Free-Running Single-Photon Detection via GHz Gated InGaAs/InP APD for High Time Resolution and Count Rate up to 500 Mcount/s
Abstract
:1. Introduction
2. Experimental Setup
3. SPAD’s Maximum Count Rate
4. SPAD’s Timing Jitter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadfield, R.H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705. [Google Scholar] [CrossRef]
- Li, Q.; Chen, F.; Li, M.; Kang, J.; Wang, W.; Jian, Z. Polarization Effect of a PMT-like Avalanche Photodiode Based on GaN/AlN Periodic Stack Structure. In Proceedings of the 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Hong Kong, China, 5–9 November 2018; pp. 109–110. [Google Scholar]
- You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics 2020, 9, 2673–2692. [Google Scholar] [CrossRef]
- Reddy, D.V.; Nerem, R.R.; Nam, S.W.; Mirin, R.P.; Verma, V.B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 2020, 7, 1649–1653. [Google Scholar] [CrossRef]
- McCarthy, A.; Ren, X.; Della Frera, A.; Gemmell, N.R.; Krichel, N.J.; Scarcella, C.; Ruggeri, A.; Tosi, A.; Buller, G.S. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express 2013, 21, 22098–22113. [Google Scholar] [CrossRef] [PubMed]
- Bimbová, R.; Procházka, I.; Kodet, J.; Blazej, J. Photon Counting Detectors Based on InGaAs/InP for Space Objects Laser Ranging. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 1–5. [Google Scholar] [CrossRef]
- Signorelli, F.; Telesca, F.; Conca, E.; Frera, A.D.; Ruggeri, A.; Giudice, A.; Tosi, A. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 3801310. [Google Scholar] [CrossRef]
- Han, H.; Zhu, Y.; Guo, Z.; Li, Z.; Qu, H.; Gao, W.; Wang, D.; Wang, W. High performance InGaAs/InP avalanche photodiode integrated with metal-insulator-metal microcavity. Opt. Quantum Electron. 2021, 53, 307. [Google Scholar] [CrossRef]
- Zappa, F.; Lotito, A.; Giudice, A.C.; Cova, S.; Ghioni, M. Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors. IEEE J. Solid-State Circuits 2003, 38, 1298–1301. [Google Scholar] [CrossRef]
- Thew, R.T.; Stucki, D.; Gautier, J.-D.; Zbinden, H.; Rochas, A. Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths. Appl. Phys. Lett. 2007, 91, 201114. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Li, Y.; Gu, Y.; Liu, Z.; Zhao, X. Ultra-low dead time free-running InGaAsP single-photon detector with active quenching. J. Mod. Opt. 2020, 67, 1184–1189. [Google Scholar] [CrossRef]
- Krstajić, N.; Poland, S.; Levitt, J.; Walker, R.; Erdogan, A.; Ameer-Beg, S.; Henderson, R.K. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays. Opt. Lett. 2015, 40, 4305–4308. [Google Scholar] [CrossRef]
- Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization. Rev. Sci. Instrum. 2015, 86, 113101. [Google Scholar] [CrossRef]
- Tosi, A.; Scarcella, C.; Boso, G.; Acerbi, F. Gate-free InGaAs/InP single-photon detector working at up to 100 Mcount/s. IEEE Photonics J. 2013, 5, 6801308. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, B.; Fei, Q.; Wu, W.; Shan, X.; Huang, K.; Zeng, H. Low-Timing-Jitter GHz-Gated InGaAs/InP Single-Photon Avalanche Photodiode for LIDAR. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 3801807. [Google Scholar] [CrossRef]
- Amri, E.; Boso, G.; Korzh, B.; Zbinden, H. Temporal jitter in free-running InGaAs/InP single-photon avalanche detectors. Opt. Lett. 2016, 41, 5728–5731. [Google Scholar] [CrossRef] [PubMed]
