Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of AuNR
2.3. Surface Modification of AuNR with MSN Shell
2.4. Surface Modification of AuNR with MSN Shell Functionalized with Carboxyl Groups
2.5. Cisplatin Encapsulation
2.6. Cisplatin Release Studies
3. Results
3.1. UV-Vis Spectroscopy of AuNR
3.2. Scanning Electron Microscopy
3.3. Surface Charge of Silica-Coated AuNR
3.4. Infrared Spectroscopy
3.5. Encapsulation of Cisplatin
3.6. Cisplatin Release Kinetics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A Double-Edged Sword in Cancer Treatment. Cancer Immunol. Immunother. 2021, 71, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Chang, J.Y. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int. J. Mol. Sci. 2019, 20, 4136. [Google Scholar] [CrossRef]
- Farooq, M.A.; Aquib, M.; Farooq, A.; Haleem Khan, D.; Joelle Maviah, M.B.; Sied Filli, M.; Kesse, S.; Boakye-Yiadom, K.O.; Mavlyanova, R.; Parveen, A.; et al. Recent Progress in Nanotechnology-Based Novel Drug Delivery Systems in Designing of Cisplatin for Cancer Therapy: An Overview. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1674–1692. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Pharmaceutics Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef]
- Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y. Synthesis of Mesoporous Silica Nanoparticles by Sol-Gel as Nanocontainer for Future Drug Delivery Applications. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 139–145. [Google Scholar] [CrossRef]
- Rejeeth, C.; Nag, T.C.; Kannan, S. Cisplatin-Functionalized Silica Nanoparticles for Cancer Chemotherapy. Cancer Nanotechnol. 2013, 4, 127–136. [Google Scholar] [CrossRef]
- Varache, M.; Bezverkhyy, I.; Weber, G.; Saviot, L.; Chassagnon, R.; Baras, F.; Bouyer, F. Loading of Cisplatin into Mesoporous Silica Nanoparticles: Effect of Surface Functionalization. Langmuir 2019, 35, 8984–8995. [Google Scholar] [CrossRef]
- Gu, J.; Su, S.; Li, Y.; He, Q.; Zhong, J.; Shi, J. Surface Modification-Complexation Strategy for Cisplatin Loading in Mesoporous Nanoparticles. J. Phys. Chem. Lett. 2010, 1, 3446–3450. [Google Scholar] [CrossRef]
- Gu, J.; Liu, J.; Li, Y.; Zhao, W.; Shi, J. One-Pot Synthesis of Mesoporous Silica Nanocarriers with Tunable Particle Sizes and Pendent Carboxylic Groups for Cisplatin Delivery. Langmuir 2012, 29, 403–410. [Google Scholar] [CrossRef]
- Zhu, X.; Gu, J.; Li, Y.; Zhao, W.; Shi, J. Magnetic Core-Mesoporous Shell Nanocarriers with Drug Anchorages Suspended in Mesopore Interior for Cisplatin Delivery. Microporous Mesoporous Mater. 2014, 196, 115–121. [Google Scholar] [CrossRef]
- Nejad, M.A.; Urbassek, H.M. Diffusion of Cisplatin Molecules in Silica Nanopores: Molecular Dynamics Study of a Targeted Drug Delivery System. J. Mol. Graph. Model. 2019, 86, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Sukovas, A.; Silkuniene, G.; Trumbeckaite, S.; Jasukaitiene, A.; Degutyte-Fomins, L.; Mildaziene, V.; Gulbinas, A.; Baniene, R.; Dambrauskas, Z.; Paskauskas, S. Hyperthermia Potentiates Cisplatin Cytotoxicity and Negative Effects on Mitochondrial Functions in OVCAR-3 Cells. J. Bioenerg. Biomembr. 2019, 51, 301–310. [Google Scholar] [CrossRef] [PubMed]
- de Brito, R.V.; Mancini, M.W.; Palumbo, M.D.N.; de Moraes, L.H.O.; Rodrigues, G.J.; Cervantes, O.; Sercarz, J.A.; Paiva, M.B. The Rationale for “Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin” Approach for Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 5934. [Google Scholar] [CrossRef]
- Ali, M.R.K.; Wu, Y.; El-Sayed, M.A. Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application. J. Phys. Chem. C 2019, 123, 15375–15393. [Google Scholar] [CrossRef]
- Hartland, G.V. Optical Studies of Dynamics in Noble Metal Nanostructures. Chem. Rev. 2011, 111, 3858–3887. [Google Scholar] [CrossRef]
