Piezoelectric Energy Harvester Response Statistics
Abstract
:1. Introduction
2. Methodology and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Synopsis
References
- Abdelkefi, A. Aeroelastic energy harvesting: A review. Int. J. Eng. Sci. 2016, 100, 112–135. [Google Scholar] [CrossRef]
- Mehmood, A.; Abdelkefi, A.; Hajj, M.; Nayfeh, A.; Akhtar, I.; Nuhait, A. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 2013, 332, 4656–4667. [Google Scholar] [CrossRef]
- Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Vanem, E.; Reis, M.T.; das Neves, L. Asymmetric copula–based distribution models for met-ocean data in offshore wind engineering applications. Wind. Eng. 2018, 42, 304–334. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, S.; Zhang, Z.; Yurchenko, D. High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manag. 2019, 181, 645–652. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Yurchenko, D. A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 2019, 115, 193901. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Zhou, S.; Zhang, Z.; Lai, Z.; Yurchenko, D. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mech. Sin. 2020, 36, 592–605. [Google Scholar] [CrossRef]
- Ambrożkiewicz, B.; Czyż, Z.; Karpiński, P.; Stączek, P.; Litak, G.; Grabowski, Ł. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation. Materials 2021, 14, 5816. [Google Scholar] [CrossRef]
- Ambrożkiewicz, B.; Czyż, Z.; Stączek, P.; Tiseira, A.; García-Tíscar, J. Performance Analysis of a Piezoelectric Energy Harvesting System. Adv. Sci. Technol. Res. J. 2022, 16, 179–185. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Y. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 2018, 212, 233–243. [Google Scholar] [CrossRef]
- Williams, R.; Grimsley, B.; Inman, D. Manufacturing and cure kinetics modeling for macro fiber composite actuators. J. Reinf. Plast. Compos. 2004, 23, 1741–1754. [Google Scholar] [CrossRef]
- Daue, T.; Kunzmann, J. Energy harvesting systems using piezo-electric MFCs. In Proceedings of the 17th IEEE International Symposium on the Applications of Ferroelectrics, Santa Fe, NM, USA, 24–27 February 2008; IEEE: Manhattan, NY, USA, 2008; p. 1. [Google Scholar]
- Stanton, S.; Erturk, A.; Mann, B. Non-linear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 2012, 23, 183–199. [Google Scholar] [CrossRef]
- Soma, A.; De Pasquale, G. Design of high-efficiency vibration energy harvesters and experimental functional tests for improving bandwidth and tunability, Smart Sensors, Actuators, and MEMS VI. Int. Soc. Opt. Photonics 2013, 8763, 87630U. [Google Scholar]
- Avvari, P.; Yang, Y.; Soh, C. Long-term fatigue behavior of a cantilever piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2017, 28, 1188–1210. [Google Scholar] [CrossRef]
- Sherrit, S.; Lee, H.; Walkemeyer, P.; Hasenoehrl, J.; Hall, J.; Colonius, T.; Tosi, L.; Arrazola, A.; Kim, N.; Sun, K.; et al. Flow energy piezoelectric bimorph nozzle harvester. Act. Passiv. Smart Struct. Integr. Systems. Int. Soc. Opt. Photonics 2014, 9057, 90570D. [Google Scholar]
- Daqaq, M.F. Characterising the response of galloping energy harvesters using actual wind statistics. J. Sound Vib. 2015, 357, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Vanem, E.; Reis, M.; das Neves, L. Probabilistic design and reliability analysis of scour protections for offshore windfarms. Eng. Fail. Anal. 2018, 91, 291–305. [Google Scholar] [CrossRef]
- Rugbjerg, M.; Sørensen, O.R.; Jacobsen, V. Wave forecasting for offshore wind farms. In Proceedings of the 9th International Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada, 24–29 September 2006. [Google Scholar]
- Gaidai, O.; Xu, X.; Naess, A.; Cheng, Y.; Ye, R.; Wang, J. Bivariate statistics of wind farm support vessel motions while docking. Ships Offshore Struct. 2020, 16, 135–143. [Google Scholar] [CrossRef]
- Jian, Z.; Gaidai, O.; Gao, J. Bivariate Extreme Value Statistics of Offshore Jacket Support Stresses in Bohai Bay. J. Offshore Mech. Arct. Eng. 2018, 140. [Google Scholar] [CrossRef]