- Farrell, A.C.; Meng, X.; Ren, D.; Kim, H.; Senanayake, P.; Hsieh, N.Y.; Rong, Z.; Chang, T.-Y.; Azizur-Rahman, K.M.; Huffaker, D.L. InGaAs–GaAs nanowire avalanche photodiodes toward single-photon detection in free-running mode. Nano Lett. 2018, 19, 582–590. [Google Scholar] [CrossRef]
- Lunghi, T.; Barreiro, C.; Guinnard, O.; Houlmann, R.; Jiang, X.; Itzler, M.A.; Zbinden, H. Free-running single-photon detection based on a negative feedback InGaAs APD. J. Mod. Opt. 2012, 59, 1481–1488. [Google Scholar] [CrossRef]
- Yuan, Z.L.; Sharpe, A.W.; Dynes, J.F.; Dixon, A.R.; Shields, A.J. Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes. Appl. Phys. Lett. 2010, 96, 071101. [Google Scholar] [CrossRef]
- Namekata, N.; Adachi, S.; Inoue, S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Opt. Express 2009, 17, 6275–6282. [Google Scholar] [CrossRef]
- Restelli, A.; Bienfang, J.C.; Migdall, A.L. Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz. Appl. Phys. Lett. 2013, 102, 141104. [Google Scholar] [CrossRef] [Green Version]
- Wayne, M.A.; Bienfang, J.C.; Migdall, A.L. Low-noise photon counting above 100 × 106 counts per second with a high-efficiency reach-through single-photon avalanche diode system. Appl. Phys. Lett. 2021, 118, 134002. [Google Scholar] [CrossRef]
- Ceccarelli, F.; Acconcia, G.; Gulinatti, A.; Ghioni, M.; Rech, I. Fully integrated active quenching circuit driving custom-technology SPADs with 6.2-ns dead time. IEEE Photonics Technol. Lett. 2018, 31, 102–105. [Google Scholar] [CrossRef]
- Fan-Yuan, G.J.; Wang, C.; Wang, S.; Yin, Z.-Q.; Liu, H.; Chen, W.; He, D.-Y.; Han, Z.-F.; Guo, G.-C. Afterpulse analysis for quantum key distribution. Phys. Rev. Appl. 2018, 10, 064032. [Google Scholar] [CrossRef]
- Wang, W.-J.; Zhou, X.-Y.; Zhang, C.-H.; Ding, H.-J.; Wang, Q. Performance influence on reference-frame-independent quantum key distributions with detection imperfections. Quantum Inf. Process. 2022, 21, 283. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, C.; Wang, Y.; Lu, Y.-F.; Jiang, M.-S.; Zhang, X.-X.; Bao, W.-S. Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect. Chin. Phys. B 2022, 31, 080303. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, C. Afterpulse analysis for reference-frame-independent quantum key distribution. Quantum Inf. Process. 2022, 21, 340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Shan, X.; Long, Y.; Ma, J.; Huang, K.; Yan, M.; Liang, Y.; Zeng, H. Free-Running Single-Photon Detection via GHz Gated InGaAs/InP APD for High Time Resolution and Count Rate up to 500 Mcount/s. Micromachines 2023, 14, 437. https://doi.org/10.3390/mi14020437
Wu W, Shan X, Long Y, Ma J, Huang K, Yan M, Liang Y, Zeng H. Free-Running Single-Photon Detection via GHz Gated InGaAs/InP APD for High Time Resolution and Count Rate up to 500 Mcount/s. Micromachines. 2023; 14(2):437. https://doi.org/10.3390/mi14020437
Chicago/Turabian StyleWu, Wen, Xiao Shan, Yaoqiang Long, Jing Ma, Kun Huang, Ming Yan, Yan Liang, and Heping Zeng. 2023. "Free-Running Single-Photon Detection via GHz Gated InGaAs/InP APD for High Time Resolution and Count Rate up to 500 Mcount/s" Micromachines 14, no. 2: 437. https://doi.org/10.3390/mi14020437
APA StyleWu, W., Shan, X., Long, Y., Ma, J., Huang, K., Yan, M., Liang, Y., & Zeng, H. (2023). Free-Running Single-Photon Detection via GHz Gated InGaAs/InP APD for High Time Resolution and Count Rate up to 500 Mcount/s. Micromachines, 14(2), 437. https://doi.org/10.3390/mi14020437