Editorial for the Micro/Nanoscale Electrokinetics Section
1. Nonlinear Electroosmosis and Electrophoresis in Newtonian Fluids
2. Nonlinear Electroosmosis and Electrophoresis in Non-Newtonian Fluids
3. Dielectrophoresis-Enabled Single Cell Analysis
4. Protein Dielectrophoresis
Conflicts of Interest
References
- Masliyah, J.H.; Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wall, S. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 119–124. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potential in Colloid Science; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Chang, H.C.; Yeo, L.Y. Electrokinetically Driven Microfluidics and Nanofluidics; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Qian, S.; Ai, Y. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis; CRC Press: Cleveland, OH, USA, 2012. [Google Scholar]
- Xuan, X. Recent Advances in Direct Current Electrokinetic Manipulation of Particles for Microfluidic Applications. Electrophoresis 2019, 40, 2484–2513. [Google Scholar] [CrossRef] [PubMed]
- Li, D. Electrokinetics in Microfluidics; Elsevier Academic Press: Burlington, MA, USA, 2004. [Google Scholar]
- Mishchuk, N.A. Concentration Polarization of Interface and Nonlinear Electrokinetic Phenomena. Adv. Colloid Interface Sci. 2010, 160, 16–39. [Google Scholar] [CrossRef] [PubMed]
- Khair, A.S. Nonlinear Electrophoresis of Colloidal Particles. Curr. Opin. Colloid Interface Sci. 2022, 59, 101587. [Google Scholar] [CrossRef]
- Fernández-Mateo, R.; Calero, V.; Morgan, H.; Ramos, A.; García-Sánchez, P. Concentration−Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels. Anal. Chem. 2021, 93, 14667–14674. [Google Scholar] [CrossRef]
- Fernández-Mateo, R.; Calero, V.; Morgan, H.; García-Sánchez, P.; Ramos, A. Wall Repulsion of Charged Colloidal Particles during Electrophoresis in Microfluidic Channels. Phys. Rev. Lett. 2022, 128, 074501. [Google Scholar] [CrossRef]
- Fernández-Mateo, R.; García-Sánchez, P.; Ramos, A.; Morgan, H. Concentration–polarization electroosmosis for particle fractionation. Lab Chip 2024, 24, 2968–2974. [Google Scholar] [CrossRef]
- Schnitzer, O.; Yariv, E. Nonlinear Electrophoresis at Arbitrary Field Strengths: Small-Dukhin-Number Analysis. Phys. Fluids 2014, 26, 122002. [Google Scholar] [CrossRef]
- Tottori, S.; Misiunas, K.; Keyser, U.F.; Bonthuis, D.J. Nonlinear Electrophoresis of Highly Charged Nonpolarizable Particles. Phys. Rev. Lett. 2019, 123, 14502. [Google Scholar] [CrossRef]
- Bentor, J.; Dort, H.; Chitrao, R.A.; Zhang, Y.; Xuan, X. Nonlinear Electrophoresis of Dielectric Particles in Newtonian Fluids. Electrophoresis 2023, 44, 938–946. [Google Scholar] [CrossRef]
- Bentor, J.; Xuan, X. Nonlinear Electrophoresis of Nonspherical Particles in a Rectangular Microchannel. Electrophoresis 2024, 45, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Ernst, O.D.; Vaghef-Koodehi, A.; Dillis, C.; Lomeli-Martin, A.; Lapizco-Encinas, B.H. Dependence of Nonlinear Electrophoresis on Particle Size and Electrical Charge. Anal. Chem. 2023, 95, 6595–6602. [Google Scholar] [CrossRef] [PubMed]
- Kasarabada, V.; Ernst, O.D.; Vaghef-Koodehi, A.; Lapizco-Encinas, B.H. Effect of Cell Shape on Nonlinear Electrophoresis Migration. J. Chromatogr. A 2024, 1717, 464685. [Google Scholar] [CrossRef] [PubMed]
- Nihaar, N.; Ahamed, N.; Mendiola-Escobedo, C.A.; Ernst, O.D.; Perez-Gonzalez, V.H.; Lapizco-Encinas, B.H. Fine-Tuning the Characteristic of the Applied Potential to Improve AC-IEK Separations of Microparticles. Anal. Chem. 2023, 95, 9914–9923. [Google Scholar]
- Lomeli-Martin, A.; Ernst, O.D.; Cardenas-Benitez, B.; Cobos, R.; Khair, A.S.; Lapizco-Encinas, B.H. Characterization of the Nonlinear Electrophoretic Behavior of Colloidal Particles in a Microfluidic Channel. Anal. Chem. 2023, 95, 6740–6747. [Google Scholar] [CrossRef]
- Ahamed, N.N.N.; Mendiola-Escobedo, C.A.; Perez-Gonzalez, V.H.; Blanca, H. Lapizco-Encinas. Assessing the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials. Micromachines 2023, 14, 2239. [Google Scholar] [CrossRef]
- Lomeli-Martin, A.; Azad, Z.; Thomas, J.A.; Lapizco-Encinas, B.H. Assessment of the Nonlinear Electrophoretic Migration of Nanoparticles and Bacteriophages. Micromachines 2024, 15, 369. [Google Scholar] [CrossRef]
- Lu, X.; Liu, C.; Hu, G.; Xuan, X. Particle Manipulations in Non-Newtonian Microfluidics: A Review. J. Colloid Interface Sci. 2017, 500, 182–201. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C. Electrokinetics of Non-Newtonian Fluids: A Review. Adv. Colloid Interface Sci. 2013, 201−202, 94–108. [Google Scholar] [CrossRef]
