The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery
Abstract
1. Introduction
2. Methods
2.1. Optical Force
2.2. Optical Torque
3. Results
3.1. Optical Force
3.2. Optical Torque
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | Magnetic resonance imaging |
OST | Optical spin torque |
TE | Transverse electric |
TM | Transverse magnetic |
OF | Optical radiation force |
OT | Optical radiation torque |
BSCs | Beam shape coefficients |
References
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 2015, 468, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Monaco, I.; Arena, F.; Biffi, S.; Locatelli, E.; Bortot, B.; La Cava, F.; Marini, G.M.; Severini, G.M.; Terreno, E.; Comes Franchini, M. Synthesis of Lipophilic Core–Shell Fe3O4@SiO2@Au Nanoparticles and Polymeric Entrapment into Nanomicelles: A Novel Nanosystem for in Vivo Active Targeting and Magnetic Resonance–Photoacoustic Dual Imaging. Bioconjugate Chem. 2017, 28, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yan, F.; Yao, M.; Wei, Z.; Zhou, D.; Yao, H.; Zheng, H.; Chen, H.; Shi, J. Template free synthesis of hollow/porous organosilica–Fe3O4 hybrid nanocapsules toward magnetic resonance imaging-guided high-intensity focused ultrasound therapy. ACS Appl. Mater. Interfaces 2016, 8, 29986–29996. [Google Scholar] [CrossRef]
- Nan, X.; Zhang, X.; Liu, Y.; Zhou, M.; Chen, X.; Zhang, X. Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy. ACS Appl. Mater. Interfaces 2017, 9, 9986–9995. [Google Scholar] [CrossRef]
- Hajiaghajani, A.; Hashemi, S.; Abdolali, A. Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation. J. Magn. Magn. Mater. 2017, 438, 173–180. [Google Scholar] [CrossRef]
- Al Faraj, A.; Shaik, A.S.; Shaik, A.P.; Al Sayed, B. Enhanced magnetic delivery of superparamagnetic iron oxide nanoparticles to the lung monitored using noninvasive MR. J. Nanoparticle Res. 2014, 16, 2667. [Google Scholar] [CrossRef]
- Kayal, S.; Bandyopadhyay, D.; Mandal, T.K.; Ramanujan, R.V. The flow of magnetic nanoparticles in magnetic drug targeting. RSC Adv. 2011, 1, 238–246. [Google Scholar] [CrossRef]
- Lübbe, A.S.; Bergemann, C.; Riess, H.; Schriever, F.; Reichardt, P.; Possinger, K.; Matthias, M.; Dörken, B.; Herrmann, F.; Gürtler, R.; et al. Clinical experiences with magnetic drug targeting: A phase I study with 4-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 1996, 56, 4686–4693. [Google Scholar]
- Depalo, N.; Iacobazzi, R.M.; Valente, G.; Arduino, I.; Villa, S.; Canepa, F.; Laquintana, V.; Fanizza, E.; Striccoli, M.; Cutrignelli, A.; et al. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma. Nano Res. 2017, 10, 2431–2448. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chen, D.; Shang, P.; Yin, D.C. A review of magnet systems for targeted drug delivery. J. Control. Release 2019, 302, 90–104. [Google Scholar] [CrossRef]
- Mishima, F.; Nakagawa, K.; Chuzawa, M.; Mori, T.; Akiyama, Y.; Nishijima, S. Precise control of the drug kinetics by non-invasive magnetic drug delivery system. IEEE Trans. Appl. Supercond. 2012, 23, 4400704. [Google Scholar] [CrossRef]
- Takeda, S.; Mishima, F.; Fujimoto, S.; Izumi, Y.; Nishijima, S. Development of magnetically targeted drug delivery system using superconducting magnet. J. Magn. Magn. Mater. 2007, 311, 367–371. [Google Scholar] [CrossRef]
- Liu, J.F.; Jang, B.; Issadore, D.; Tsourkas, A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1571. [Google Scholar] [CrossRef]
- Spoială, A.; Ilie, C.I.; Motelica, L.; Ficai, D.; Semenescu, A.; Oprea, O.C.; Ficai, A. Smart Magnetic Drug Delivery Systems for the Treatment of Cancer. Nanomaterials 2023, 13, 876. [Google Scholar] [CrossRef] [PubMed]
- Mody, V.V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci. 2014, 4, 385–392. [Google Scholar] [CrossRef]
- Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys. 1979, 47, 264–267. [Google Scholar] [CrossRef]