- Popovtzer, R.; Agrawal, A.; Kotov, N.A.; Popovtzer, A.; Balter, J.; Carey, T.E.; Kopelman, R. Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Lett. 2008, 8, 4593–4596. [Google Scholar] [CrossRef]
- Taylor, M.L.; Wilson, R.E.; Amrhein, K.D.; Huang, X. Gold Nanorod-Assisted Photothermal Therapy and Improvement Strategies. Bioengineering 2022, 9, 200. [Google Scholar] [CrossRef]
- Abdoon, A.S.; Al-Ashkar, E.A.; Kandil, O.M.; Shaban, A.M.; Khaled, H.M.; El Sayed, M.A.; El Shaer, M.M.; Shaalan, A.H.; Eisa, W.H.; Eldin, A.A.G.; et al. Efficacy and Toxicity of Plasmonic Photothermal Therapy (PPTT) Using Gold Nanorods (GNRs) against Mammary Tumors in Dogs and Cats. Nanomedicine 2016, 12, 2291–2297. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.M.; Murphy, C.J. Anisotropic Silica Coating on Gold Nanorods Boosts Their Potential as SERS Sensors. Nanoscale 2022, 14, 5214–5226. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; El-sayed, M.A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Locatelli, E.; Li, Y.; Monaco, I.; Guo, W.; Maturi, M.; Menichetti, L.; Armanetti, P.; Martin, R.; Comes Franchini, M. A Novel Theranostic Gold Nanorods- and Adriamycin-Loaded Micelle for EpCAM Targeting, Laser Ablation, and Photoacoustic Imaging of Cancer Stem Cells in Hepatocellular Carcinoma. Int. J. Nanomed. 2019, 14, 1877–1892. [Google Scholar] [CrossRef]
- Liu, J.; Detrembleur, C.; Mornet, S. Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small 2015, 11, 2323–2332. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, M.; Zhang, W.; Huang, L.; Miao, D.; Zhu, H.; Su, G. Rattle-Type Gold Nanorods/Porous-SiO2 Nanocomposites as Near-Infrared Light-Activated Drug Delivery Systems for Cancer Combined Chemo-Photothermal Therapy. Mol. Pharm. 2019, 16, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhu, Y. Lysosomes Activating Chain Reactions against Cancer Cells with a PH-Switched Prodrug/Procatalyst Co-Delivery Nanosystem. J. Mater. Chem. B 2017, 5, 996–1004. [Google Scholar] [CrossRef]
- Domínguez-Ríos, R.; Sánchez-Ramírez, D.R.; Ruiz-Saray, K.; Oceguera-Basurto, P.E.; Almada, M.; Juárez, J.; Zepeda-Moreno, A.; del Toro-Arreola, A.; Topete, A.; Daneri-Navarro, A. Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy. Colloids Surf B Biointerfaces. 2019, 178, 199–207. [Google Scholar] [CrossRef]
- Burrows, N.D.; Lin, W.; Hinman, J.G.; Dennison, J.M.; Vartanian, A.M.; Abadeer, N.S.; Grzincic, E.M.; Jacob, L.M.; Li, J.; Murphy, C.J. Surface Chemistry of Gold Nanorods. Langmuir 2016, 32, 9905–9921. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Marena, G.D.; Karnopp, J.C.F.; Jorge, J.; Sábio, R.M.; Martines, M.A.U.; Bauab, T.M.; Chorilli, M. Cetyltrimethylammonium Bromide in the Synthesis of Mesoporous Silica Nanoparticles: General Aspects and in Vitro Toxicity. Adv. Colloid Interface Sci. 2022, 307, 102746. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, H.; Li, Y.; Yuan, X.; Zhao, X.; Chen, W.; Cao, F.; Cai, N.; Huang, X.; Yang, F.; et al. Synthesis of Mesoporous-Silica Coated Multi-Branched Gold Nanoparticles for Surface Enhanced Raman Scattering Evaluation of 4-Bromomethcathinone. J. Saudi Chem. Soc. 2019, 23, 378–383. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, R.; Lei, F.; Wang, W.; Guo, W.; Zhang, L.; Liu, Y.; Chen, X.; Wang, Y. Antibody-Conjugated Silica-Coated Gold Nanoparticles in Targeted Therapy of Cervical Cancer. Am. J. Transl. Res. 2022, 14, 1518–1534. [Google Scholar] [PubMed]
- Amirthalingam, T.; Kalirajan, J.; Chockalingam, A. Use of Silica-Gold Core Shell Structured Nanoparticles for Targeted Drug Delivery System. J. Nanomed. Nanotechnol. 2011, 2. [Google Scholar] [CrossRef]
- Khosroshahi, M.E.; Manavitehrani, I.; Nouri, A.; Khosroshahi, M.; Tehrani, I.M. Fabrication and Characterization of Multilayer MSiO2@Fe3O4@Au Mesoporous Nanocomposite for Near-Infrared Biomedical Applications. AdvNanoBioM&D 2018, 2, 230–246. [Google Scholar]
