Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Liquid Lubrication on the Triboelectrical Performances of PTFE Films
3.2. Effect of Mating Ball Material on the Triboelectrical Performances of PTFE Films
3.3. Effect of Graphene-Doped Silicone Oil on the Triboelectrical Performances of PTFE Films
3.4. Effect of Load and Sliding Speed on the Triboelectrical Performances of PTFE Films
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39. [Google Scholar] [CrossRef]
- Wang, Z.L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, G.; Xia, X.; Fu, J.; Huang, L.; Zi, Y. Standardization of triboelectric nanogenerators: Progress and perspectives. Nano Energy 2019, 56, 40–55. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Ding, S.; Chen, X.; Wu, Y.; Wang, Z.L. Advances in solid–solid contacting triboelectric nanogenerator for ocean energy harvesting. Mater. Today 2023, 65, 166–188. [Google Scholar] [CrossRef]
- Pu, X.; Zhang, C.; Wang, Z.L. Triboelectric nanogenerators as wearable power sources and self-powered sensors. Nat. Sci. Rev. 2023, 10, nwac170. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ren, Z.; Han, M.; Wan, J.; Zhang, H. Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy 2020, 75, 104980. [Google Scholar] [CrossRef]
- Wang, S.H.; Lin, L.; Xie, Y.N.; Jing, Q.S.; Niu, S.M.; Wang, Z.L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233. [Google Scholar] [CrossRef]
- Lin, L.; Wang, S.H.; Xie, Y.N.; Jing, Q.S.; Niu, S.M.; Hu, Y.F.; Wang, Z.L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, X.L.; Hu, Y.Q.; Li, L.Z.; Wang, C.F. Triboelectric properties of BaTiO3/polyimide nanocomposite film. Appl. Surf. Sci. 2022, 572, 151391. [Google Scholar] [CrossRef]
- Roy, A.; Mu, L.W.; Shi, Y.J. Tribological properties of polyimide coating filled with carbon nanotube at elevated temperatures. Polym. Compos. 2020, 41, 2652–2661. [Google Scholar] [CrossRef]
- Wu, J.; Huang, X.Z.; Berglund, K.; Lu, X.H.; Feng, X.; Larsson, R.; Shi, Y.J. CuO nanosheets produced in graphene oxide solution: An excellent anti-wear additive for self-lubricating polymer composites. Compos. Sci. Technol. 2018, 162, 86–92. [Google Scholar] [CrossRef]
- Fu, X.P.; Qin, Y.H.; Zhang, Z.; Liu, G.X.; Cao, J.; Fan, B.B.; Wang, Z.Z.; Wang, Z.; Zhang, C. Ultra-robust and high-performance rotational triboelectric nanogenerator by bearing charge pumping. Energy Environ. Mater. 2022, e12566. [Google Scholar] [CrossRef]
- Song, M.; Chung, J.; Chung, S.H.; Cha, K.; Heo, D.; Kim, S.; Hwang, P.; Kim, D.; Koo, B.; Hong, J.; et al. Semisolid-lubricant-based ball-bearing triboelectric nanogenerator for current amplification, enhanced mechanical lifespan, and thermal stabilization. Nano Energy 2022, 93, 106816. [Google Scholar] [CrossRef]
- Li, X.H.; Han, C.B.; Jiang, T.; Zhang, C.; Wang, Z.L. A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement. Nanotechnology 2016, 27, 085401. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chung, S.H.; Kim, B.; Son, J.H.; Lin, Z.H.; Lee, S.; Kim, S. Wear and triboelectric performance of polymers with non-polar lubricants. Tribol. Int. 2023, 178, 108088. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, L.; Luo, N.; Liu, Y.; Sun, W.; Peng, J.; Feng, M.; Feng, Y.; Wang, H.; Wang, D. Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 2022, 99, 107370. [Google Scholar] [CrossRef]
- Chung, J.; Chung, S.H.; Lin, Z.H.; Jin, Y.; Hong, J.; Lee, S. Dielectric liquid-based self-operating switch triboelectric nanogenerator for current amplification via regulating air breakdown. Nano Energy 2021, 88, 106292. [Google Scholar] [CrossRef]
- Zhou, L.L.; Liu, D.; Zhao, Z.H.; Li, S.; Liu, Y.; Liu, L.; Gao, Y.; Wang, Z.L.; Wang, J. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 2020, 10, 2002920. [Google Scholar] [CrossRef]
