Study on Cavitation, Warpage Deformation, and Moisture Diffusion of Sop-8 Devices during Molding Process
Abstract
:1. Introduction
2. Viscosity Model and Moisture Diffusion Theory
2.1. The Herschel–Bulkley–WLF Viscosity Model
2.2. Theory of Moisture Diffusion
3. Cavitation and Warpage Deformation
3.1. Initial Model Simulation
3.2. Orthogonal Experiment Design
3.3. Results and Discussion
3.3.1. Process Parameter Optimization
3.3.2. Structural Parameters Optimization
4. Moisture Diffusion
4.1. Simulation Model
4.2. Results and Discussion
4.3. Si Chip Size
5. Conclusions
- For the process parameters, all three schemes can significantly reduce the amount of cavitation, and only the Optimal Warpage can reduce the warpage deformation by about 16.3%; for the structure parameters, all three schemes can significantly reduce the amount of cavitation of the devices. The Optimal Warpage and the Optimal Comprehensive can reduce the warpage deformation of the devices by about 9.85% and 5.42%, respectively, but the Optimal Cavitation will increase the warpage deformation of the devices by about 108.3%. In the actual production process, it is necessary to consider not only the influence of warping deformation and the amount of cavitation but also the economic cost and manufacturing cycle, and finally, choose the scheme that can improve the production yield and the reliability of the devices.
- This paper proposes a universal method that can effectively select the optimal scheme. The optimal scheme can be obtained by decomposing the impact factors to design Orthogonal experiments and then analyzing the data using range analysis and comprehensive weighted analysis. Adopting more efficient materials or frame structures will affect the experimental results, but the optimal process parameters and structural parameters under the new model conditions can still be obtained according to the above test method.
- Under the condition of MSL2 moisture diffusion, the critical position of different materials easily produces the humidity gradient, and the contact surface between the lead frame and the plastic packaging material is more likely to appear delaminated. It is also verified that the moisture gradient is related to the length of the diffusion path and the types of plastic packaging material.
- This paper verifies the feasibility of using finite element analysis for process and structural simulation and moisture diffusion.
- Increasing Young’s modulus of the plastic packaging materials and reducing the saturated humidity of the materials can reduce the hygrothermal superposition deformation of the plastic packaging devices, which can reduce the impact of moisture diffusion on the extrusion of the device pins and the impact of delamination on the reliability of the devices. Therefore, the plastic packaging material with high Young’s modulus and low material saturation humidity should be selected, and at the same time, the size of the plastic packaging body should be enlarged, and the size of the chip and solder should be reduced without increasing the effect of the expansion of the plastic packaging body on the extrusion of the pins.