- Karade, V.C.; Sharma, A.; Dhavale, R.P.; Dhavale, R.P.; Shingte, S.R.; Patil, P.S.; Kim, J.H.; Zahn, D.R.T.; Chougale, A.D.; Salvan, G.; et al. APTES Monolayer Coverage on Self-Assembled Magnetic Nanospheres for Controlled Release of Anticancer Drug Nintedanib. Sci. Rep. 2021, 11, 5674. [Google Scholar] [CrossRef]
- Gou, K.; Wang, Y.; Guo, X.; Wang, Y.; Bian, Y.; Zhao, H.; Guo, Y.; Pang, Y.; Xie, L.; Li, S.; et al. Carboxyl-Functionalized Mesoporous Silica Nanoparticles for the Controlled Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Acta Biomater. 2021, 134, 576–592. [Google Scholar] [CrossRef]
- DeLong, R.K.; Reynolds, C.M.; Malcolm, Y.; Schaeffer, A.; Severs, T.; Wanekaya, A. Functionalized Gold Nanoparticles for the Binding, Stabilization, and Delivery of Therapeutic DNA, RNA, and Other Biological Macromolecules. Nanotechnol. Sci. Appl. 2010, 3, 53–63. [Google Scholar] [CrossRef]
- Frost, M.S.; Dempsey, M.J.; Whitehead, D.E. The Response of Citrate Functionalised Gold and Silver Nanoparticles to the Addition of Heavy Metal Ions. Colloids Surf. A Physicochem. Eng. Asp. 2017, 518, 15–24. [Google Scholar] [CrossRef]
- Abedi, M.; Abolmaali, S.S.; Abedanzadeh, M.; Borandeh, S.; Samani, S.M.; Tamaddon, A.M. Citric Acid Functionalized Silane Coupling versus Post-Grafting Strategy for Dual PH and Saline Responsive Delivery of Cisplatin by Fe3O4/Carboxyl Functionalized Mesoporous SiO2 Hybrid Nanoparticles: A-Synthesis, Physicochemical and Biological Characterization. Mater. Sci. Eng. C 2019, 104, 109922. [Google Scholar]
- Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle Formulations of Cisplatin for Cancer Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 776–791. [Google Scholar] [CrossRef]
- Tan, J.; Cho, T.J.; Tsai, D.-H.; Liu, J.; Pettibone, J.M.; You, R.; Hackley, V.A.; Zachariah, M.R. Surface Modification of Cisplatin-Complexed Gold Nanoparticles and Its Influence on Colloidal Stability, Drug Loading, and Drug Release. Langmuir 2018, 34, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Nejad, M.A.; Urbassek, H.M. Adsorption and Diffusion of Cisplatin Molecules in Nanoporous Materials: A Molecular Dynamics Study. Biomolecules 2019, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Aborig, M.; Malik, P.R.V.; Nambiar, S.; Chelle, P.; Darko, J.; Mutsaers, A.; Edginton, A.N.; Fleck, A.; Osei, E.; Wettig, S. Biodistribution and Physiologically-Based Pharmacokinetic Modeling of Gold Nanoparticles in Mice with Interspecies Extrapolation. Pharmaceutics 2019, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Lazebnik, T.; Weitman, H.; Kaminka, G.A. Graph-Based Pharmacokinetic-Pharmadynamic Modeling for Large Scale Systems: Nanoparticles Case. bioRxiv 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones, J.; Miranda-Castro, F.C.; Encinas-Basurto, D.; Ibarra, J.; Moran-Palacio, E.F.; Zamora-Alvarez, L.A.; Almada, M. Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery. Micromachines 2023, 14, 1031. https://doi.org/10.3390/mi14051031
Quiñones J, Miranda-Castro FC, Encinas-Basurto D, Ibarra J, Moran-Palacio EF, Zamora-Alvarez LA, Almada M. Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery. Micromachines. 2023; 14(5):1031. https://doi.org/10.3390/mi14051031
Chicago/Turabian StyleQuiñones, Jaime, Fabiola Carolina Miranda-Castro, David Encinas-Basurto, Jaime Ibarra, Edgar Felipe Moran-Palacio, Luis Alberto Zamora-Alvarez, and Mario Almada. 2023. "Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery" Micromachines 14, no. 5: 1031. https://doi.org/10.3390/mi14051031
APA StyleQuiñones, J., Miranda-Castro, F. C., Encinas-Basurto, D., Ibarra, J., Moran-Palacio, E. F., Zamora-Alvarez, L. A., & Almada, M. (2023). Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery. Micromachines, 14(5), 1031. https://doi.org/10.3390/mi14051031