- Du, C.; Yu, T.; Wu, Z.; Zhang, L.; Shen, R.; Li, X.; Feng, M.; Feng, Y.; Wang, D. Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant. Friction 2023, 11, 748–762. [Google Scholar]
- Dhanola, A.; Khanna, N.; Gajrani, K.K. A critical review on liquid superlubricitive technology for attaining ultra-low friction. Renew. Sustain. Energy Rev. 2022, 165, 112626. [Google Scholar]
- Li, J.J.; Zhang, C.H.; Deng, M.M.; Luo, J.B. Superlubricity of silicone oil achieved between two surfaces by running-in with acid solution. RSC Adv. 2015, 5, 30861–30868. [Google Scholar] [CrossRef]
- Banavathu, K.R.; Chebattina, K.R.R.; Srinivas, V.; Moorthy, C.V.K.N.S.N.; Pullagura, G. Physico-chemical and tribological properties of commercial oil–bio-lubricant mixtures dispersed with graphene nanoplatelets. RSC Adv. 2023, 13, 17575–17586. [Google Scholar] [CrossRef] [PubMed]
- Buzio, R.; Gerbi, A.; Bernini, C.; Repetto, L.; Silva, A.; Vanossi, A. Dissipation mechanisms and superlubricity in solid lubrication by wet-transferred solution-processed graphene flakes: Implications for micro electromechanical devices. ACS Appl. Nano Mater. 2023, 6, 11443–11454. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Bai, P.; Li, J.; Li, Y.; Cao, H.; Wen, X.; Meng, Y.; Ma, L.; Tian, Y. MoS2 reinforced PEEK composite for improved aqueous boundary lubrication. Friction 2023, 11, 1660–1672. [Google Scholar]
- Wang, H.D.; Liu, Y.H.; Chen, Z.; Wu, B.B.; Xu, S.L.; Luo, J.B. Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives. Sci. Rep. 2016, 6, 22748. [Google Scholar] [CrossRef]
- Yu, T.T.; Xu, S.S.; Wu, Z.S.; Wang, D.A. 2D SiP nanoflakes as new high-performance lubricant additive for steel/steel sliding contact. Tribol. Int. 2022, 169, 107467. [Google Scholar]
- Guo, Y.X.; Zhang, L.G.; Zhang, G.; Wang, D.A.; Wang, T.M.; Wang, Q.H. High lubricity and electrical responsiveness of solvent-free ionic SiO2 nanofluids. J. Mater. Chem. A 2018, 6, 2817–2827. [Google Scholar]
- Wu, J.; Xi, Y.H.; Shi, Y.J. Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 2020, 72, 104659. [Google Scholar] [CrossRef]
- Wang, K.Q.; Li, J.J.; Li, J.F.; Wu, C.Y.; Yi, S.; Liu, Y.F.; Luo, J.B. Hexadecane-containing sandwich structure based triboelectric nanogenerator with remarkable performance enhancement. Nano Energy 2021, 87, 106198. [Google Scholar] [CrossRef]
- Chung, S.H.; Chung, J.; Song, M.; Kim, S.; Shin, D.; Lin, Z.H.; Koo, B.; Kim, D.; Hong, J.; Lee, S. Nonpolar liquid lubricant submerged triboelectric nanogenerator for current amplification via direct electron flow. Adv. Energy Mater. 2021, 11, 2100936. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.J.; Zhang, L.Q.; Feng, Y.G.; Feng, M.; Luo, N.; Wang, D.A. Influence of interface liquid lubrication on triboelectrification of point contact friction pair. Tribol. Int. 2022, 165, 107323. [Google Scholar] [CrossRef]
- Guo, Y.F.; Zhang, L.Q.; Du, C.H.; Feng, Y.G.; Yang, D.; Zhang, Z.T.; Feng, M.; Wan, Y.; Wang, D.A. Onion-like carbon as nano-additive for tribological nanogenerators with enhanced output performance and stability. Nano Energy 2022, 104, 107900. [Google Scholar]
- Huang, X.Y.; Xiang, X.J.; Nie, J.H.; Peng, D.L.; Yang, F.W.; Wu, Z.H.; Jiang, H.Y.; Xu, Z.P.; Zheng, Q.S. Microscale schottky superlubric generator with high direct-current density and ultralong life. Nat. Commun. 2021, 12, 2268. [Google Scholar]
- Zhang, L.Q.; Cai, H.F.; Xu, L.; Ji, L.; Wang, D.A.; Zheng, Y.B.; Feng, Y.G.; Sui, X.D.; Guo, Y.F.; Guo, W.L.; et al. Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter 2022, 5, 1532–1546. [Google Scholar]