- Ji, J.; Qian, S.; Parker, A.M.; Zhang, X. Numerical Study of the Time-Periodic Electroosmotic Flow of Viscoelastic Fluid through a Short Constriction Microchannel. Micromachines 2023, 14, 2077. [Google Scholar] [CrossRef]
- Chang, L.; Zhao, G.; Buren, M.; Sun, Y.; Jian, Y. Alternating Current Electroosmotic Flow of Maxwell Fluid in a Parallel Plate Microchannel with Sinusoidal Roughness. Micromachines 2024, 15, 1315. [Google Scholar] [CrossRef]
- Khair, A.S.; Posluszny, D.E.; Walker, L.M. Coupling Electrokinetics and Rheology: Electrophoresis in Non-Newtonian Fluids. Phys. Rev. E 2012, 85, 016320. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Koch, D.L. Electrophoresis in Dilute Polymer Solutions. J. Fluid Mech. 2020, 884, A9. [Google Scholar] [CrossRef]
- Bentor, J.; Gabbard, C.; Bostwick, J.B.; Xuan, X. Nonlinear Electrophoresis of Microparticles in Shear Thinning Fluids. Langmuir 2024, 40, 20113–20119. [Google Scholar] [CrossRef] [PubMed]
- Bentor, J.; Xuan, X. Particle Size-Dependent Electrophoresis in Polymer Solutions. Anal. Chem. 2024, 96, 3186–3191. [Google Scholar] [CrossRef]
- Mantri, D.; Wymenga, L.; van Turnhout, J.; van Zeijl, H.; Zhang, G. Manipulation, Sampling and Inactivation of the SARS-CoV-2 Virus Using Nonuniform Electric Fields on Micro-Fabricated Platforms: A Review. Micromachines 2023, 14, 345. [Google Scholar] [CrossRef]
- O‘Donnell, M.C.; Kepper, M.; Pesch, G.R. A Brief History and Future Directions of Dielectrophoretic Filtration: A Review. Electrophoresis 2024, 45. in press. [Google Scholar] [CrossRef]
- Yan, S.; Rajestari, Z.; Morse, T.C.; Li, H.; Kulinsky, L. Electrokinetic Manipulation of Biological Cells towards Biotechnology Applications. Micromachines 2024, 15, 341. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, N.; Li, F.; Zhao, K.; Wang, D.; Niu, Y.; Xu, F.; Cheng, J.; Wang, J. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip. Micromachines 2023, 14, 159. [Google Scholar] [CrossRef]
- Shijo, S.; Tanaka, D.; Sekiguchi, T.; Ishihara, J.; Takahashi, H.; Kobayashi, M.; Shoji, S. Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis. Micromachines 2023, 14, 706. [Google Scholar] [CrossRef]
- Nakano, A.; Ros, A. Protein Dielectrophoresis: Advances, Challenges and Applications. Electrophoresis 2013, 34, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Abdul Nasir, N.S.; Deivasigamani, R.; Mohd Razip Wee, M.F.; Hamzah, A.A.; Mat Zaid, M.H.; Abdul Rahim, M.K.; Kayani, A.A.; Abdulhameed, A.; Buyong, M.R. Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications. Micromachines 2022, 13, 1308. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Limitations of the Clausius-Mossotti function used in dielectrophoresis and electrical impedance studies of biomacromolecules. Electrophoresis 2019, 40, 2575–2583. [Google Scholar] [CrossRef]
- Pethig, R. Protein Dielectrophoresis: A Tale of Two Clausius-Mossottis—Or Something Else? Micromachines 2022, 13, 261. [Google Scholar] [CrossRef]
- Hölzel, R.; Pethig, R. Protein Dielectrophoresis: I. Status of Experiments and an Empirical Theory. Micromachines 2020, 11, 533. [Google Scholar] [CrossRef]
- Gimsa, J.; Radai, M.M. Dielectrophoresis from the System’s Point of View: A Tale of Inhomogeneous Object Polarization, Mirror Charges, High Repelling and Snap-to-Surface Forces and Complex Trajectories Featuring Bifurcation Points and Watersheds. Micromachines 2022, 13, 1002. [Google Scholar] [CrossRef]
- Gimsa, J.; Radai, M.M. The System’s Point of View Applied to Dielectrophoresis in Plate Capacitor and Pointed-versus-Pointed Electrode Chambers. Micromachines 2023, 14, 670. [Google Scholar] [CrossRef]
- Gimsa, J.; Radai, M.M. Trajectories and Forces in Four-Electrode Chambers Operated in Object-Shift, Dielectrophoresis and Field-Cage Modes—Considerations from the System’s Point of View. Micromachines 2023, 14, 2042. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, X. Editorial for the Micro/Nanoscale Electrokinetics Section. Micromachines 2024, 15, 1414. https://doi.org/10.3390/mi15121414
Xuan X. Editorial for the Micro/Nanoscale Electrokinetics Section. Micromachines. 2024; 15(12):1414. https://doi.org/10.3390/mi15121414
Chicago/Turabian StyleXuan, Xiangchun. 2024. "Editorial for the Micro/Nanoscale Electrokinetics Section" Micromachines 15, no. 12: 1414. https://doi.org/10.3390/mi15121414
APA StyleXuan, X. (2024). Editorial for the Micro/Nanoscale Electrokinetics Section. Micromachines, 15(12), 1414. https://doi.org/10.3390/mi15121414