. A behavioral nonlinear modeling implementation for MEMS capacitive microphones. Sens. Actuators A Phys. 2024, 371, 115294. [Google Scholar] [CrossRef]
- Pedersen, M.; Naderyan, V.; Loeppert, P. Novel design method for sub-miniature MEMS microphones with enhanced acoustic SNR. J. Acoust. Soc. Am. 2023, 153, A144. [Google Scholar] [CrossRef]
- Naderyan, V.; Pedersen, M.; Loeppert, P.V. Sub-Miniature Microphone. Available online: https://patents.google.com/patent/US11509980B2/en (accessed on 2 January 2025).
- White Paper: How Optical Technology Enables a Generation Shift in MEMS Microphone Performance. Available online: https://sensibel.com/introducing-sensibels-optical-mems-white-paper/ (accessed on 2 January 2025).
- Shubham, S.; Seo, Y.; Naderyan, V.; Song, X.; Frank, A.; Johnson, J.; da Silva, M.; Pedersen, M. A Novel MEMS Capacitive Microphone with Semi-Constrained Diaphragm Supported with Center and Peripheral Backplate Protrusions. Micromachines 2022, 13, 22. [Google Scholar] [CrossRef]
- Šimonová, K.; Honzík, P. Modeling of MEMS Transducers with Perforated Moving Electrodes. Micromachines 2023, 14, 921. [Google Scholar] [CrossRef]
- Peng, T.H.; Huang, J.H. The Effect of Compliant Backplate on Capacitive MEMS Microphones. IEEE Sens. J. 2024, 24, 17803–17811. [Google Scholar] [CrossRef]
- Rufer, L.; Esteves, J.; Ekeom, D.; Basrour, S. Piezoelectric Micromachined Microphone with High Acoustic Overload Point and with Electrically Controlled Sensitivity. Micromachines 2024, 15, 879. [Google Scholar] [CrossRef] [PubMed]
- Garud, M.; Pratap, R. MEMS Audio Speakers. J. Micromech. Microeng. 2023, 34, 013001. [Google Scholar] [CrossRef]
- Cheng, H.; Fang, W. THD improvement of piezoelectric MEMS speakers by dual cantilever units with well-designed resonant frequencies. Sens. Actuators A Phys. 2024, 377, 115717. [Google Scholar] [CrossRef]
- Cheng, H.H.; Lo, S.C.; Wang, Y.J.; Chen, Y.C.; Lai, W.C.; Hsieh, M.L.; Wu, M.; Fang, W. Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement. In Proceedings of the 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 513–516. [Google Scholar]
- Wang, Y.J.; Lo, S.C.; Hsieh, M.L.; Wang, S.D.; Chen, Y.C.; Wu, M.; Fang, W. Multi-Way In-Phase/Out-of-Phase Driving Cantilever Array for Performance Enhancement of PZT MEMS Microspeaker. In Proceedings of the 34th International Conference on Micro Electro Mechanical Systems (MEMS), Gainesville, FL, USA, 25–29 January 2021; pp. 83–84. [Google Scholar]
- Gazzola, C.; Zega, V.; Cerini, F.; Adorno, S.; Corigliano, A. On the Design and Modeling of a Full-Range Piezoelectric MEMS Loudspeaker for In-Ear Applications. J. Microelectromech. Syst. 2023, 32, 626–637. [Google Scholar] [CrossRef]
- Bhuiyan, M.E.H.; Palit, P.; Pourkamali, S. Electrostatic MEMS Speakers With Embedded Vertical Actuation. J. Microelectromech. Syst. 2024, 33, 446–455. [Google Scholar] [CrossRef]
- Kaiser, B.; Schenk, H.A.G.; Ehrig, L.; Wall, F.; Monsalve, J.M.; Langa, S.; Stolz, M.; Melnikov, A.; Conrad, H.; Schuffenhauer, D.; et al. The push-pull principle: An electrostatic actuator concept for low distortion acoustic transducers. Microsyst. Nanoeng. 2022, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ma, Y.; Zheng, Q.; Cao, K.; Lu, Y.; Xie, H. Review of Recent Development of MEMS Speakers. Micromachines 2021, 12, 1257. [Google Scholar] [CrossRef]
