An Automated Digital Microfluidic System Based on Inkjet Printing
Abstract
:1. Introduction
2. Construction of Automated Printing System
2.1. Chip Structure
2.2. Construction of Printing System
3. Experimental Validation
3.1. Feasibility of Sphere Formation Verification
3.2. Uniformity Verification
3.3. Size Control Validation
3.4. Feasibility Verification of Organoid Printing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borah, A.; Kumar, D. Overcoming the barriers of two-dimensional cell culture systems with three-dimensional cell culture systems: Techniques, drug discovery, and biomedical applications. Biomed. Prod. Mater. Eval. 2022, 7, 179–229. [Google Scholar] [CrossRef]
- Tepe, U.; Guler, B.A.; Imamoglu, E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol. Biol. Rep. 2023, 50, 7017–7025. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Koutsakis, C.; Piperigkou, Z.; Karamanos, N.K. Recreating the extracellular matrix: Novel 3D cell culture platforms in cancer research. FEBS J. 2023, 290, 5238–5247. [Google Scholar] [CrossRef] [PubMed]
- Villiers, M.D.; Plessis, L.H.D. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed. Mater. 2024, 19, 055034. [Google Scholar] [CrossRef] [PubMed]
- Trelles, J.A.; Rivero, C.W. Whole Cell Entrapment Techniques. In Immobilization of Enzymes and Cells; Humana: Louisville, KY, USA, 2020. [Google Scholar] [CrossRef]
- Villani, T.; Rossi, A.E.; Sherman, H. Image-Based Characterization of 3-D Cell Culture Models Grown in Spheroid Microplates. Am. Lab. 2018, 50, 36–38. [Google Scholar]
- Papafragkou, E.; Hewitt, J.; Park, G.W.; Greening, G.; Vinjé, J. Challenges of Culturing Human Norovirus in Three-Dimensional Organoid Intestinal Cell Culture Models. PLoS ONE 2013, 8, e63485. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.K.; Tseng, H.; Souza, G.R. Assembly of Hepatocyte Spheroids Using Magnetic3D Cell Culture for CYP450 Inhibition/Induction. Int. J. Mol. Sci. 2017, 18, 1085. [Google Scholar] [CrossRef] [PubMed]
- Emura, M.; Aufderheide, M. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells. Exp. Toxicol. Pathol. 2016, 68, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Iron, D.; Rumsey, J. A model of cell surface receptor aggregation. J. Math. Biol. 2017, 75, 705–731. [Google Scholar] [CrossRef] [PubMed]
- Kimlin, L.; Kassis, J.; Virador, V. 3D in vitro tissue models and their potential for drug screening. Expert Opin. Drug Discov. 2013, 8, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Buldak, N.; Veeraraghavan, V.P. Mony U.Revolutionizing precision medicine in oral squamous cell carcinoma: Harnessing 3D in vitro models for translation. Oral Oncol. Rep. 2024, 11, 100622. [Google Scholar] [CrossRef]
- Metzger, W.; Rother, S.; Pohlemann, T.; Möller, S.; Schnabelrauch, M.; Hintze, V.; Scharnweber, D. Evaluation of cell-surface interaction using a 3D spheroid cell culture model on artificial extracellular matrices. Mater. Sci. Eng. C 2017, 73, 310–318. [Google Scholar] [CrossRef]
- Rørth, P. Collective cell migration ecm: Extracellular matrix. Annu. Rev. Cell Dev. Biol. 2009, 25, 407–429. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of variation. Encycl. Stat. Sci. 2011, 94, 94. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, H.; Zhang, W.; Wang, J.; Liu, Y.; Cao, Y.; Zheng, H.; Hu, Z.; Wang, S.; Zhu, Y.; et al. An Automated Organoid Platform with Inter-organoid Homogeneity and Inter-patient Heterogeneity. Cell Rep. Med. 2020, 1, 100161. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.A.; Rode, M.P.; Sierra, J.A.; Silva, A.H.; Miyake, J.A.; Filippin-Monteiro, F.B.; Creczynski-Pasa, T.B. Three-dimensional multicellular cell culture for anti-melanoma drug screening: Focus on tumor microenvironment. Cytotechnology 2021, 73, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Clara-Trujillo, S.; Marín-Payá, J.C.; Cordón, L.; Sempere, A.; Ferrer, G.G.; Ribelles, J.L.G. Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Colloids SurfacesB Biointerfaces 2019, 177, 68–76. [Google Scholar] [CrossRef] [PubMed]
- García, I.; Henriksen-Lacey, M.; Calvo, J.; de Aberasturi, D.J.; Paz, M.M.; Liz-Marzán, L.M. Size-Dependent Transport and Cytotoxicity of Mitomycin-Gold Nanoparticle Conjugates in 2D and 3D Mammalian Cell Models. Bioconjugate Chem. 2019, 30, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, D.; Jiang, S.; Galan, E.A.; Zhang, Z.; Huang, L.; Ma, S. Microfluidic droplets as structural templates for Matrigel to enable 1-week large organoid modeling. Chem. Eng. Sci. 2021, 238, 116632. [Google Scholar] [CrossRef]
- Sato, T.; Vries, R.G.; Snippert, H.J.; Van De Wetering, M.; Barker, N.; Stange, D.E.; Van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Cao, M.; Liao, L.; Liao, Y.; He, Y.; Ma, M.; Wang, S.; Guan, Y. An Automated Digital Microfluidic System Based on Inkjet Printing. Micromachines 2024, 15, 1285. https://doi.org/10.3390/mi15111285
Hu W, Cao M, Liao L, Liao Y, He Y, Ma M, Wang S, Guan Y. An Automated Digital Microfluidic System Based on Inkjet Printing. Micromachines. 2024; 15(11):1285. https://doi.org/10.3390/mi15111285
Chicago/Turabian StyleHu, Wansheng, Ming Cao, Lingni Liao, Yuanhong Liao, Yuhan He, Mengxiao Ma, Simao Wang, and Yimin Guan. 2024. "An Automated Digital Microfluidic System Based on Inkjet Printing" Micromachines 15, no. 11: 1285. https://doi.org/10.3390/mi15111285
APA StyleHu, W., Cao, M., Liao, L., Liao, Y., He, Y., Ma, M., Wang, S., & Guan, Y. (2024). An Automated Digital Microfluidic System Based on Inkjet Printing. Micromachines, 15(11), 1285. https://doi.org/10.3390/mi15111285