Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation
Abstract
:1. Introduction
1.1. Three-Dimensional Microfluidics
1.2. Droplet Microfluidics
2. Results and Discussion
2.1. Microfabrication Route for Silicon 3D Microfluidics
2.2. Droplet Size and Production Rate Dependence on Relative CP and DP Flow Rates
2.3. Maximum Flows for Parallel Junctions’ Operation
2.4. Droplet Generation Homogeneity
3. Conclusions and Outlook
4. Material and Methods
4.1. Sample Fabrication
4.2. Microfluidic Setup
4.3. Image and Video Droplet Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, N.T.; Wereley, S.T.; Shaegh, S.A.M. Fundamentals and Applications of Microfluidics; Artech House: Norwood, MA, USA, 2019. [Google Scholar]
- Ohno, K.I.; Tachikawa, K.; Manz, A. Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis 2008, 29, 4443–4453. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for biomedical analysis. Small Methods 2020, 4, 1900451. [Google Scholar] [CrossRef]
- Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019, 9, 238–247. [Google Scholar] [CrossRef]
- Du, G.; Fang, Q.; den Toonder, J.M. Microfluidics for cell-based high throughput screening platforms—A review. Anal. Chim. Acta 2016, 903, 36–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.; Candler, R.N. Non-planar PDMS microfluidic channels and actuators: A review. Lab Chip 2017, 17, 3948–3959. [Google Scholar] [CrossRef]
- Kang, D.K.; Gong, X.; Cho, S.; Kim, J.Y.; Edel, J.B.; Chang, S.I.; Choo, J.; Demello, A.J. 3D droplet microfluidic systems for high-throughput biological experimentation. Anal. Chem. 2015, 87, 10770–10778. [Google Scholar] [CrossRef]
- Headen, D.M.; García, J.R.; García, A.J. Parallel droplet microfluidics for high throughput cell encapsulation and synthetic microgel generation. Microsystems Nanoeng. 2018, 4, 17076. [Google Scholar] [CrossRef] [Green Version]
- Yadavali, S.; Jeong, H.H.; Lee, D.; Issadore, D. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nat. Commun. 2018, 9, 1222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, J.; Wang, L.; Xiao, K.; Wen, W. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 2010, 10, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Richmond, T.; Tompkins, N. 3D microfluidics in PDMS: Manufacturing with 3D molding. Microfluid. Nanofluidics 2021, 25, 76. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Li, K.; Zhuc, L.; Tanga, W. Fabrication of PDMS microfluidic devices with 3D wax jetting. RSC Adv. 2017, 7, 3313. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.V.; Beauchamp, M.J.; Nordin, G.P.; Woolley, A.T. 3D printed microfluidics. Annu. Rev. Anal. Chem. 2021, 13, 45–65. [Google Scholar] [CrossRef]
- Prabhakar, P.; Sen, R.K.; Dwivedi, N.; Khan, R.; Solanki, P.R.; Srivastava, A.K.; Dhand, C. 3D-Printed microfluidics and potential biomedical applications. Front. Nanotechnol. 2021, 3, 609355. [Google Scholar] [CrossRef]
- Mehta, V.; Rath, S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Des. Manuf. 2021, 4, 311–343. [Google Scholar] [CrossRef]
- Li, F.; Macdonald, N.P.; Guijt, R.M.; Breadmore, M.C. Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Anal. Chem. 2019, 91, 1758–1763. [Google Scholar] [CrossRef] [PubMed]
- Brunschwiler, T.; Rothuizen, H.; Fabbri, M.; Kloter, U.; Michel, B.; Bezama, R.; Natarajan, G. Direct liquid jet-impingement cooling with micron-sized nozzle array and distributed return architecture. In Proceedings of the ITHERM’06. The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, San Diego, CA, USA, 30 May–2 June 2006; IEEE: Toulouse, France, 2006; pp. 196–203. [Google Scholar] [CrossRef]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Accounts Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, C.; Taylor, H.; Avram, M.; Miao, J.; Franssila, S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 2012, 6, 016505. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Cheng, Y.; Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Guo, M.T.; Rotem, A.; Heyman, J.A.; Weitz, D.A. Droplet microfluidics for high-throughput biological assays. Lab Chip 2012, 12, 2146–2155. [Google Scholar] [CrossRef]