- Liechti, R.; Durand, S.; Hilt, T.; Casset, F.; Poulain, C.; Le Rhun, G.; Pavageau, F.; Kuentz, H.; Colin, M. Total Harmonic Distortion of a Piezoelectric MEMS Loudspeaker in an IEC 60318-4 Coupler Estimation Using Static Measurements and a Nonlinear State Space Model. Micromachines 2021, 12, 1437. [Google Scholar] [CrossRef] [PubMed]
- Teuschel, M.; Heyes, P.; Horvath, S.; Novotny, C.; Rusconi Clerici, A. Temperature Stable Piezoelectric Imprint of Epitaxial Grown PZT for Zero-Bias Driving MEMS Actuator Operation. Micromachines 2022, 13, 1705. [Google Scholar] [CrossRef]
- Knowles, MEMS Microphone MM20-33366-000, Datasheet. Knowles Electronics LLC: Itasca, IL, USA, 2003; pp. 1–12. Available online: https://www.knowles.com/docs/default-source/default-document-library/mm20-33366-000.pdf?Status=Master&sfvrsn=5bb171b1_0 (accessed on 2 January 2025).
- Prochazka, L.; Huber, A.; Schneider, M.; Ghafoor, N.; Birch, J.; Pfiffner, F. Novel Fabrication Technology for Clamped Micron-Thick Titanium Diaphragms Used for the Packaging of an Implantable MEMS Acoustic Transducer. Micromachines 2022, 13, 74. [Google Scholar] [CrossRef]
- Knowles, Multimode Digital Vibration Sensor V2S200D, Datasheet. Knowles Electronics LLC: Itasca, IL, USA, 2003; pp. 1–12. Available online: https://www.knowles.com/docs/default-source/default-document-library/kno_v2s200d-datasheet.pdf (accessed on 2 January 2025).
- Clemens, P. Sonion Voice Pick Up (VPU) Sensor. In Proceedings of the Humanizing the Digital Experience: TDK Developers Conference, Santa Clara, CA, USA, 17–18 September 2018; pp. 1–38. [Google Scholar]
- Knowles, Balanced Armature Driver RAQ-33862-000, Datasheet. Knowles Electronics LLC: Itasca, IL, USA, 2003; pp. 1–2. Available online: https://www.knowles.com/docs/default-source/default-document-library/receiver-datasheet-raq-33862-000_woprelim.pdf (accessed on 2 January 2025).
- Becker, D.; Littwin, M.; Bittner, A.; Dehé, A. Acoustic Transmission Measurements for Extracting the Mechanical Properties of Complex 3D MEMS Transducers. Micromachines 2024, 15, 1070. [Google Scholar] [CrossRef]
- Neggers, J.; Hoefnagels, J.P.M.; Geers, M.G.D. On the validity regime of the bulge equations. J. Mater. Res. 2012, 5, 1245–1250. [Google Scholar] [CrossRef]
- Martins, P.; Delobelle, P.; Malhaire, C.; Brida, S.; Barbier, D. Bulge test and AFM point deflection method, two technics for the mechanical characterization of very low stiffness freestanding films. Eur. Phys. J. Appl. Phys. 2009, 45, 10501. [Google Scholar] [CrossRef]
- Petitgrand, S.; Bosseboeuf, A. Simultaneous mapping of out-of-plane and in-plane vibrations of MEMS with (sub)nanometer resolution. J. Micromech. Microeng. 2004, 14, S97–S101. [Google Scholar] [CrossRef]
- Ennen, M.; Lherbette, M.L. In-Plane and Out-of-Plane Analyses of Encapsulated Mems Device by IR Laser Vibrometry. In Proceedings of the 35th IEEE International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 814–817. [Google Scholar]
- Del Rey, R.; Alba, J.; Rodríguez, C.J.; Bertó, L. Characterization of New Sustainable Acoustic Solutions in a Reduced Sized Transmission Chamber. Buildings 2019, 9, 60. [Google Scholar] [CrossRef]
