A Novel Silicon Forward-Biased PIN Mach–Zehnder Modulator with Two Operating States
Abstract
:1. Introduction
2. Structure and Design
3. Experiments and Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light. Technol. 2021, 39, 4374–4389. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Xiao, X.; Zhou, P.; Li, Z.; Yu, J.; Yu, Y. High-speed silicon modulator with band equalization. Opt. Lett. 2014, 39, 4839–4842. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Zheng, Z.; Zhang, X.; Rusch, L.A.; Shi, W. Segmented Silicon Modulator with a Bandwidth beyond 67 GHz for High-Speed Signaling. J. Light. Technol. 2023, 41, 5059–5066. [Google Scholar] [CrossRef]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Van Thourhout, D.; Baets, R. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Patel, D.; Ghosh, S.; Chagnon, M.; Samani, A.; Veerasubramanian, V.; Osman, M.; Plant, D.V. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express 2015, 23, 14263–14287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiuchi, H.; Kawanishi, T.; Yamada, M.; Sakamoto, T.; Tsuchiya, M.; Amagai, J.; Izutsu, M. High extinction ratio Mach–Zehnder modulator applied to a highly stable optical signal generator. IEEE Trans. Microw. Theory Tech. 2007, 55, 1964–1972. [Google Scholar] [CrossRef]
- Ogiso, Y.; Tsuchiya, Y.; Shinada, S.; Nakajima, S.; Kawanishi, T.; Nakajima, H. High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation. IEEE Photonics Technol. Lett. 2010, 22, 941–943. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Soref, R.; Mashanovich, G.Z. Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1-14-μm Infrared Wavelength Range. IEEE Photonics J. 2011, 3, 1171–1180. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Cheng, C.H.; Tsai, C.T.; Lin, H.S.; Kao, S.C.; Chiang, P.; Lee, H.C.; Shih, T.T.; Kuo, H.C.; Lin, G.R. Si Mach–Zehnder Modulator for PAM-4, QAM-OFDM, and DMT Transmission at C-Band. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 1–12. [Google Scholar] [CrossRef]
- Song, L.; Liu, W.; Peng, Y.; Liu, H.; Li, H.; Shi, Y.; Dai, D. Low-loss calibration-free 2 × 2 Mach–Zehnder switches with varied-width multimode-interference couplers. J. Light. Technol. 2022, 40, 5254–5259. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, Y.; Ma, S.; Wang, L.; Li, L.; Li, G.; Zhang, Z.; Liu, J.; Wu, N.; Liu, L.; et al. A 50-Gb/s PAM-4 silicon-photonic transmitter incorporating lumped-segment MZM, distributed CMOS driver, and integrated CDR. IEEE J. Solid-State Circuits 2021, 57, 767–780. [Google Scholar] [CrossRef]
- Breyne, L.; Ramon, H.; Van Gasse, K.; Verplaetse, M.; Lambrecht, J.; Vanhoecke, M.; Van Campenhout, J.; Roelkens, G.; Ossieur, P.; Yin, X.; et al. 50 GBd PAM4 transmitter with a 55nm SiGe BiCMOS driver and silicon photonic segmented MZM. Opt. Express 2020, 28, 23950–23960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, J.; Hong, J. A finite-difference time-domain large-signal model for silicon photonics modulators. IEEE Photonics Technol. Lett. 2019, 31, 1072–1075. [Google Scholar] [CrossRef]