- The advantages of plastic packaging are irreplaceable for ceramic packaging and metal packaging. The optimization of the plastic packaging process has a certain limit on the reliability improvement of the device. Therefore, we must make breakthroughs in plastic packaging materials to contribute to the whole plastic packaging industry.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, W.; Wu, S.; Li, W. Research of Vertical via Based on Silicon, Ceramic and Glass. Micromachines 2023, 14, 1391. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Li, P.; Yuan, L. Research and analysis of MEMS switches in different frequency bands. Micromachines 2018, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wang, B.; Qian, Y.; Wang, Y.; Teng, Y.; Wang, X. Design and Research of Laminated Packaging Structure for Semiconductor Laser Diode. Coatings 2022, 12, 1450. [Google Scholar] [CrossRef]
- Yildiz, F.; Matsunaga, T.; Haga, Y. Fabrication and Packaging of CMUT Using Low Temperature Co-Fired Ceramic. Micromachines 2018, 9, 553. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.B.; Park, S. Integrated hygro-swelling and thermo-mechanical behavior of mold compound for MEMS package during reflow after moisture preconditioning. Microelectron. Int. 2015, 32, 8–17. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, W.; Liu, X.; Ye, J. Thermal sensitive shape memory behavior of epoxy composites reinforced with silicon carbide whiskers. Appl. Sci. 2017, 7, 108. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, C.; Ye, Y.; Xue, Z.; Liu, H.; Zhou, X.; Zhang, Y.; Li, D.; Xie, X.; Mai, Y.W. Advances on Thermally Conductive Epoxy-Based Composites as Electronic Packaging Underfill Materials—A Review. Adv. Mater. 2022, 34, 2201023. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X. An effective warpage optimization method in injection molding based on the Kriging model. Int. J. Adv. Manuf. Technol. 2008, 37, 953–960. [Google Scholar] [CrossRef]
- Yang, D. Effect of micro-injection molding process parameters for warpage in Micro Plate Devices. Adv. Mater. Res. 2014, 898, 265–268. [Google Scholar]
- Li, Q.; Zhang, Y.; Zhao, X.; Xiang, M.; Lu, Y.; Men, Y. Temperature dependency of cavitation in impact copolymer polypropylene during stretching. Polymer 2021, 217, 123428. [Google Scholar]
- Ge, M.; Petkovšek, M.; Zhang, G.; Jacobs, D.; Coutier-Delgosha, O. Cavitation dynamics and thermodynamic effects at elevated temperatures in a small Venturi channel. Int. J. Heat Mass Transf. 2021, 170, 120970. [Google Scholar] [CrossRef]
- Ge, M.; Zhang, G.; Petkovšek, M.; Long, K.; Coutier-Delgosha, O. Intensity and regimes changing of hydrodynamic cavitation considering temperature effects. J. Clean. Prod. 2022, 338, 130470. [Google Scholar] [CrossRef]
- Ali, Z.A.; Kadhim, A.A.; Al-Khayat, R.H.; Al-Waily, M. Review influence of loads upon delamination buckling in composite structures. J. Mech. Eng. Res. Dev. 2021, 44, 392–406. [Google Scholar]
- Rovitto, M.; Cannavacciuolo, A. Transfer molding simulation to predict filling flaws and optimize package design. In Proceedings of the 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), Pisa, Italy, 16–19 September 2019; pp. 1–5. [Google Scholar]
- Grandi, L.; Rovitto, M. Material Characterization and Modelling for Chip Encapsulation Simulation. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tønsberg, Norway, 15–18 September 2020; pp. 1–4. [Google Scholar]
