Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting
Abstract
:1. Introduction
2. Theoretical Concept
3. Design and Simulation
3.1. Chip Structure Design
3.2. CM Factor Simulation
3.3. Electric Field Simulation
3.4. Flow Rate Simulation
3.5. Joule Heat Simulation
- The buffer conductivity is 55 mS/m, and low conductivity is the most fundamental measure to reduce joule heat generation;
- The use of small amplitude low frequency AC at 19 V and 40 kHz;
- The minimum channel length (inner sidewall length) is 472 um, the maximum length (outer sidewall length) is 942 um and the two inlet flow rates are 0.56 mm/s and 2.4 mm/s, so that the cell stays in the channel for only 0.26~0.29 s.
3.6. Different Size Simulation
4. Results
4.1. Feasibility Verification
4.2. Selectivity Verification
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Huang, J.; Tao, C.; Li, Z.; Zhang, D.; Yamaguchi, Y. Detection of Periodontal Pathogens Based on an Integrated Continuous Flow PCR and Capillary Electrophoresis Microfluidic Chip. Separations 2023, 10, 271. [Google Scholar] [CrossRef]
- Rozaini, A.Z.A.; Abdulhameed, A.; Deivasigamani, R.; Nadzreen, N.; Zin, N.M.; Kayani, A.A.; Buyong, M.R. Dielectrophoresis Microbial Characterization and Isolation of Staphylococcus aureus Based on Optimum Crossover Frequency. Electrophoresis 2023, 44, 1–14. [Google Scholar] [CrossRef]
- Malekanfard, A.; Beladi-Behbahani, S.; Tzeng, T.-R.; Zhao, H.; Xuan, X. AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an “Infinite” Microchannel. Anal. Chem. 2021, 93, 5947–5953. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ding, H.; Zhong, X.; Yin, B.; Liu, Z.; Zhou, T. Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis. Micromachines 2021, 12, 744. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Z.; Zhang, D.; Yamaguchi, Y.; Xiao, W. Direct Count of Fluorescent Microspheres in a Microfluidic Chip Based on the Capillary Electrophoresis Method. Anal. Methods 2023, 15, 3014–3018. [Google Scholar] [CrossRef] [PubMed]
- Prüfer, M.; Stanke, S.; Bier, F.F.; Hölzel, R. Catalytic Activity of Glucose Oxidase after Dielectrophoretic Immobilization on Nanoelectrodes. Electrophoresis 2023, 44, 956–967. [Google Scholar] [CrossRef]
- Yin, B.; Qian, C.; Wang, S.; Wan, X.; Zhou, T. A Microfluidic Chip-Based MRS Immunosensor for Biomarker Detection via Enzyme-Mediated Nanoparticle Assembly. Front. Chem. 2021, 9, 688442. [Google Scholar] [CrossRef]
- Olsen, T.R.; Tapia-Alveal, C.; Wen, K.; Worgall, T.S.; Stojanovic, M.N.; Lin, Q. Microfluidic Isolation of Aptamers with Affinity towards Multiple Myeloma Monoclonal Immunoglobulins. Biomed. Microdevices 2023, 25, 3. [Google Scholar] [CrossRef]
- Pillay, E.; Coetzer, T.L. A Novel Filtering Tool for Detecting Sickle Cell Disease in the Pediatric Population. Blood 2018, 132 (Suppl. S1), 2238. [Google Scholar] [CrossRef]
- MacDonald, M.P.; Spalding, G.C.; Dholakia, K. Microfluidic Sorting in an Optical Lattice. Nature 2003, 426, 421–424. [Google Scholar] [CrossRef]
- Li, Y.; Xin, H.; Liu, X.; Zhang, Y.; Lei, H.; Li, B. Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array. ACS Nano 2016, 10, 5800–5808. [Google Scholar] [CrossRef] [PubMed]
