Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
3.1. Variation in Mid-IR and Optical Absorption of Diamond Color Centers in Micromarks
3.2. Power- and Exposure-Dependent Variation in PL Spectra of Diamond Color Centers in Micromarks
3.2.1. General View of PL Spectra
3.2.2. Yellow-Red (>575 nm) PL Spectra Corrected to Raman Signal
3.2.3. Blue-Green (450–500 nm) PL Spectra Corrected to Raman Signal
3.2.4. Green-Yellow (500–575 nm) PL Spectra Corrected to Raman Signal
4. Discussion and Conclusions
- (1)
- C-centers are quite significantly exhausted in the micromarks, as shown by the considerable change Δα(C) ~ 0.2 cm−1 in their IR absorption in the 1130-cm−1 peak (also, in the 1344-cm−1 peak, Figure 4), accounting for the thickness scaling factor D0/D ~ 10–20 for the sample thickness D0 ≈ 0.5 mm and typical micromark lengths D ~ 20–40 μm;
- (2)
- Laser irradiation resulted in the rise of optical absorption in the range of 400–550 nm by 6–10% (Figure 2b), which should be multiplied by D0/D ~ 10–20 to evaluate true local changes. Such changes could be potentially related to different radiation-induced centers like pure vacancy V0 (410–430, 741 nm/GR1-GR8), N2V (ZPL at 440.3 nm), NnI (441.6 nm), 2I2V (469.9 nm/TR12 ), I2V (503.5 nm/3H) and 2NV (503.2 nm, H3), NV0 (575 nm) and NV− (637 nm) [7,20,21,22,23,24,25,26,27] with their UV-red absorption [7,18,19], potentially emerging in the broadband PL spectra (Figure 5 and Figure 6). Since the initial [Cy] ≈ 1.2 × 1019 cm−3 and [Cc] ≈ 3.7 × 1018 cm−3, the concentration of I–V pairs for their conversion should be high too, providing these different anticipated aggregated forms of N, I, and V species;
- (3)
- PL intensities over the entire acquired range of 400–750 nm increase with the increasing initial [C] in the colorless and yellow regions, and exhibit saturation versus laser exposure, indicating the exhausting of C-centers. At first glance, this could imply that the underlying laser-generated color centers are nitrogen-containing, but another point is that electron-hole plasma in Ib-diamond occurs via two-photon ionization of C-centers [27] in the intrinsic absorption band ≈ 260 nm [7,18,19];
- (4)
- Considering that NV-centers make a considerable fraction of the different (e.g., possible N2V, NnI, 2NV, etc.) anticipated nitrogen-based centers, their production rate per laser pulse could be evaluated as productivity ηNV ~ {[Cc],[Cy]}/(f × Tsat,c,y) ~ 1012–1013 NV/cm3 in the fs-laser filamentation regime at the repetition rate f = 100 kHz and Tsat = 20–80 s. This is consistent with the fs-laser fabrication of single-photon sources in high-purity IIa-diamond, based on the inscription of single NV-centers per micrometer-sized focal volumes [3,4,5];
- (5)
- Photogeneration rate of I–V pairs, productivity ηIV ~ 1013–1014 pairs/cm3, in the fs-laser filamentation regime could be evaluated for the first time, being comparable, though somewhat higher, than the productivity ηNV, accounting for the possible abovementioned multitude of the possible different resulting nitrogen-based and nitrogen-free centers;
- (6)
- Once the filamentation of the tightly focused fs-laser pulses requires near-critical electron-hole plasma (ρeh ~ 1021 cm−3) to counterbalance strong Kerr self-focusing [28], the yield of I–V pairs per electron-hole pair evaluated for the first time appears to be as low as ηIV/ρeh ~ 10−7–10−8. Such low yield could indicate the high degeneracy in the near-critical electron-hole plasma, correlating with its ultrahigh Fermi-like expansion speeds [11], and its interaction with the entire carbon lattice [27], while very marginal non-correlated hot carriers could locally disturb elementary cells, producing I–V pairs.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Burek, M.J.; Borregaard, J.; Bhaskar, M.K.; Nguyen, C.T.; Pacheco, J.L.; Atikian, H.A.; Meuwly, C.; et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 2016, 354, 847–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradac, C.; Gao, W.; Forneris, J.; Trusheim, M.E.; Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 2019, 10, 5625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; Salter, P.S.; Knauer, S.; Weng, L.; Frangeskou, A.C.; Stephen, C.J.; Ishmael, S.N.; Dolan, P.R.; Johnson, S.; Green, B.L.; et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 2017, 11, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Griffiths, B.; Weng, L.; Nicley, S.S.; Ishmael, S.N.; Lekhai, Y.; Johnson, S.; Stephen, C.J.; Green, B.L.; Morley, G.W.; et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 2019, 6, 662–667. [Google Scholar] [CrossRef]