- Shi, X.; Qiu, Y.; Jia, F.; Ma, H. A simulating method of moisture continuous diffusion under changing temperatures and analysis of moisture-induced stresses covering moisture desorption and reflow processes for the QFN. Microelectron. Reliab. 2021, 119, 114089. [Google Scholar] [CrossRef]
- Uschitsky, M.; Suhir, E. Moisture diffusion in epoxy molding compounds filled with particles. J. Electron. Packag. 2001, 123, 47–51. [Google Scholar] [CrossRef]
- Tee, T.Y.; Zhong, Z. Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis. Microelectron. Reliab. 2004, 44, 105–114. [Google Scholar] [CrossRef]
- Leung, Y.-W.; Wang, Y. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 2001, 5, 41–53. [Google Scholar] [CrossRef]
- Lei, G.; Guo, Y.; Zhu, J.; Chen, X.; Xu, W.; Shao, K. Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique. IEEE Trans. Magn. 2012, 48, 479–482. [Google Scholar] [CrossRef]
- Cui, H.; Tian, W.; Xu, H.; Wang, H.; Huang, J.; Peng, C.; Chen, Z. The Reliability of the Complex Components under Temperature Cycling, Random Vibration, and Combined Loading for Airborne Applications. Crystals 2023, 13, 473. [Google Scholar] [CrossRef]
- Hiyane-Nashiro, G.; Hernández-Hernández, M.; Rojas-García, J.; Rodriguez-Resendiz, J.; Álvarez-Alvarado, J.M. Optimization of the Reduction of Shrinkage and Warpage for Plastic Parts in the Injection Molding Process by Extended Adaptive Weighted Summation Method. Polymers 2022, 14, 5133. [Google Scholar] [CrossRef]
- Lin, W.-C.; Fan, F.-Y.; Huang, C.-F.; Shen, Y.-K.; Wang, H. Analysis of the Warpage Phenomenon of Micro-Sized Parts with Precision Injection Molding by Experiment, Numerical Simulation, and Grey Theory. Polymers 2022, 14, 1845. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, D.; Li, R.; Cai, M.; Wang, L. Mold flow analysis of molding process for a MEMS fingerprint sensor package. In Proceedings of the International Conference on Electronic Packaging Technology, Chengdu, China, 12–15 August 2014. [Google Scholar]
- Lu, H.-C.; Liao, Y.-C. Direct Printed Silver Nanowire Strain Sensor for Early Extravasation Detection. Nanomaterials 2021, 11, 2583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Jiang, G.; Wei, H.; Zhang, Z.; Ren, J. Enhanced Thermal Conductivity and Dielectric Properties of Epoxy Composites with Fluorinated Graphene Nanofillers. Nanomaterials 2023, 13, 2322. [Google Scholar] [CrossRef] [PubMed]
- Lucyshyn, T.; Des Enffans d’Avernas, L.-V.; Holzer, C. Influence of the Mold Material on the Injection Molding Cycle Time and Warpage Depending on the Polymer Processed. Polymers 2021, 13, 3196. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, D.; Eker, A. Numerical simulation and process optimization of a 3D thin-walled polymeric part using injection compression molding. Int. Polym. Process. 2021, 36, 459–467. [Google Scholar] [CrossRef]
- Zhu, B.-W.; Nian, S.-C.; Huang, M.-S. Measurement of pressure–volume–temperature diagrams based on simulated melt temperature and actual cavity pressure. Int. J. Adv. Manuf. Technol. 2023, 125, 3293–3304. [Google Scholar] [CrossRef]
- Wang, J.; Mao, Q. A novel process control methodology based on the PVT behavior of polymer for injection molding. Adv. Polym. Technol. 2013, 32, E474–E485. [Google Scholar] [CrossRef]
- Weng, C.; Tang, Q.; Li, J.; Nie, L.; Zhai, Z. Application and Optimization of the Thin Electric Heater in Micro-Injection Mold for Micropillars. Nanomaterials 2022, 12, 1751. [Google Scholar] [CrossRef]
