Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Chen, X.; Wang, S.; Zhou, R.; Wang, C.; Yu, L.; Zheng, J.; Yang, C.; Hou, X. Green synthesized liquid-like dynamic polymer chains with decreased nonspecific adhesivity for high-purity capture of circulating tumor cells. CCS Chem. 2024, 6, 507–517. [Google Scholar] [CrossRef]
- Li, K.; Lu, X.; Liao, J.; Chen, H.; Lin, W.; Zhao, Y.; Tang, D.; Li, C.; Tian, Z.; Zhu, Z. DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics. Proc. Natl. Acad. Sci. USA 2024, 121, e2410164121. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ding, H.; Zhang, D.; Zhao, K.; Gao, J.; Lin, B.; Huang, C.; Song, Y.; Zhao, G.; Ma, Y. Reversible immunoaffinity interface enables dynamic manipulation of trapping force for accumulated capture and efficient release of circulating rare cells. Adv. Sci. 2021, 8, 2102070. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Kong, X.; Liu, Y.; Wang, S.; Chen, Z.; Hou, X. Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chin. Chem. Lett. 2024, 35, 109754. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Yang, Y.; Zhang, K.; Liang, W.; Xu, Z.; Wu, Y.; Luo, J.; Zhuang, C.; Cai, X. Recent progress and perspectives on neural chip platforms integrating PDMS-based microfluidic devices and microelectrode arrays. Micromachines 2023, 14, 709. [Google Scholar] [CrossRef]
- Chen, Z.; Lv, Z.; Zhang, Z.; Weitz, D.; Zhang, H.; Zhang, Y.; Cui, W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. Exploration 2021, 1, 20210036. [Google Scholar] [CrossRef]
- Wang, K.; Huang, K.; Wang, L.; Lin, X.; Tan, M.; Su, W. Microfluidic strategies for encapsulation, protection, and controlled delivery of probiotics. J. Agric. Food Chem. 2024, 72, 15092–15105. [Google Scholar] [CrossRef]
- Lovegrove, J.T.; Kent, B.; Förster, S.; Garvey, C.J.; Stenzel, M.H. The flow of anisotropic nanoparticles in solution and in blood. Exploration 2023, 3, 20220075. [Google Scholar] [CrossRef]
- Saxena, S.; Lu, Y.; Zhang, Z.; Li, Y.; Soleymani, L.; Hoare, T. Zwitter-repel: An anti-fouling coating promoting electrochemical biosensing in biological fluids. Chem. Eng. J. 2024, 495, 153522. [Google Scholar] [CrossRef]
- Hou, X.; Li, J.; Tesler, A.B.; Yao, Y.; Wang, M.; Min, L.; Sheng, Z.; Aizenberg, J. Dynamic air/liquid pockets for guiding microscale flow. Nat. Commun. 2018, 9, 733. [Google Scholar] [CrossRef]
- Cirillo, A.I.; Tomaiuolo, G.; Guido, S. Membrane fouling phenomena in microfluidic systems: From technical challenges to scientific opportunities. Micromachines 2021, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Yan, H.; Tian, S.; Luo, R.; Zhao, Y.; Wang, J. Anti-fouling coatings for blood-contacting devices. Smart Mater. Med. 2024, 5, 166–180. [Google Scholar] [CrossRef]
- Mercader, A.; Ye, S.-H.; Kim, S.; Orizondo, R.A.; Cho, S.K.; Wagner, W.R. PDMS-zwitterionic hybrid for facile, antifouling microfluidic device fabrication. Langmuir 2022, 38, 3775–3784. [Google Scholar] [CrossRef]
- Leslie, D.C.; Waterhouse, A.; Berthet, J.B.; Valentin, T.M.; Watters, A.L.; Jain, A.; Kim, P.; Hatton, B.D.; Nedder, A.; Donovan, K. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 2014, 32, 1134–1140. [Google Scholar] [CrossRef]
- Tong, P.; Chen, L.; Sun, X.; Li, H.; Feng, Y.; Li, J.; Guan, S. Surface modification of biodegradable magnesium alloy with poly (L-lactic acid) and sulfonated hyaluronic acid nanoparticles for cardiovascular application. Int. J. Biol. Macromol. 2023, 237, 124191. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Celik, N.; Ceylan, A.; Pekdemir, S.; Ruzi, M.; Onses, M.S. Antifouling superhydrophobic surfaces with bactericidal and SERS activity. Chem. Eng. J. 2022, 431, 133445. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.; Li, J.; Zhang, K.; Chong, F. Bioinspired strategies for functionalization of mg-based stents. Crystals 2022, 12, 1761. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.; Xu, J.; Pan, C. Bioinspired surface design for magnesium alloys with corrosion resistance. Metals 2022, 12, 1404. [Google Scholar] [CrossRef]
- Rasitha, T.; Vanithakumari, S.; Krishna, D.N.G.; George, R.; Srinivasan, R.; Philip, J. Facile fabrication of robust superhydrophobic aluminum surfaces with enhanced corrosion protection and antifouling properties. Prog. Org. Coat. 2022, 162, 106560. [Google Scholar] [CrossRef]
- Shi, R.; Shang, L.; Zhou, C.; Zhao, Y.; Zhang, T. Interfacial wettability and mass transfer characterizations for gas–liquid–solid triple-phase catalysis. Exploration 2022, 2, 20210046. [Google Scholar] [CrossRef]