- Zhang, W.; Bao, W.; Lü, X.; Diao, D. Friction force excitation effect on the sliding-mode triboelectric nanogenerator. Tribol. Int. 2023, 185, 108504. [Google Scholar]
- Zhang, W.; Diao, D.; Sun, K.; Fan, X.; Wang, P. Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 2018, 48, 456–463. [Google Scholar] [CrossRef]
- Duan, L.; Li, J.; Duan, H. Nanomaterials for lubricating oil application: A review. Friction 2023, 11, 647–684. [Google Scholar]
- Yoo, S.S.; Kim, D.E. Minimum lubrication technique using silicone oil for friction reduction of stainless steel. Int. J. Precis. Eng. Manuf. 2013, 14, 875–880. [Google Scholar] [CrossRef]
- Kim, I.; Roh, H.; Yu, J.; Jeon, H.; Kim, D. A triboelectric nanogenerator using silica-based powder for appropriate technology. Sens. Actuators A Phys. 2018, 280, 85–91. [Google Scholar]
- Li, C.H.; Ma, X.Y.; Fu, J.J.; Sun, Y.X.; Wang, F.P.; Huang, Z.Y.; Li, J. Advanced materials for triboelectric nanogenerator. J. Phys. D Appl. Phys. 2023, 56, 394001. [Google Scholar]
- Tao, X.; Chen, X.; Wang, Z.L. Design and synthesis triboelectric polymer for high performance triboelectric nanogenerators. Energy Environ. Sci. 2023, 16, 3654–3678. [Google Scholar]
- Du, T.; Dong, F.; Zhu, M.; Xi, Z.; Li, F.; Zou, Y.; Sun, P.; Xu, M. Self-Powered and robust marine exhaust gas flow sensor based on bearing type triboelectric nanogenerator. J. Mar. Sci. Eng. 2022, 10, 1416. [Google Scholar] [CrossRef]
- Lin, Z.C.; Sun, F.H.; Shen, B. Friction properties of polished CVD diamond films sliding against different metals. Surf. Rev. Lett. 2016, 23, 1550096. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.L.; Xu, B.G. MXene-based materials for advanced nanogenerators. Nano Energy 2022, 101, 107556. [Google Scholar]
- Yang, P.; Wang, P.; Diao, D. Graphene nanosheets enhanced triboelectric output performances of PTFE films. ACS Appl. Electron. Mater. 2022, 4, 2839–2850. [Google Scholar]
- Fu, X.; Cao, L.; Qi, C.; Wan, Y.; Xu, C. Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant. Ceram. Int. 2020, 46, 24302–24311. [Google Scholar]
- Wang, W.; Xie, G.; Luo, J. Superlubricity of black phosphorus as lubricant additive. ACS Appl. Mater. Interfaces 2018, 10, 43203–43210. [Google Scholar]
- Wang, P.; Hirose, M.; Suzuki, Y.; Adachi, K. Carbon tribo-layer for super-low friction of amorphous carbon nitride coatings in inert gas environments. Surf. Coat. Technol. 2013, 221, 163–172. [Google Scholar]
- Zeng, Q.; Yu, F.; Dong, G. Superlubricity behaviors of Si3N4/DLC Films under PAO oil with nano boron nitride additive lubrication. Surf. Interface Anal. 2013, 45, 1283–1290. [Google Scholar] [CrossRef]
- Sanes, J.; Avilés, M.D.; Saurín, N.; Espinosa, T.; Carrión, F.J.; Bermúdez, M.D. Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 2017, 116, 371–382. [Google Scholar]
- Huang, X.; Miao, X.; Dai, K.; Yin, Y.; Wang, X.; Zhang, H.; Huo, Z. Droplet-based electricity generator toward practicality: Configuration, optimization, and hybrid integration. Adv. Mater. Technol. 2023, 8, 2201369. [Google Scholar]
- Lee, J.H.; Kim, S.M.; Kim, T.Y.; Khan, U.; Kim, S.W. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy 2019, 58, 579–584. [Google Scholar]
- Wang, P.; Luo, X.; Qin, J.; Pan, Z.; Zhou, K. Effect of graphene sheets embedded carbon films on the fretting wear behaviors of orthodontic archwire–bracket contacts. Nanomaterials 2022, 12, 3430. [Google Scholar] [CrossRef]
- Pan, Z.; Zhou, Q.; Wang, P.; Diao, D. Robust low friction performance of graphene sheets embedded carbon films coated orthodontic stainless steel archwires. Friction 2022, 10, 142–158. [Google Scholar]
- Wang, P.; Xue, P.; Chen, C.; Diao, D.F. Structural and tribological behaviors of graphene nanocrystallited carbon nitride films. Appl. Surf. Sci. 2019, 495, 143591. [Google Scholar]