- Jansen, K.; Zhang, M.; Ernst, L.; Vu, D.-K.; Weiss, L. Effect of temperature and humidity on moisture diffusion in an epoxy moulding compound material. Microelectron. Reliab. 2020, 107, 113596. [Google Scholar] [CrossRef]
- Belton, D.; Sullivan, E.; Molter, M. Moisture Transport Phenomena in Epoxies for Microelectronics Applications; ACS Publications: Washington, DC, USA, 1989. [Google Scholar]
- IPC/JEDEC J-STD-020D-1-2008; Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices. Joint Electron Device Engineering Council: Arlington County, VA, USA, 2008.
- Schulz, U.; Rickelt, F.; Trinkwalder, M.; Prinz, S.; Gratzke, N.; Gärtner, A.; Bingel, A. Antireflection nanostructures for injection molded polymers and polymer resins. In Proceedings of the Polymer Optics and Molded Glass Optics: Design, Fabrication, and Materials 2022, San Diego, CA, USA, 22 August 2022; pp. 33–37. [Google Scholar]
- Wu, Z.; Zhang, Y.; Sun, C.; Feng, L.; Liu, S.; Jiao, B. Simulation Methods for MEMS S&A Devices for 2D Fuze Overload Loading. Micromachines 2023, 14, 1566. [Google Scholar] [CrossRef]
- Cho, S.; Ko, Y. Finite element analysis for reliability of solder joints materials in the embedded package. Electron. Mater. Lett. 2019, 15, 287–296. [Google Scholar] [CrossRef]
- Silva, L.; Miled, H.; Laure, P.; Coupez, T. Injection molding simulation: Taking into account the process history to predict the anisotropy in the end-use properties. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2007. [Google Scholar]
- Wang, Y.; Zhang, S.; Wang, D.; Liu, Y. Experimental study on the influence of temperature and humidity on the thermal conductivity of building insulation materials. Energy Built Environ. 2023, 4, 386–398. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Fan, X.; Zhang, Y.; Goh, H.H. Effects of temperature gradient induced aging and moisture distribution on dielectric response measurement for transformer insulation. IEEE Trans. Instrum. Meas. 2022, 71, 6002610. [Google Scholar] [CrossRef]
- Wong, E.; Koh, S.; Lee, K.; Lim, K.-M.; Lim, T.B.; Mai, Y.-W. Advances in vapor pressure modeling for electronic packaging. IEEE Trans. Adv. Packag. 2006, 29, 751–759. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Parsa, E.; Huang, H.; Dasgupta, A. Multi-physics simulations for combined temperature/humidity loading of potted electronic assemblies. Microelectron. Reliab. 2014, 54, 1182–1191. [Google Scholar] [CrossRef]
- Yadav, A.; Gupta, K.K.; Ambat, R.; Christensen, M.L. Statistical analysis of corrosion failures in hearing aid devices from tropical regions. Eng. Fail. Anal. 2021, 130, 105758. [Google Scholar] [CrossRef]
Parameters | Data | Units |
---|---|---|
n | 0.5838 | — |
Tau | 0.0001 | Pa |
B | 302.822 | Pa·s |
Tb | 2300.13 | K |
c1 | 3.762 | — |
c2 | 10.22 | — |
Preheating Time (s) | Curing Time (s) | Injection Pressure (kg/cm²) | Injection Molding Time (s) | Mold Clamping Pressure (kg/cm²) |
---|---|---|---|---|
5 | 150 | 36 | 12 | 31 |
Height of Gate | Height of Flow Channel | Height of Exhaust Ports | Width of Gate | Width of the Flow Channel |
---|---|---|---|---|
0.04 | 0.04 | 0.04 | 1.17 | 1.1 |
Factor Classify | Factor A | Factor B | Factor C | Factor D | Factor E | Warpage Deformation (mm) | Cavitation |
---|---|---|---|---|---|---|---|