- Yurgens, V.; Zuber, J.A.; Flågan, S.; De Luca, M.; Shields, B.J.; Zardo, I.; Maletinsky, P.; Warburton, R.J.; Jakubczyk, T. Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens. ACS Photonics 2021, 8, 1726–1734. [Google Scholar] [CrossRef]
- Fujiwara, M.; Inoue, S.; Masuno, S.I.; Fu, H.; Tokita, S.; Hashida, M.; Mizuochi, N. Creation of NV centers over a millimeter-sized region by intense single-shot ultrashort laser irradiation. APL Photonics 2023, 8, 036108. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lühmann, T.; Raatz, N.; John, R.; Lesik, M.; Rödiger, J.; Portail, M.; Wildanger, D.; Kleibler, F.; Nordlund, K.; Zaitsev, A.; et al. Screening and engineering of colour centres in diamond. J. Phys. D Appl. Phys. 2018, 51, 483002. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, S.I.; Danilov, P.A.; Smirnov, N.A.; Stsepuro, N.G.; Rupasov, A.E.; Khmelnitskii, R.A.; Oleynichuk, E.A.; Kuzmin, E.V.; Levchenko, A.O.; Gulina, Y.S.; et al. Signatures of ultrafast electronic and atomistic dynamics in bulk photoluminescence of CVD and natural diamonds excited by ultrashort laser pulses of variable pulsewidth. Appl. Surf. Sci. 2022, 575, 151736. [Google Scholar] [CrossRef]
- Kurita, T.; Shimotsuma, Y.; Fujiwara, M.; Fujie, M.; Mizuochi, N.; Shimizu, M.; Miura, K. Direct writing of high-density nitrogen-vacancy centers inside diamond by femtosecond laser irradiation. Appl. Phys. Lett. 2021, 118, 214001. [Google Scholar] [CrossRef]
- Kudryashov, S.; Danilov, P.; Smirnov, N.; Krasin, G.; Khmelnitskii, R.; Kovalchuk, O.; Levchenko, A. “Stealth Scripts”: Ultrashort Pulse Laser Luminescent Microscale Encoding of Bulk Diamonds via Ultrafast Multi-Scale Atomistic Structural Transformations. Nanomaterials 2023, 13, 192. [Google Scholar] [CrossRef]
- Kempkes, M.; Zier, T.; Singer, K.; Garcia, M.E. Ultrafast nonthermal NV center formation in diamond. Carbon 2021, 174, 524–530. [Google Scholar] [CrossRef]
- Griffiths, B.; Kirkpatrick, A.; Nicley, S.S.; Patel, R.L.; Zajac, J.M.; Morley, G.W.; Booth, M.J.; Salter, P.S.; Smith, J.M. Microscopic processes during ultrafast laser generation of Frenkel defects in diamond. Phys. Rev. B 2021, 104, 174303. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Kuzmin, E.V.; Gulina, Y.S.; Rupasov, A.E.; Krasin, G.K.; Zubarev, I.G.; Levchenko, A.O.; Kovalev, M.S.; Pakholchuk, P.P.; et al. Pulse-width-dependent critical power for self-focusing of ultrashort laser pulses in bulk dielectrics. Opt. Lett. 2022, 47, 3487–3490. [Google Scholar] [CrossRef] [PubMed]
- Woods, G.S.; Van Wyk, J.A.; Collins, A.T. The nitrogen content of type Ib synthetic diamond. Philos. Mag. B 1990, 62, 589–595. [Google Scholar] [CrossRef]
- Hainschwang, T.; Fritsch, E.; Notari, F.; Rondeau, B. A new defect center in type Ib diamond inducing one phonon infrared absorption: The Y center. Diam. Relat. Mater. 2012, 21, 120–126. [Google Scholar] [CrossRef]
- Khmelnitsky, R.; Kovalchuk, O.; Gorevoy, A.; Danilov, P.; Pomazkin, D.; Kudryashov, S. Novel Robust Internal Calibration Procedure for Precise FT-IR Measurements of Nitrogen Impurities in Diamonds. Chemosensors 2023, 11, 313. [Google Scholar] [CrossRef]
- Iakoubovskii, K.; Adriaenssens, G.J. Optical transitions at the substitutional nitrogen centre in diamond. J. Phys. Condens. Matter 2000, 12, L77. [Google Scholar] [CrossRef]