- Brunetti, G.; Sasanelli, N.; Armenise, M.N.; Ciminelli, C. High performance and tunable optical pump-rejection filter for quantum photonic systems. Opt. Laser Technol. 2021, 139, 106978. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Tu, D.; Yu, Z.; We, Q.; Li, Z. Linearity-Enhanced Dual-Parallel Mach–Zehnder Modulators Based on a Thin-Film LithiumNiobate Platform. Photonics 2022, 9, 197. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Guan, H.; Yu, Z.; Tan, M.; Li, Z. Exploring a Band-Edge Bragg Grating Modulator on a Hybrid Thin-Film Lithium Niobate Platform. IEEE Photonics J. 2021, 13, 1–5. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Li, Z.; Fan, Z.; Han, W. High-performance and compact integrated photonics platform based on silicon rich nitride–lithium niobate on insulator. APL Photonics 2021, 6, 116102. [Google Scholar] [CrossRef]
- Kharel, P.; Reimer, C.; Luke, K.; He, L.; Zhang, M. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 2021, 8, 357–363. [Google Scholar] [CrossRef]
- Mao, J.; Sato, H.; Bannaron, A.; Hong, J.; Lu, G.W.; Yokoyama, S. Efficient silicon and side-cladding waveguide modulator with electro-optic polymer. Opt. Express 2022, 30, 1885–1895. [Google Scholar] [CrossRef]
- Kamada, S.; Ueda, R.; Yamada, C.; Tanaka, K.; Yamada, T.; Otomo, A. Superiorly low half-wave voltage electro-optic polymer modulator for visible photonics. Opt. Express 2022, 30, 19771–19780. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, I.; Moridsadat, M.; Tofini, A.; Raza, S.; Jaeger, N.A.; Chrostowski, L.; Shastri, B.J.; Shekhar, S. Polymer modulators in silicon photonics: Review and projections. Nanophotonics 2022, 11, 3855–3871. [Google Scholar] [CrossRef]
- Yu, H.; Bogaerts, W. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J. Light. Technol. 2012, 30, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhou, L.; Zhu, H.; Wong, C.; Wen, Y.; Liu, L.; Li, X.; Chen, J. Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator. Photonics Res. 2016, 4, 153–161. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Li, X.; Xiao, X.; Yu, S. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photonics Res. 2018, 6, 109–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Zhang, J.; Liu, J.; Wang, L.; Chen, D.; Chi, N.; Xiao, X.; Yu, S. 240 Gb/s optical transmission based on an ultrafast silicon microring modulator. Photonics Res. 2022, 10, 1127–1133. [Google Scholar] [CrossRef]
- Ding, J.; Chen, H.; Yang, L.; Zhang, L.; Ji, R.; Tian, Y.; Zhu, W.; Lu, Y.; Zhou, P.; Min, R. Low-voltage, high-extinction-ratio, Mach–Zehnder silicon optical modulator for CMOS-compatible integration. Opt. Express 2012, 20, 3209–3218. [Google Scholar] [CrossRef]
- Dev, S.; Singh, K.; Hosseini, R.; Misra, A.; Catuneanu, M.; Preußler, S.; Schneider, T.; Jamshidi, K. Compact and energy-efficient forward-biased PN silicon Mach–Zehnder modulator. IEEE Photonics J. 2022, 14, 6616507. [Google Scholar] [CrossRef]
- Baba, T.; Akiyama, S.; Imai, M.; Horikawa, T.; Usuki, T. Low-αV π L. 25-Gb/s silicon modulator based on forward-biased pin diodes. In Proceedings of the 11th International Conference on Group IV Photonics (GFP), Paris, France, 27–29 August 2014; pp. 5–6. [Google Scholar]
- Dev, S.; Singh, K.; Catuneanu, M.; Vithalani, H.; Venugopalan, A.; Hosni, M.I.; Schneider, T.; Jamshidi, K. Ultra-compact Forward-Biased PIN Silicon Mach–Zehnder Modulator with Thermal Tuning. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 7–12 May 2023. [Google Scholar]
- Spector, S.; Geis, M.; Grein, M.; Schulein, R.; Yoon, J.; Lennon, D.; Gan, F.; Zhou, G.R.; Kaertner, F.; Lyszczarz, T. High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 4–9 May 2008. [Google Scholar]