Melt Temperature (Units: °C) | Mold Temperature (Units: °C) | Inject Time (Units: s) | Curing Time (Units: s) | Injection Pressure (Units: kg/cm2) | |||
1 | 155 | 155 | 8 | 130 | 24 | 0.0151 | 25 |
2 | 155 | 165 | 12 | 160 | 48 | 0.0177 | 23 |
3 | 155 | 175 | 16 | 140 | 42 | 0.0202 | 22 |
4 | 155 | 185 | 10 | 170 | 36 | 0.0223 | 21 |
5 | 155 | 195 | 14 | 150 | 30 | 0.0275 | 22 |
6 | 165 | 155 | 16 | 160 | 36 | 0.0161 | 27 |
7 | 165 | 165 | 10 | 140 | 30 | 0.0183 | 26 |
8 | 165 | 175 | 14 | 170 | 24 | 0.0203 | 23 |
9 | 165 | 185 | 8 | 150 | 48 | 0.0228 | 32 |
10 | 165 | 195 | 12 | 130 | 42 | 0.0249 | 22 |
11 | 175 | 155 | 14 | 140 | 48 | 0.0164 | 27 |
12 | 175 | 165 | 8 | 170 | 42 | 0.0214 | 27 |
13 | 175 | 175 | 12 | 150 | 36 | 0.0203 | 26 |
14 | 175 | 185 | 16 | 130 | 30 | 0.0227 | 27 |
15 | 175 | 195 | 10 | 160 | 24 | 0.0256 | 28 |
16 | 185 | 155 | 12 | 170 | 30 | 0.0168 | 26 |
17 | 185 | 165 | 16 | 150 | 24 | 0.0186 | 24 |
18 | 185 | 175 | 10 | 130 | 48 | 0.0207 | 27 |
19 | 185 | 185 | 14 | 160 | 42 | 0.0232 | 25 |
20 | 185 | 195 | 8 | 140 | 36 | 0.0249 | 25 |
21 | 195 | 155 | 10 | 150 | 42 | 0.0153 | 23 |
22 | 195 | 165 | 14 | 130 | 36 | 0.0278 | 28 |
23 | 195 | 175 | 8 | 160 | 30 | 0.0254 | 25 |
24 | 195 | 185 | 12 | 140 | 24 | 0.0346 | 27 |
25 | 195 | 195 | 16 | 170 | 48 | 0.0268 | 26 |
Factor Classify | Factor A | Factor B | Factor C | Factor D | Factor E | Factor F | Factor G | Warpage Deformation | Cavitation |
---|---|---|---|---|---|---|---|---|---|
Height of Gates | Height of Flow Channels | Height of Exhaust Ports | Width of Gates | Width of Flow Channels | Width of Exhaust Ports | Chamfer | |||
1 | 0.025 | 0.025 | 0.025 | 0.9 | 0.9 | 0.9 | 0.01 | 0.0445 | 22 |
2 | 0.025 | 0.035 | 0.035 | 1 | 1 | 1 | 0.015 | 0.0344 | 29 |
3 | 0.025 | 0.05 | 0.05 | 1.1 | 1.35 | 1.1 | 0.02 | 0.0297 | 31 |
4 | 0.025 | 0.1 | 0.1 | 1.2 | 1.6 | 1.2 | 0.025 | 0.0187 | 34 |
5 | 0.025 | 0.15 | 0.15 | 1.3 | 1.85 | 1.3 | 0.03 | 0.0209 | 22 |
6 | 0.035 | 0.025 | 0.035 | 1.1 | 1.6 | 1.3 | 0.025 | 0.0203 | 25 |
7 | 0.035 | 0.035 | 0.05 | 1.2 | 1.85 | 0.9 | 0.03 | 0.0195 | 32 |
8 | 0.035 | 0.05 | 0.1 | 1.3 | 0.9 | 1 | 0.01 | 0.0368 | 25 |
9 | 0.035 | 0.1 | 0.15 | 0.9 | 1 | 1.1 | 0.015 | 0.0273 | 25 |
10 | 0.035 | 0.15 | 0.025 | 1 | 1.35 | 1.2 | 0.02 | 0.0212 | 32 |
11 | 0.05 | 0.025 | 0.05 | 1.3 | 1 | 1.2 | 0.015 | 0.0429 | 26 |
12 | 0.05 | 0.035 | 0.1 | 0.9 | 1.35 | 1.3 | 0.02 | 0.0341 | 19 |
13 | 0.05 | 0.05 | 0.15 | 1 | 1.6 | 0.9 | 0.025 | 0.02 | 28 |
14 | 0.05 | 0.1 | 0.025 | 1.1 | 1.85 | 1 | 0.03 | 0.0211 | 28 |
15 | 0.05 | 0.15 | 0.035 | 1.2 | 0.9 | 1.1 | 0.01 | 0.0238 | 24 |
16 | 0.1 | 0.025 | 0.1 | 1 | 1.85 | 1.1 | 0.03 | 0.0199 | 21 |
17 | 0.1 | 0.035 | 0.15 | 1.1 | 0.9 | 1.2 | 0.01 | 0.04 | 25 |
18 | 0.1 | 0.05 | 0.025 | 1.2 | 1 | 1.3 | 0.015 | 0.0248 | 25 |
19 | 0.1 | 0.1 | 0.035 | 1.3 | 1.35 | 0.9 | 0.02 | 0.0215 | 20 |
20 | 0.1 | 0.15 | 0.05 | 0.9 | 1.6 | 1 | 0.025 | 0.0183 | 21 |
21 | 0.15 | 0.025 | 0.15 | 1.2 | 1.35 | 1 | 0.02 | 0.0211 | 22 |
22 | 0.15 | 0.035 | 0.025 | 1.3 | 1.6 | 1.1 | 0.025 | 0.02 | 20 |
23 | 0.15 | 0.05 | 0.035 | 0.9 | 1.85 | 1.2 | 0.03 | 0.0192 | 20 |
24 | 0.15 | 0.1 | 0.05 | 1 | 0.9 | 1.3 | 0.01 | 0.0197 | 22 |
25 | 0.15 | 0.15 | 0.1 | 1.1 | 1 | 0.9 | 0.015 | 0.0211 | 25 |
Factor Classify | Factor A | Factor B | Factor C | Factor D | Factor E | Warpage Deformation (mm) | Cavitation |
---|---|---|---|---|---|---|---|