- Urbán, D.; Roozen, N.B.; Jandák, V.; Brothánek, M.; Jiříček, O. On the Determination of Acoustic Properties of Membrane Type Structural Skin Elements by Means of Surface Displacements. Appl. Sci. 2021, 11, 10357. [Google Scholar] [CrossRef]
- Ollivier, S.; Desjouy, C.; Yuldashev, P.; Koumela, A.; Salze, E.; Karzova, M.; Rufer, L.; Blanc-Benon, P. Calibration of high frequency MEMS microphones and pressure sensors in the range 10 kHz–1 MHz. J. Acoust. Soc. Am. 2015, 138, 1823. [Google Scholar] [CrossRef]
- Ollivier, S.; Desjouy, C.; Salze, E.; Yuldashev, P.; Koumela, A.; Rufer, L.; Blanc-Benon, P. Caractérisation de la réponse capteurs de pression et de microphones MEMS. In Proceedings of the 12th Congrès Français d’Acoustique (CFA) Joint avec le Colloque Vibrations, Shocks, and Noise (VISHNO), Le Mans, France, 11–15 April 2016; pp. 833–837. [Google Scholar]
- Dessein, A. Modelling Distortion in Condenser Microphones. Ph.D. Thesis, Technical University of Denmark, DTU, Lyngby, Denmark, 2009. [Google Scholar]
- Chowdhury, S.; Ahmadi, M.; Miller, W.C. Nonlinear effects in MEMS capacitive microphone design. In Proceedings of the International Conference on MEMS, NANO, and Smart Systems, Banff, AB, Canada, 23 July 2003; pp. 297–302. [Google Scholar] [CrossRef]
- Frederiksen, E. Reduction of non-linear distortion in condenser microphones by using negative load capacitance. In Proceedings of the International Congress on Noise Control Engineering, Liverpool, UK, 30 July–2 August 1996. [Google Scholar]
- Pastillé, H. Electrically manifested distortions of condenser microphones in audio frequency circuits. J. Audio Eng. Soc. 2000, 48, 559–563. [Google Scholar]
- Abuelma’atti, M.T. Improved analysis of the electrically manifested distortions of condenser microphones. Appl. Acoust. 2003, 64, 471–480. [Google Scholar] [CrossRef]
- Djuric, S.V. Distortion in microphones. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, USA, 12–14 April 1976; pp. 537–539. [Google Scholar]
- Novak, A.; Simon, L.; Lotton, P. A simple predistortion technique for suppression of nonlinear effects in periodic signals generated by nonlinear transducers. J. Sound Vib. 2018, 420, 104–113. [Google Scholar] [CrossRef]
- Novak, A.; Honzík, P. Measurement of nonlinear distortion of MEMS microphones. Appl. Acoust. 2021, 175, 107802. [Google Scholar] [CrossRef]
- Pedersen, M.; Olthuis, W.; Bergveld, P. Harmonic distortion in silicon condenser microphones. J. Acoust. Soc. Am. 1997, 102, 1582–1587. [Google Scholar] [CrossRef]
- Boales, J.A.; Erramilli, S.; Mohanty, P. Measurement of nonlinear piezoelectric coefficients using a micromechanical resonator. Appl. Phys. Lett. 2018, 113, 20. [Google Scholar] [CrossRef]
- Arora, N.; Singh, P.; Kumar, R.; Pratap, R.; Naik, A. Mixed Nonlinear Response and Transition of Nonlinearity in a Piezoelectric Membrane. ACS Appl. Electron. Mater. 2024, 6, 155–162. [Google Scholar] [CrossRef]
- Peng, C.; Shen, G.; Zhang, Y.; Li, Y.; Tan, K. BeepBeep: A high accuracy acoustic ranging system using COTS mobile devices. In Proceedings of the 5th ACM Conference on Embedded Networked Sensor Systems (SenSys), Sydney, Australia, 6–9 November 2007; pp. 1–14. [Google Scholar] [CrossRef]
- Hedley, R.W.; Joubert, B.; Bains, H.K.; Bayne, E.M. Acoustic detection of gunshots to improve measurement and mapping of hunting activity. Wildl. Soc. Bull. 2022, 46, e1370. [Google Scholar] [CrossRef]