- Broky, J.; Siviloglou, G.A.; Dogariu, A.; Christodoulides, D.N. Self-healing properties of optical Airy beams. Opt. Express 2008, 16, 12880–12891. [Google Scholar] [CrossRef]
- Chu, X.; Wen, W. Quantitative description of the self-healing ability of a beam. Opt. Express 2014, 22, 6899–6904. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A. Airy beam with a hyperbolic trajectory. Opt. Commun. 2014, 313, 290–293. [Google Scholar] [CrossRef]
- Forbes, A.; de Oliveira, M.; Dennis, M.R. Structured light. Nat. Photonics 2021, 15, 253–262. [Google Scholar] [CrossRef]
- Otte, E.; Denz, C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev. 2020, 7, 041308. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Christodoulides, D.N. Accelerating Finite Energy Airy Beams. Opt. Lett. 2007, 32, 979–981. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of Accelerating Airy Beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef]
- Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nat. Photonics 2008, 2, 675–678. [Google Scholar] [CrossRef]
- Kim, K.Y.; Kim, S. Spinning of a submicron sphere by Airy beams. Opt. Lett. 2016, 41, 135–138. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J.; Lin, Z.; Liu, S. Driving a dielectric cylindrical particle with a one dimensional Airy beam: A rigorous full wave solution. Prog. Electromagn. Res. 2011, 115, 409–422. [Google Scholar] [CrossRef]
- Mitri, F.G.; Li, R.; Yang, R.; Guo, L.; Ding, C. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams. J. Quant. Spectrosc. Radiat. Transf. 2016, 184, 360–381. [Google Scholar] [CrossRef]
- Mitri, F.G. Optical pulling force and torques on Rayleigh semiconductor prolate and oblate spheroids in Bessel tractor beams. J. Quant. Spectrosc. Radiat. Transf. 2017, 196, 201–212. [Google Scholar] [CrossRef]
- Li, R.; Yang, R.; Ding, C.; Mitri, F.G. Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam. J. Quant. Spectrosc. Radiat. Transf. 2017, 191, 96–115. [Google Scholar] [CrossRef]
- Barton, J.; Alexander, D.; Schaub, S. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 1989, 66, 4594–4602. [Google Scholar] [CrossRef]
- Mitri, F.G. Longitudinal and transverse PAFs for an absorptive magneto-dielectric circular cylinder in light-sheets of arbitrary wavefronts and polarization. Appl. Opt. 2021, 60, 7937–7944. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, H.; Chen, J.; Ng, J.; Lin, Z. Universal relationships between optical force/torque and orbital versus spin momentum/angular momentum of light. Physics 2015, 1511, 08546. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2021. [Google Scholar]
- van de Hulst, H.C. Light Scattering by Small Particles; Dover Publications, Inc.: New York, NY, USA, 1981. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Song, N.; Wei, B.; Li, R.; Sun, H.; Wei, B.; Zhang, S.; Zhang, J.; Mitri, F.G. Optical torque on an absorptive dielectric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet. J. Quant. Spectrosc. Radiat. Transf. 2020, 256, 107327. [Google Scholar] [CrossRef]
- Ye, Q.; Lin, H. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields. Eur. J. Phys. 2017, 38, 045202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, N.; Chen, S.; Wang, H.; He, X.; Wei, B.; Li, R.; Zhang, S.; Xu, L. The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery. Micromachines 2024, 15, 1369. https://doi.org/10.3390/mi15111369
Song N, Chen S, Wang H, He X, Wei B, Li R, Zhang S, Xu L. The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery. Micromachines. 2024; 15(11):1369. https://doi.org/10.3390/mi15111369
Chicago/Turabian StyleSong, Ningning, Shiguo Chen, Hao Wang, Xinbo He, Bing Wei, Renxian Li, Shu Zhang, and Lei Xu. 2024. "The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery" Micromachines 15, no. 11: 1369. https://doi.org/10.3390/mi15111369
APA StyleSong, N., Chen, S., Wang, H., He, X., Wei, B., Li, R., Zhang, S., & Xu, L. (2024). The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery. Micromachines, 15(11), 1369. https://doi.org/10.3390/mi15111369