- Wang, J.; Qiu, C.; Li, H.; Ling, W.; Li, L.; Pang, A.; Sheng, Z.; Wu, A.; Wang, X.; Zou, S.; et al. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J. Light. Technol. 2013, 31, 4119–4125. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Xiao, X.; Li, Z.; Yu, Y.; Yu, J. Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 23–32. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhu, L.; Zhang, Q. Frequency-and time-domain modeling and characterization of PN phase shifters in all-silicon carrier-depletion modulators. J. Light. Technol. 2020, 38, 4462–4469. [Google Scholar] [CrossRef]
- Sun, H.; Qiao, Q.; Guan, Q.; Zhou, G. Silicon Photonic Phase Shifters and Their Applications: A Review. Micromachines 2022, 13, 1509. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fang, Q.; Yu, M.; Tu, X.; Rusli, R.; Lo, G.Q. High-efficiency Si optical modulator using Cu travelling-wave electrode. Opt. Express 2014, 22, 29978–29985. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, F.G.; Rao, S.; Coppola, G.; Summonte, C. Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon pin waveguiding device. Opt. Express 2011, 19, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Akiyama, S.; Imai, M.; Usuki, T. 25-Gb/s broadband silicon modulator with 0.31-V· cm VπL based on forward-biased PIN diodes embedded with passive equalizer. Opt. Express 2015, 23, 32950–32960. [Google Scholar] [CrossRef]
- Akiyama, S.; Baba, T.; Imai, M.; Akagawa, T.; Takahashi, M.; Hirayama, N.; Takahashi, H.; Noguchi, Y.; Okayama, H.; Horikawa, T.; et al. 12.5-Gb/s operation with 0.29-V· cm V π L using silicon Mach–Zehnder modulator based-on forward-biased pin diode. Opt. Express 2012, 20, 2911–2923. [Google Scholar] [CrossRef]
- Akiyama, S.; Usuki, T. High-speed and efficient silicon modulator based on forward-biased pin diodes. Front. Phys. 2014, 2, 65. [Google Scholar] [CrossRef] [Green Version]
- Sobu, Y.; Huang, G.; Tanaka, S.; Tanaka, Y.; Akiyama, Y.; Hoshida, T. High-speed optical digital-to-analog converter operation of compact two-segment all-silicon Mach–Zehnder modulator. J. Light. Technol. 2020, 39, 1148–1154. [Google Scholar] [CrossRef]
Operating State | Reference | Structure | Insertion Loss | VL | Speed |
---|---|---|---|---|---|
[39] | PIN + pre-emphasis signals | 1.2 dB | 0.29 V·cm | 25 Gbps | |
High speed | [41] | Equalized PIN | 2.78 dB | 2.01 V·cm | 90 Gbps |
[30] | PIN + thermal tuning | NA | 0.019 V·cm | 5 Gbps | |
High efficiency | [31] | PIN | NA | 0.0025 V·cm | 100 MHz |
High speed and high efficiency | This work | PIN/equalized PIN | 1.29 dB | 1.43 V·cm, 0.0088 V·cm | 15 Gbps, 200 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Tu, D.; Huang, X.; Yin, Y.; Yu, Z.; Guan, H.; Jiang, L.; Li, Z. A Novel Silicon Forward-Biased PIN Mach–Zehnder Modulator with Two Operating States. Micromachines 2023, 14, 1608. https://doi.org/10.3390/mi14081608
Yu H, Tu D, Huang X, Yin Y, Yu Z, Guan H, Jiang L, Li Z. A Novel Silicon Forward-Biased PIN Mach–Zehnder Modulator with Two Operating States. Micromachines. 2023; 14(8):1608. https://doi.org/10.3390/mi14081608
Chicago/Turabian StyleYu, Hang, Donghe Tu, Xingrui Huang, Yuxiang Yin, Zhiguo Yu, Huan Guan, Lei Jiang, and Zhiyong Li. 2023. "A Novel Silicon Forward-Biased PIN Mach–Zehnder Modulator with Two Operating States" Micromachines 14, no. 8: 1608. https://doi.org/10.3390/mi14081608
APA StyleYu, H., Tu, D., Huang, X., Yin, Y., Yu, Z., Guan, H., Jiang, L., & Li, Z. (2023). A Novel Silicon Forward-Biased PIN Mach–Zehnder Modulator with Two Operating States. Micromachines, 14(8), 1608. https://doi.org/10.3390/mi14081608