- Wu, F.; Xu, J.; Wang, Z.; Jiang, J.; Liu, Y.; Zhang, N.; Zhang, K.; Chong, F.; Li, J. Functional liquid-infused PDMS sponge-based catheter with antithrombosis, antibacteria, and anti-inflammatory properties. Colloids Surf. B Biointerfaces 2023, 224, 113208. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Tian, X.; Wang, Z.; Zhang, L.; Zhang, F.; Yang, Y.; Liu, L. Versatile dynamic bioactive lubricant-infused surface for effective isolation of circulating tumor cells. Anal. Chem. 2023, 95, 5307–5315. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wen, G.; Guo, Z. What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface? Mater. Horiz. 2020, 7, 1697–1726. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, R.; Wang, S.; Meng, J. Liquid-like surfaces with enhanced de-wettability and durability: From structural designs to potential applications. Adv. Mater. 2024, 36, 2407315. [Google Scholar] [CrossRef]
- Yang, C.; Wu, Q.; Zhong, L.; Lyu, C.; He, G.; Yang, C.; Li, X.; Huang, X.; Hu, N.; Chen, M. Liquid-like polymer-based self-cleaning coating for effective prevention of liquid foods contaminations. J. Colloid Interface Sci. 2021, 589, 327–335. [Google Scholar] [CrossRef]
- Huang, S.; Li, J.; Liu, L.; Zhou, L.; Tian, X. Lossless fast drop self-transport on anisotropic omniphobic surfaces: Origin and elimination of microscopic liquid residue. Adv. Mater. 2019, 31, 1901417. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, X.; Chen, L.; Liu, S.; Xu, X.; Zhao, S.; Huang, S.; Tian, X. Dynamic poly(dimethylsiloxane) brush coating shows even better antiscaling capability than the low-surface-energy fluorocarbon counterpart. Environ. Sci. Technol. 2021, 55, 8839–8847. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Z.; Sarma, J.; Dai, X. Passive removal of highly wetting liquids and ice on quasi-liquid surfaces. ACS Appl. Mater. Interfaces 2020, 12, 20084–20095. [Google Scholar] [CrossRef]
- Kou, F.; Liu, C.; Wang, L.; Yasin, A.; Li, J.; Guan, S. Fabrication of citric acid/RGD multilayers on Mg-Zn-Y-Nd alloy via layer-by-layer self-assembly for promoting surface biocompatibility. Adv. Mater. Interfaces 2021, 8, 2002241. [Google Scholar] [CrossRef]
- Hu, Q.; Du, Y.; Bai, Y.; Xing, D.; Wu, C.; Li, K.; Lang, S.; Liu, X.; Liu, G. Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections. Biomater. Sci. 2024, 12, 4471–4482. [Google Scholar] [CrossRef]
- Torma, V.; Gyenes, T.; Szakács, Z.; Noszál, B.; Némethy, Á.; Zrínyi, M. Novel amino acid-based polymers for pharmaceutical applications. Polym. Bull. 2007, 59, 311–318. [Google Scholar] [CrossRef]
- Qin, X.-H.; Senturk, B.; Valentin, J.; Malheiro, V.; Fortunato, G.; Ren, Q.; Rottmar, M.; Maniura-Weber, K. Cell-membrane-inspired silicone interfaces that mitigate proinflammatory macrophage activation and bacterial adhesion. Langmuir 2018, 35, 1882–1894. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Tan, P.; Nie, G.; Zhu, M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. Exploration 2023, 3, 20210263. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, K.; Acuña-Umaña, K.; Lesser-Rojas, L.; Reyes, D.R. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. Micromachines 2023, 14, 2117. [Google Scholar] [CrossRef]
- Corral-Nájera, K.; Chauhan, G.; Serna-Saldívar, S.O.; Martínez-Chapa, S.O.; Aeinehvand, M.M. Polymeric and biological membranes for organ-on-a-chip devices. Microsyst. Nanoeng. 2023, 9, 107. [Google Scholar] [CrossRef]
- Shome, A.; Martinez, I.; Pinon, V.D.; Moses, J.C.; Garren, M.; Sapkota, A.; Crutchfield, N.; Francis, D.J.; Brisbois, E.J.; Handa, H. “Reactive” chemical strategy to attain substrate independent “liquid-like” omniphobic solid anti-biofouling coatings. Adv. Funct. Mater. 2024, 34, 2401387. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Xu, J.; Liu, Y.; Sun, H.; Zhang, L.; Liu, Y.; Wang, W.; Chong, F.; Zou, D.; Wang, S. Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems. Micromachines 2024, 15, 1241. https://doi.org/10.3390/mi15101241
Wu F, Xu J, Liu Y, Sun H, Zhang L, Liu Y, Wang W, Chong F, Zou D, Wang S. Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems. Micromachines. 2024; 15(10):1241. https://doi.org/10.3390/mi15101241
Chicago/Turabian StyleWu, Feng, Jing Xu, Yuanyuan Liu, Hua Sun, Lishang Zhang, Yixuan Liu, Weiwei Wang, Fali Chong, Dan Zou, and Shuli Wang. 2024. "Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems" Micromachines 15, no. 10: 1241. https://doi.org/10.3390/mi15101241
APA StyleWu, F., Xu, J., Liu, Y., Sun, H., Zhang, L., Liu, Y., Wang, W., Chong, F., Zou, D., & Wang, S. (2024). Rapid Construction of Liquid-like Surfaces via Single-Cycle Polymer Brush Grafting for Enhanced Antifouling in Microfluidic Systems. Micromachines, 15(10), 1241. https://doi.org/10.3390/mi15101241