- Chou, W.L.; Lee, P.Y.; Yang, C.L.; Huang, W.Y.; Lin, Y.S. Recent advances in applications of droplet microfluidics. Micromachines 2015, 6, 1249–1271. [Google Scholar] [CrossRef] [Green Version]
- Payne, E.M.; Holland-Moritz, D.A.; Sun, S.; Kennedy, R.T. High-throughput screening by droplet microfluidics: Perspective into key challenges and future prospects. Lab Chip 2020, 20, 2247–2262. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, S.; Li, H.; Liu, S.; Wong, T.N. One-step fabrication of moon-shaped microrobots through in situ solidification of magnetic Janus droplets in microchannels. Droplet 2023, 2, e56. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Tian, P.; Yu, L.; Wang, F.; Xu, H.; Wang, Y.; Li, W.; Zheng, L.; Jiang, F.; et al. Reconfigurable modular microbiota systems for efficient and sustainable water treatment. Chem. Eng. J. 2023, 452, 139163. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Yu, L.; Zhu, J.; Wang, F.; Jiang, F.; Sun, C.; Zheng, L.; Yang, Y. Benefited wastewater utilization via configurable, spatialized, and microorganisms-integrated biophotonic systems. Chem. Eng. J. 2023, 466, 143250. [Google Scholar] [CrossRef]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 2001, 86, 4163–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anna, S.; Bontoux, N.; Stone, H. Formation of dispersions using ”flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S. Droplet based microfluidics. Rep. Prog. Phys. 2011, 75, 016601. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and active droplet generation withmicrofluidics: A review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef]
- Romero, P.A.; Abate, A.R. Flow focusing geometry generates droplets through a plug and squeeze mechanism. Lab Chip 2012, 12, 5130–5132. [Google Scholar] [CrossRef] [Green Version]
- Xiaoming, C.; Glawdel, T.; Cui, N.; Ren, C.L. Model of droplet generation in flow focusing generators operating in the squeezing regime. Microfluid. Nanofluidics 2014, 18, 1341–1353. [Google Scholar] [CrossRef]
- Fu, T.; Wua, Y.; Ma, Y.; Li, H.Z. Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chem. Eng. Sci. 2012, 84, 207–217. [Google Scholar] [CrossRef]
- Utada, A.S.; Fernandez-Nieves, A.; Stone, H.A.; Weitz, D.A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 2007, 99, 094502. [Google Scholar] [CrossRef]
- Suryo, R.; Basaran, O.A. Tip streaming from a liquid drop forming from a tube in a co-flowing outer fluid. Phys. Fluids 2006, 18, 082102. [Google Scholar] [CrossRef]
- Zhu, P.; Kong, T.; Kang, Z.; Tian, X.; Wang, L. Tip-multi-breaking in capillary microfluidic devices. Sci. Rep. 2015, 5, 11102. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xiong, X.; Yang, L.; Cui, J. Droplets in soft materials. Droplet 2022, 1, 110–138. [Google Scholar] [CrossRef]
- Lee, W.; Walker, L.M.; Anna, S.L. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys. Fluids 2009, 21, 032103. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Rodriguez, C.; Ortiz, L.; Densmore, D. Performance tuning of microfluidic flow-focusing droplet generators. Lab Chip 2019, 19, 1041–1053. [Google Scholar] [CrossRef]