Melt Temperature (Units: °C) | Mold Temperature (Units: °C) | Inject Time (Units: s) | Curing Time (Units: s) | Injection Pressure (Units: kg/cm2) | |||
Optimal Warpage | 165 | 155 | 10 | 150 | 48 | 0.0170 | 22 |
Optimal Cavitation | 155 | 175 | 12 | 170 | 42 | 0.00255 | 20 |
Optimal Comprehensive | 155 | 185 | 10 | 170 | 36 | 0.0223 | 21 |
Initial | 175 | 175 | 12 | 150 | 36 | 0.0203 | 26 |
Factor Classify | Factor A | Factor B | Factor C | Factor D | Factor E | Factor F | Factor G | Warpage Deformation | Cavitation |
---|---|---|---|---|---|---|---|---|---|
Height of Gates | Height of Flow Channels | Height of Exhaust Ports | Width of Gates | Width of Flow Channels | Width of Exhaust Ports | Chamfer | |||
Optimal Warpage | 0.15 | 0.15 | 0.035 | 1.2 | 1.6 | 1.3 | 0.025 | 0.0183 | 21 |
Optimal Cavitation | 0.15 | 0.025 | 0.035 | 0.9 | 0.9 | 1.3 | 0.01 | 0.0423 | 19 |
Optimal Comprehensive | 0.15 | 0.05 | 0.035 | 0.9 | 1.3 | 1.2 | 0.03 | 0.0192 | 20 |
Initial | 0.04 | 0.04 | 0.05 | 1.17 | 1.1 | 1.1 | — | 0.0203 | 26 |
Materials Characteristics | EK5600GHR | Lead Frame | Pb92.5Sn5Ag2.5 | Si Chip |
---|---|---|---|---|
Density (g/cm3) | 2 | 2 | 1.9 | 2.33 |
SHC (J/(kg·K)) | 1533 | 1095 | 1180 | 702 |
Thermal Conductivity (W/(m·K)) | 1.1 | 1.05 | 0.9 | 149 |
Thermal Expansivity (10−6/°C) | 7 T < Tg 37 T > Tg | 15.96 | 29 | 2.6 |
Young’s Modulus (MPa) | 2927@175 °C 7580@130 °C 17,275@T < Tg | 119,000 | 38,775 | 159,000 |
Poisson’s Ratio | 0.3 | 0.33 | 0.3 | 0.25 |
Tg (°C) | 120 | — | — | — |
Materials Characteristics | EK5600GHR | Lead Frame | Pb92.5Sn5Ag2.5 | Si Chip |
---|---|---|---|---|
Csat(kg/m3) | 5.455 | 1 | 1 | 1 |
Csat·D (kg/m·s) | 3.273 × 10−11 | 1 × 10−14 | 1 × 10−14 | 1 × 10−14 |
Coefficient of Wet Expansion (mm3/mg) | 0.00245475 | — | — | — |
Size | Length | Width | Height |
---|---|---|---|
Classify | |||
Initial Size | 1.75 | 1.3 | 0.2 |
1 | 1.95 | 1.4 | 0.2 |
2 | 2.15 | 1.5 | 0.2 |
3 | 2.35 | 1.6 | 0.2 |
4 | 2.55 | 1.7 | 0.2 |
Classify | Initial Size | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Location Number | |||||
A | 3.8566 | 3.9404 | 4.4539 | 3.9534 | 4.4721 |
B | 3.7124 | 3.7614 | 3.7833 | 3.7794 | 3.7858 |
C | 3.5702 | 3.6176 | 3.6687 | 3.6586 | 3.7132 |
D | 4.4902 | 4.5177 | 6.1524 | 5.3179 | 6.2559 |
E | 4.1303 | 4.2539 | 4.8508 | 4.3505 | 5.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Zhang, S.; Li, W.; Chen, Y.; Zhao, J.; Xin, F.; Qian, Y.; Li, W. Study on Cavitation, Warpage Deformation, and Moisture Diffusion of Sop-8 Devices during Molding Process. Micromachines 2023, 14, 2175. https://doi.org/10.3390/mi14122175
Tian W, Zhang S, Li W, Chen Y, Zhao J, Xin F, Qian Y, Li W. Study on Cavitation, Warpage Deformation, and Moisture Diffusion of Sop-8 Devices during Molding Process. Micromachines. 2023; 14(12):2175. https://doi.org/10.3390/mi14122175
Chicago/Turabian StyleTian, Wenchao, Shuaiqi Zhang, Wenbin Li, Yuanming Chen, Jingrong Zhao, Fei Xin, Yingying Qian, and Wenhua Li. 2023. "Study on Cavitation, Warpage Deformation, and Moisture Diffusion of Sop-8 Devices during Molding Process" Micromachines 14, no. 12: 2175. https://doi.org/10.3390/mi14122175
APA StyleTian, W., Zhang, S., Li, W., Chen, Y., Zhao, J., Xin, F., Qian, Y., & Li, W. (2023). Study on Cavitation, Warpage Deformation, and Moisture Diffusion of Sop-8 Devices during Molding Process. Micromachines, 14(12), 2175. https://doi.org/10.3390/mi14122175