- Legut, M.; Sanjana, N.E. Immunomagnetic Cell Sorting. Nat. Biomed. Eng. 2019, 3, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, X.; He, Z.; Hou, L.; Ge, C.; Wang, L.; Li, S.; Xu, Y. Detection of Prostate Specific Antigen in Whole Blood by Microfluidic Chip Integrated with Dielectrophoretic Separation and Electrochemical Sensing. Biosens. Bioelectron. 2022, 204, 114057. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, Y.; Wang, Z.; Duan, X. Microscale Acoustic Streaming for Biomedical and Bioanalytical Applications. TrAC Trends Anal. Chem. 2023, 160, 116958. [Google Scholar] [CrossRef]
- Han, S.-I.; Soo Kim, H.; Han, A. In-Droplet Cell Concentration Using Dielectrophoresis. Biosens. Bioelectron. 2017, 97, 41–45. [Google Scholar] [CrossRef]
- Barik, A.; Zhang, Y.; Grassi, R.; Nadappuram, B.P.; Edel, J.B.; Low, T.; Koester, S.J.; Oh, S.-H. Graphene-Edge Dielectrophoretic Tweezers for Trapping of Biomolecules. Nat. Commun. 2017, 8, 1867. [Google Scholar] [CrossRef] [Green Version]
- Hata, M.; Suzuki, M.; Yasukawa, T. Selective Retrieval of Antibody-Secreting Hybridomas in Cell Arrays Based on the Dielectrophoresis. Biosens. Bioelectron. 2022, 209, 114250. [Google Scholar] [CrossRef]
- Nieuwelink, A.-E.; Vollenbroek, J.C.; Tiggelaar, R.M.; Bomer, J.G.; Van Den Berg, A.; Odijk, M.; Weckhuysen, B.M. High-Throughput Activity Screening and Sorting of Single Catalyst Particles with a Droplet Microreactor Using Dielectrophoresis. Nat. Catal. 2021, 4, 1070–1079. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, K.; Zhang, J.; Zhang, K. DC-Dielectrophoretic Manipulation and Isolation of Microplastic Particle-Treated Microalgae Cells in Asymmetric-Orifice-Based Microfluidic Chip. Micromachines 2023, 14, 229. [Google Scholar] [CrossRef]
- Sharbati, P.; Sadaghiani, A.K.; Koşar, A. New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation. Biosensors 2023, 13, 418. [Google Scholar] [CrossRef]
- Vu-Dinh, H.; Quang, L.D.; Lin, Y.; Jen, C. A Dielectrophoresis-based Platform of Cancerous Cell Capture Using Aptamer-functionalized Gold Nanoparticles in a Microfluidic Channel. Electrophoresis 2023, 44, 1002–1015. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tong, N.; Li, F.; Zhao, K.; Wang, D.; Niu, Y.; Xu, F.; Cheng, J.; Wang, J. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip. Micromachines 2023, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X. Blood Cells Separation Microfluidic Chip Based on Dielectrophoretic Force. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 206. [Google Scholar] [CrossRef]
- Valijam, S.; Salehi, A.; Andersson, M. Design of a Low-Voltage Dielectrophoresis Lab-on-the Chip to Separate Tumor and Blood Cells. Microfluid. Nanofluid 2023, 27, 22. [Google Scholar] [CrossRef]
- Varmazyari, V.; Habibiyan, H.; Ghafoorifard, H.; Ebrahimi, M.; Ghafouri-Fard, S. A Dielectrophoresis-Based Microfluidic System Having Double-Sided Optimized 3D Electrodes for Label-Free Cancer Cell Separation with Preserving Cell Viability. Sci. Rep. 2022, 12, 12100. [Google Scholar] [CrossRef]
- Oshiro, K.; Wakizaka, Y.; Takano, M.; Itoi, T.; Ohge, H.; Koba, K.; Yarimizu, K.; Fujiyoshi, S.; Maruyama, F. Fabrication of a New All-in-One Microfluidic Dielectrophoresis Integrated Chip and Living Cell Separation. iScience 2022, 25, 103776. [Google Scholar] [CrossRef]
- Ur Rehman, A.; Zabibah, R.S.; Kharratian, S.; Mustafa, A. Microfluidic Device for the Separation of Non-Metastatic (MCF-7) and Non-Tumor (MCF-10A) Breast Cancer Cells Using AC Dielectrophoresis. J. Vis. Exp. 2022, 186, 63850. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, P.; Dong, J.; Wei, Y.; Chen, B.; Wang, Y.; Pan, X.; Wang, J. Implementation of an Integrated Dielectrophoretic and Magnetophoretic Microfluidic Chip for CTC Isolation. Biosensors 2022, 12, 757. [Google Scholar] [CrossRef]