- Han, T.; Zhang, S.; Zhang, C. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction 2022, 10, 1137–1165. [Google Scholar]
- Liu, H.; Teng, X.; Wu, W.; Wu, X.; Leng, J.; Geng, H. Effect of graphene addition on properties of Cu-based composites for electrical contacts. Mater. Res. Express 2017, 4, 066506. [Google Scholar] [CrossRef]
- Yi, S.; Chen, X.; Li, J.; Ding, S.; Luo, J. Macroscale superlubricity of Si-doped diamond-like carbon film enabled by graphene oxide as additives. Carbon 2021, 176, 358–366. [Google Scholar]
- Lal, K.; Tripathi, N.; Dubey, G.P. Densities, viscosities, and refractive indices of binary liquid mixtures of hexane, decane, hexadecane, and squalane with benzene at 298.15 K. J. Chem. Eng. Data 2000, 45, 961–964. [Google Scholar] [CrossRef]
- Aralaguppi, M.I.; Aminabhavi, T.M.; Balundgi, R.H.; Joshi, S.S. Thermodynamic interactions in mixtures of bromoform with hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308. [Google Scholar]
- Dubey, G.P.; Sharma, M.; Oswal, S. Volumetric, transport, and acoustic properties of binary mixtures of 2-methyl-1-propanol with hexadecane and squalane at T = (298.15, 303.15, and 308.15) K: Experimental results, correlation, and prediction by the ERAS model. J. Chem. Thermodyn. 2009, 41, 849–858. [Google Scholar] [CrossRef]
- Bouteloup, R.; Mathieu, D. Predicting dielectric constants of pure liquids: Fragment-based kirkwood-frohlich model applicable over a wide range of polarity. Phys. Chem. Chem. Phys. 2019, 21, 11043–11057. [Google Scholar] [PubMed]
- Guimarey, M.J.G.; Comuñas, M.J.P.; López, E.R.; Amigo, A.; Fernández, J. Thermophysical properties of polyalphaolefin oil modified with nanoadditives. J. Chem. Thermodyn. 2019, 131, 192–205. [Google Scholar]
- Rosenkranz, A.; Martin, B.; Bettscheider, S.; Gachot, C.; Kliem, H.; Mücklich, F. Correlation between solid-solid contact ratios and lubrication regimes measured by a refined electrical resistivity circuit. Wear 2014, 320, 51–61. [Google Scholar] [CrossRef]
- Goddu, B.; Tadavarthi, M.M.; Tadekoru, V.K.; Guntupalli, J.N. Density, speed of sound, and dynamic viscosity of 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide/1-butyl-3-methylimidazolium hexafluorophosphate and N-methylaniline binary systems from T=298.15 to 323.15 K at 0.1 MPa. J. Chem. Eng. Data 2019, 64, 2303–2319. [Google Scholar] [CrossRef]
- Huang, M.M.; Jiang, Y.; Sasisanker, P.; Driver, G.W.; Weingärtner, H. Static relative dielectric permittivities of ionic liquids at 25 °C. J. Chem. Eng. Data 2011, 56, 1494–1499. [Google Scholar] [CrossRef]
- Ishikawa, T.; Yasuda, K.; Igarashi, T.; Yanabu, S.; Ueta, G.; Okabe, S. Effect of temperature on the streaming electrification characteristics of silicone oil. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 273–280. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhao, Y.; Wang, R.; Wang, P. Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil. Micromachines 2023, 14, 1776. https://doi.org/10.3390/mi14091776
Chen J, Zhao Y, Wang R, Wang P. Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil. Micromachines. 2023; 14(9):1776. https://doi.org/10.3390/mi14091776
Chicago/Turabian StyleChen, Junzhao, Yu Zhao, Ruirui Wang, and Pengfei Wang. 2023. "Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil" Micromachines 14, no. 9: 1776. https://doi.org/10.3390/mi14091776
APA StyleChen, J., Zhao, Y., Wang, R., & Wang, P. (2023). Super-Low Friction Electrification Achieved on Polytetrafluoroethylene Films-Based Triboelectric Nanogenerators Lubricated by Graphene-Doped Silicone Oil. Micromachines, 14(9), 1776. https://doi.org/10.3390/mi14091776