- Luo, T.; Lindner, L.; Blinder, R.; Capelli, M.; Langer, J.; Cimalla, V.; Jeske, J. Rapid determination of single substitutional nitrogen Ns0 concentration in diamond from UV-Vis spectroscopy. Appl. Phys. Lett. 2022, 121, 064002. [Google Scholar] [CrossRef]
- Yang, T.I.; Huang, Y.W.; Bista, P.; Ding, C.F.; Chen, J.; Chiang, C.T.; Chang, H.C. Photoluminescence of Nitrogen-Vacancy Centers by Ultraviolet One-and Two-Photon Excitation of Fluorescent Nanodiamonds. J. Phys. Chem. Lett. 2022, 13, 11280–11287. [Google Scholar] [CrossRef]
- Lipatov, E.I.; Genin, D.E.; Shulepov, M.A.; Tel’minov, E.N.; Savvin, A.D.; Eliseev, A.P.; Vins, V.G. Superluminescence in the phonon wing of the photoluminescence spectrum of NV centres in diamond optically pumped at λ = 532 nm. Quantum Electron. 2022, 52, 465. [Google Scholar] [CrossRef]
- Collins, A.T.; Szechi, J.; Tavender, S. Resonant excitation of the GR centre in diamond. J. Phys. C Solid State Phys. 1988, 21, L161. [Google Scholar] [CrossRef]
- Yelisseyev, A.P. Thermostimulated Luminescence and Delayed Luminescence of Natural Diamonds. PhD. Thesis, Ural Pedag Institut, Sverdlovsk, Russia, 1977. (In Russian). [Google Scholar]
- Collins, A.T.; Woad, P.J.; Woods, G.S.; Kanda, H. Localised vibrational modes in diamonds grown from mixed carbon isotopes. Diam. Relat. Mater. 1993, 2, 136–141. [Google Scholar] [CrossRef]
- Allers, L.; Collins, A.T.; Hiscock, J. The annealing of interstitial-related optical centres in type II natural and CVD diamond. Diam. Relat. Mater. 1998, 7, 228–232. [Google Scholar] [CrossRef]
- Field, J.E. (Ed.) Properties of Natural and Synthetic Diamond; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Kudryashov, S.; Danilov, P.; Vins, V.; Kuzmin, E.; Muratov, A.; Smirnov, N.; Pomazkin, D.; Paholchuk, P.; Vasil’ev, E.; Kirichenko, A.; et al. Intrapulse in situ Raman probing of electron, phonon and structural dynamics in synthetic diamond excited by ultrashort laser pulses: Insights into atomistic structural modifications. Carbon 2023, 10, 626. [Google Scholar]
- Kudryashov, S.; Rupasov, A.; Kosobokov, M.; Akhmatkhanov, A.; Krasin, G.; Danilov, P.; Lisjikh, B.; Abramov, A.; Greshnyakov, E.; Kuzmin, E.; et al. Hierarchical Multi-Scale Coupled Periodical Photonic and Plasmonic Nanopatterns Inscribed by Femtosecond Laser Pulses in Lithium Niobate. Nanomaterials 2022, 12, 4303. [Google Scholar] [CrossRef]
- Giakoumaki, A.N.; Coccia, G.; Bharadwaj, V.; Hadden, J.P.; Bennett, A.J.; Sotillo, B.; Eaton, S.M. Quantum technologies in diamond enabled by laser processing. Appl. Phys. Lett. 2022, 120, 020502. [Google Scholar] [CrossRef]
- Ali, B.; Xu, H.; Sang, R.T.; Litvinyuk, I.V.; Rybachuk, M. Optimised diamond to graphite conversion via a metastable sp1-bonded carbon chain formation under an ultra-short femtosecond (30 fs) laser irradiation. Carbon 2023, 204, 575–586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudryashov, S.; Danilov, P.; Kuzmin, E.; Smirnov, N.; Gorevoy, A.; Vins, V.; Pomazkin, D.; Paholchuk, P.; Muratov, A.; Kirichenko, A.; et al. Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses. Micromachines 2023, 14, 1397. https://doi.org/10.3390/mi14071397
Kudryashov S, Danilov P, Kuzmin E, Smirnov N, Gorevoy A, Vins V, Pomazkin D, Paholchuk P, Muratov A, Kirichenko A, et al. Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses. Micromachines. 2023; 14(7):1397. https://doi.org/10.3390/mi14071397
Chicago/Turabian StyleKudryashov, Sergey, Pavel Danilov, Evgeny Kuzmin, Nikita Smirnov, Alexey Gorevoy, Victor Vins, Daniil Pomazkin, Petr Paholchuk, Andrey Muratov, Alexey Kirichenko, and et al. 2023. "Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses" Micromachines 14, no. 7: 1397. https://doi.org/10.3390/mi14071397
APA StyleKudryashov, S., Danilov, P., Kuzmin, E., Smirnov, N., Gorevoy, A., Vins, V., Pomazkin, D., Paholchuk, P., Muratov, A., Kirichenko, A., Rodionov, N., & Vasil’ev, E. (2023). Productivity of Concentration-Dependent Conversion of Substitutional Nitrogen Atoms into Nitrogen-Vacancy Quantum Emitters in Synthetic-Diamond by Ultrashort Laser Pulses. Micromachines, 14(7), 1397. https://doi.org/10.3390/mi14071397