- Xu, X.; Gaidai, O.; Naess, A.; Sahoo, P. Improving the prediction of extreme FPSO hawser tension, using another highly correlated hawser tension with a longer time record. Appl. Ocean. Res. 2019, 88, 89–98. [Google Scholar] [CrossRef]
- Gaidai, O.; Naess, A.; Karpa, O.; Xu, X.; Cheng, Y.; Ye, R. Improving extreme wind speed prediction for North Sea offshore oil and gas fields. Appl. Ocean Res. 2019, 88, 63–70. [Google Scholar] [CrossRef]
- Xing, Y.; Gaidai, O.; Ma, Y.; Naess, A.; Wang, F. A novel design approach for estimation of extreme responses of a subsea shuttle tanker hovering in ocean current considering aft thruster failure. Appl. Ocean Res. 2022, 123. [Google Scholar] [CrossRef]
- Sun, J.; Gaidai, O.; Wang, F.; Naess, A.; Wu, Y.; Xing, Y.; van Loon, E.-J.; Medina, A.R.; Wang, J. Extreme riser experimental loads caused by sea currents in the Gulf of Eilat. Probabilistic Eng. Mech. 2022, 68, 103243. [Google Scholar] [CrossRef]
- Xu, X.; Xing, Y.; Gaidai, O.; Wang, K.; Patel, K.S.; Dou, P.; Zhang, Z. A novel multi-dimensional reliability approach for floating wind turbines under power production conditions. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Cheng, Y.; Gaidai, O.; Yurchenko, D.; Xu, X.; Gao, S. Study on the Dynamics of a Payload Influence in the Polar Ship. In Proceedings of the 32nd International Ocean and Polar Engineering Conference, Shanghai, China, 5–10 June 2021. (Paper Number: ISOPE-I-22-342). [Google Scholar]
- Xu, X.; Wang, F.; Gaidai, O.; Naess, A.; Xing, Y.; Wang, J. Bivariate statistics of floating offshore wind turbine dynamic response under operational conditions. Ocean Eng. 2022, 257. [Google Scholar] [CrossRef]
- Gao, H.; Gaidai, O.; Naess, A.; Storhaug, G.; Xu, X. Improving container ship panel stress prediction, based on another highly correlated panel stress measurement. Mar. Struct. 2018, 64, 138–145. [Google Scholar]
- Gaidai, O.; Storhaug, G.; Naess, A. Extreme large cargo ship panel stresses by bivariate ACER method. Ocean Eng. 2016, 123, 432–439. [Google Scholar] [CrossRef]
- Naess, A.; Moan, T. Stochastic Dynamics of Marine Structures; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Naess, A.; Gaidai, O. Estimation of extreme values from sampled time series. Struct. Saf. 2009, 31, 325–334. [Google Scholar] [CrossRef]
- Naess, A.; Gaidai, O. Monte Carlo Methods for Estimating the Extreme Response of Dynamical Systems. J. Eng. Mech. 2008, 134, 628–636. [Google Scholar] [CrossRef]
- Gaidai, O.; Naess, A.; Xu, X.; Cheng, Y. Improving extreme wind speed prediction based on a short data sample, using a highly correlated long data sample. J. Wind. Eng. Ind. Aerodyn. 2019, 188, 102–109. [Google Scholar] [CrossRef]
- Gaidai, O.; Xu, X.; Wang, J.; Ye, R.; Cheng, Y.; Karpa, O. SEM-REV offshore energy site wind-wave bivariate statistics by hindcast. Renew. Energy 2020, 156, 689–695. [Google Scholar] [CrossRef]
- Gaidai, O.; Wang, F.; Wu, Y.; Xing, Y.; Medina, A.R.; Wang, J. Offshore renewable energy site correlated wind-wave statistics. Probabilistic Eng. Mech. 2022, 68, 103207. [Google Scholar] [CrossRef]
- Gaidai, O.; Xu, J.; Xing, Y.; Hu, Q.; Storhaug, G.; Xu, X.; Sun, J. Cargo vessel coupled deck panel stresses reliability study. Ocean. Eng. 2022, 268, 113318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaidai, O.; Cao, Y.; Xing, Y.; Wang, J. Piezoelectric Energy Harvester Response Statistics. Micromachines 2023, 14, 271. https://doi.org/10.3390/mi14020271
Gaidai O, Cao Y, Xing Y, Wang J. Piezoelectric Energy Harvester Response Statistics. Micromachines. 2023; 14(2):271. https://doi.org/10.3390/mi14020271
Chicago/Turabian StyleGaidai, Oleg, Yu Cao, Yihan Xing, and Junlei Wang. 2023. "Piezoelectric Energy Harvester Response Statistics" Micromachines 14, no. 2: 271. https://doi.org/10.3390/mi14020271
APA StyleGaidai, O., Cao, Y., Xing, Y., & Wang, J. (2023). Piezoelectric Energy Harvester Response Statistics. Micromachines, 14(2), 271. https://doi.org/10.3390/mi14020271