- Astapov, S.; Berdnikova, J.; Ehala, J.; Kaugerand, J.; Preden, J.-S. Gunshot acoustic event identification and shooter localization in a WSN of asynchronous multichannel acoustic ground sensors. Multidim. Syst. Sign. Process. 2018, 29, 563–595. [Google Scholar] [CrossRef]
- Zhou, Z.; Rufer, L.; Salze, E.; Yuldashev, P.; Ollivier, S.; Wong, M. Bulk micro-machined wide-band aero-acoustic microphone and its application to acoustic ranging. J. Micromech. Microeng. 2013, 23, 1094–1100. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Zheng, Y. Push the Limit of Acoustic Gesture Recognition. IEEE Trans. Mob. Comput. 2020, 21, 1798–1811. [Google Scholar] [CrossRef]
- Pan, J.; Bai, C.; Zheng, Q.; Xie, H. Review of Piezoelectric Micromachined Ultrasonic Transducers for Rangefinders. Micromachines 2023, 14, 374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yu, Y.; Chen, L.; Chen, R. Hybrid Indoor Positioning System Based on Acoustic Ranging and Wi-Fi Fingerprinting under NLOS Environments. Remote Sens. 2023, 15, 3520. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ahmadi, M.; Miller, W.C. Design of a MEMS Acoustical Beamforming Sensor Microarray. IEEE Sens. J. 2002, 2, 617–627. [Google Scholar] [CrossRef]
- Shams, Q.A.; Graves, S.S.; Bartram, S.M.; Sealey, B.S.; Comeaux, T. Development of MEMS microphone array technology for aeroacoustic testing. J. Acoust. Soc. Am. 2004, 116, 2511. [Google Scholar] [CrossRef]
- del Val, L.; Izquierdo, A.; Villacorta, J.J.; Suárez, L. Using a Planar Array of MEMS Microphones to Obtain Acoustic Images of a Fan Matrix. J. Sens. 2017, 2017, 3209142. [Google Scholar] [CrossRef]
- Ahlefeldt, T.; Haxter, S.; Spehr, C.; Ernst, D.; Kleindienst, T. Road to Acquisition: Preparing a MEMS Microphone Array for Measurement of Fuselage Surface Pressure Fluctuations. Micromachines 2021, 12, 961. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, W.; Tong, Z.; Cai, Y.; Sun, C.; Lou, L. Tuning Characteristics of AlN-Based Piezoelectric Micromachined Ultrasonic Transducers Using DC Bias Voltage. IEEE Trans. Electron Devices 2022, 69, 729–735. [Google Scholar] [CrossRef]
- Nastro, A.; Ferrari, M.; Rufer, L.; Basrour, S.; Ferrari, V. Piezoelectric MEMS Acoustic Transducer with Electrically-Tunable Resonant Frequency. Micromachines 2022, 13, 96. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rufer, L.; Shubham, S.; Wang, H.; Miller, T.; Honzík, P.; Ferrari, V. Editorial for the Special Issue on Micromachined Acoustic Transducers for Audio-Frequency Range. Micromachines 2025, 16, 67. https://doi.org/10.3390/mi16010067
Rufer L, Shubham S, Wang H, Miller T, Honzík P, Ferrari V. Editorial for the Special Issue on Micromachined Acoustic Transducers for Audio-Frequency Range. Micromachines. 2025; 16(1):67. https://doi.org/10.3390/mi16010067
Chicago/Turabian StyleRufer, Libor, Shubham Shubham, Haoran Wang, Tom Miller, Petr Honzík, and Vittorio Ferrari. 2025. "Editorial for the Special Issue on Micromachined Acoustic Transducers for Audio-Frequency Range" Micromachines 16, no. 1: 67. https://doi.org/10.3390/mi16010067
APA StyleRufer, L., Shubham, S., Wang, H., Miller, T., Honzík, P., & Ferrari, V. (2025). Editorial for the Special Issue on Micromachined Acoustic Transducers for Audio-Frequency Range. Micromachines, 16(1), 67. https://doi.org/10.3390/mi16010067