- Garstecki, P.; Fuerstman, M.J.; Stonec, H.A.; Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up. Lab Chip 2006, 6, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Nooranidoost, M.; Izbassarov, D.; Muradoglu, M. Droplet formation in a flow focusing configuration: Effects of viscoelasticity. Phys. Fluids 2016, 28, 123102. [Google Scholar] [CrossRef] [Green Version]
- Grösche, M.; Korvink, J.G.; Rabe, K.S.; Niemeyer, C.M. Comparison of storage methods for microfluidically produced water-in-oil droplets. Chem. Eng. Technol. 2019, 42, 2028–2034. [Google Scholar] [CrossRef]
- Bai, L.; Fu, Y.; Zhao, S.; Cheng, Y. Droplet formation in a microfluidic T-junction involving highly viscous fluid systems. Chem. Eng. Sci. 2016, 145, 141–148. [Google Scholar] [CrossRef]
- Carneiro, J.; Campos, J.; Miranda, J. High viscosity polymeric fluid droplet formation in a flow focusing microfluidic device—Experimental and numerical study. Chem. Eng. Sci. 2019, 195, 442–454. [Google Scholar] [CrossRef]
- Santos, E.C.; Belluati, A.; Necula, D.; Scherrer, D.; Meyer, C.E.; Wehr, R.P.; Lörtscher, E.; Palivan, C.G.; Meier, W. Combinatorial strategy for studying biochemical pathways in double emulsion templated cell-Sized compartments. Adv. Mater. 2020, 32, 2004804. [Google Scholar] [CrossRef] [PubMed]
- Monserrat Lopez, D.; Rottmann, P.; Puebla-Hellmann, G.; Drechsler, U.; Mayor, M.; Panke, S.; Fussenegger, M.; Lörtscher, E. Direct electrification of silicon microfluidics for electric field applications. Microsystems Nanoeng. 2023, 9, 81. [Google Scholar] [CrossRef]
- Kaigala, G.V.; Lovchik, R.D.; Drechsler, U.; Delamarche, E. A vertical microfluidic probe. Langmuir 2011, 27, 5686–5693. [Google Scholar] [CrossRef]
- Ioannou, D.; Huda, W.; Laine, A. Circle recognition through a 2D Hough Transform and radius histogramming. Image Vis. Comput. 1999, 17, 15–26. [Google Scholar] [CrossRef]
CP Flow () | DP Flow () | Droplet Diameter | Production Rate |
---|---|---|---|
(L/h) | (L/h) | Mean ± SD (m) | (droplets/s) |
1’500 | 500 | 53.6 ± 2.2 | 300 ± 47.14 |
1’500 | 1’000 | 57.3 ± 3.5 | 900 ± 47.14 |
1’500 | 1’500 | 65.1 ± 3.3 | 1200 ± 47.14 |
1’500 | 2’000 | 67.8 ± 3.2 | 1500 ± 81.65 |
1’500 | 2’500 | 72.7 ± 3.2 | 1700 ± 81.65 |
1’500 | 3’000 | 75.7 ± 2.6 | 1800 ± 124.72 |
1’500 | 4’000 | 86.2 ± 4.2 | 1900 ± 124.72 |
1’500 | 5’000 | 188.4 ± 11.8 | 600 ± 47.14 |
Total Flows (L/h) for Transition to: | |||
---|---|---|---|
Device | Big Droplets | Irregular Droplets | Jetting |
FF1 | 5’000 | 12’000 | 14’000 |
FF2 | 18’000 | 24’000 | 30’000 |
FF4 | 30’000 | 40’000 | 50’000 |
FF8 | 36’000 | 50’000 | 60’000 |
Device | CP Flow () | DP Flow () | Droplet Diameter |
---|---|---|---|
(L/h) | (L/h) | Mean ± FWHM (m) | |
FF1 | 1’000 | 1’000 | 64.79 ± 2.26 |
FF2 | 2’000 | 2’000 | 65.90 ± 5.91 |
FF4 | 4’000 | 4’000 | 66.02 ± 4.38 |
FF8 | 8’000 | 8’000 | 65.12 ± 6.09 |
FF1 | 4’000 | 500 | 46.79 ± 3.14 |
FF8 | 16’000 | 4’000 | 45.40 ± 3.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monserrat Lopez, D.; Rottmann, P.; Fussenegger, M.; Lörtscher, E. Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation. Micromachines 2023, 14, 1289. https://doi.org/10.3390/mi14071289
Monserrat Lopez D, Rottmann P, Fussenegger M, Lörtscher E. Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation. Micromachines. 2023; 14(7):1289. https://doi.org/10.3390/mi14071289
Chicago/Turabian StyleMonserrat Lopez, Diego, Philipp Rottmann, Martin Fussenegger, and Emanuel Lörtscher. 2023. "Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation" Micromachines 14, no. 7: 1289. https://doi.org/10.3390/mi14071289
APA StyleMonserrat Lopez, D., Rottmann, P., Fussenegger, M., & Lörtscher, E. (2023). Silicon-Based 3D Microfluidics for Parallelization of Droplet Generation. Micromachines, 14(7), 1289. https://doi.org/10.3390/mi14071289