- Tada, S.; Seki, Y. Analysis of Temperature Field in the Dielectrophoresis-Based Microfluidic Cell Separation Device. Fluids 2022, 7, 263. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Pesch, G.R.; Baune, M.; Du, F.; Liu, X. Rational Design and Numerical Analysis of a Hybrid Floating CIDE Separator for Continuous Dielectrophoretic Separation of Microparticles at High Throughput. Micromachines 2022, 13, 582. [Google Scholar] [CrossRef] [PubMed]
- Cottet, J.; Fabregue, O.; Berger, C.; Buret, F.; Renaud, P.; Frénéa-Robin, M. MyDEP: A New Computational Tool for Dielectric Modeling of Particles and Cells. Biophys. J. 2019, 116, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakhira, W.; Kumar, R.; Ibrahimi, K.M.; Bhattacharjee, R. Design and Analysis of a Microfluidic Lab-on-Chip Utilizing Dielectrophoresis Mechanism for Medical Diagnosis and Liquid Biopsy. J Braz. Soc. Mech. Sci. Eng. 2022, 44, 482. [Google Scholar] [CrossRef]
- Nguyen, N.-V.; Van Manh, H.; Van Hieu, N. Numerical Simulation-Based Performance Improvement of the Separation of Circulating Tumor Cells from Bloodstream in a Microfluidic Platform by Dielectrophoresis. Korea-Aust. Rheol. J. 2022, 34, 335–347. [Google Scholar] [CrossRef]
Name | Value |
---|---|
L1 | 100 μm |
L2 | 30 μm |
L3 | 40 μm |
L4 | 35 μm |
L5 | 35 μm |
L6 | 60 μm |
L7 | 200 μm |
R1 | 200 μm |
R2 | 100 μm |
θ1 | 90° |
θ2 | θ2 + θ3 = 90° |
θ3 | θ3 = θ4 |
θ4 | θ4 = θ3 |
Cell Type | r2 [μm] | σ1 [S/m] | ε1 | σ2 [S/m] | ε2 | r2 − r1 [nm] | Ref |
---|---|---|---|---|---|---|---|
Platelets | 1.8 | 0.25 | 50 | 1.00 × 10−6 | 6 | 8 | [32] |
Erythrocyte | 5 | 0.31 | 59 | 1.00 × 10−6 | 4.44 | 9 | [32] |
Leukocyte | 12 | 0.65 | 60 | 2.74 × 10−5 | 6 | 7 | [33] |
A549 | 17 | 0.78 | 52 | 2.50 × 10−5 | 11.75 | 15 | [33] |
MCF-7 | 17 | 0.8 | 50 | 1.00 × 10−6 | 11 | 7 | [27] |
MCF-10A | 16 | 0.6 | 100 | 1.00 × 10−6 | 11 | 7 | [27] |
T-lymphocyte | 3.4 | 0.65 | 60 | 2.74 × 10−5 | 11.1 | 7 | [28] |
HT-29 | 11 | 0.72 | 120 | 3.40 × 10−5 | 11.1 | 4 | [28] |
MDA-MB-231 | 12.4 | 0.62 | 52 | 1.00 × 10−6 | 11.75 | 4 | [28] |
Number of Cell Types | Voltage | σm | Inlet 1 Flow Rate | Out 1 | Out 2 | Out 3 |
---|---|---|---|---|---|---|
4 | 12 V | 0.055 S/m | 2.4 mm/s | PLT, RBC | RBC, WBC | A549 |
2 | 12 V | 0.055 S/m | 60 mm/s | MCF-10A, MCF-7 | MCF-10A, MCF-7 | |
3 | 22 V | 0.1 S/m | 2.4 mm/s | PLT, TC | HT-29 | |
3 | 12 V | 0.1 S/m | 2.4 mm/s | PLT | HT-29, MDA-231 | HT-29, MDA-231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, X.; Zhang, J.; Wang, X.; Kang, T.; Cao, X.; Hao, J.; Jia, Q.; Qin, B.; Mei, S.; Xu, Z. Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting. Micromachines 2023, 14, 1561. https://doi.org/10.3390/mi14081561
Nan X, Zhang J, Wang X, Kang T, Cao X, Hao J, Jia Q, Qin B, Mei S, Xu Z. Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting. Micromachines. 2023; 14(8):1561. https://doi.org/10.3390/mi14081561
Chicago/Turabian StyleNan, Xueli, Jiale Zhang, Xin Wang, Tongtong Kang, Xinxin Cao, Jinjin Hao, Qikun Jia, Bolin Qin, Shixuan Mei, and Zhikuan Xu. 2023. "Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting" Micromachines 14, no. 8: 1561. https://doi.org/10.3390/mi14081561
APA StyleNan, X., Zhang, J., Wang, X., Kang, T., Cao, X., Hao, J., Jia, Q., Qin, B., Mei, S., & Xu, Z. (2023). Design of a Low-Frequency Dielectrophoresis-Based Arc Microfluidic Chip for Multigroup Cell Sorting. Micromachines, 14(8), 1561. https://doi.org/10.3390/mi14081561