GaN JBS Diode Device Performance Prediction Method Based on Neural Network
Abstract
:1. Introduction
2. GaN JBS Diode TCAD Modeling and Simulation
2.1. Device Structure Simulation
2.2. Data Gathering
3. Establishment of Neural Network Structure
- Input and output layer. According to the established data set, the doping concentration of drift region (Epidop), the spacing of P+ region (L), the injection depth of P+ region (Impthickness), and the injection concentration of P+ region (Impdop) were set as inputs. On-state resistance (Ron) and breakdown voltage (BV) were set as outputs. Therefore, the network architecture has four inputs and two outputs.
- Fully connected module. Since the dimension of the ground input vector of the dataset is small, a fully connected module [11] was added after the input layer for dimension expansion to facilitate subsequent convolution operations. In addition, a batch normalization layer [12] was added after each complete connection layer to prevent overfitting.
- Convolution module. The convolution layer of neural network architecture established in this paper includes a transposed convolution module, a double-branch convolution module, and a convolution module. Unlike the convolution module, the transposed convolution module [13] can expand the data dimension. Therefore, the transposed convolution module was added to expand the input dimension further. The dual-branch convolution module can extract data features and prevent gradient disappearance or explosion. The structure of the double-branch convolution module is shown in Figure 3b. The output features of the two channels were then spliced, and the spliced features were used as the output of the dual-branch convolution module. In addition, a batch normalization layer was added between each convolutional layer to prevent overfitting.
4. Predicted Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abhinay, S.; Arulkumaran, S.; Ng, G.I.; Ranjan, K.; Deki, M.; Nitta, S.; Amano, H. Improved breakdown voltage in vertical GaN Schottky barrier diodes on free-standing GaN with Mgcompensated drift layer. Jpn. J. Appl. Phys. 2020, 59, 010906. [Google Scholar] [CrossRef]
- Koehler, A.D.; Anderson, T.J.; Tadjer, M.J.; Nath, A.; Feigelson, B.N.; Shahin, D.I.; Hobart, K.D.; Kub, F.J. Vertical GaN junction barrier Schottky diodes. ECS J. Solid State Sci. Technol. 2016, 6, Q10. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, Y.; Kuang, S. Design and optimization of vertical GaN PiN diodes with fluorine-implanted termination. IEEE J. Electron. Devices Soc. 2020, 8, 241. [Google Scholar] [CrossRef]
- Kilic, A.; Yildirim, R.; Eroglu, D. Machine Learning Analysis of Ni/SiC Electrodeposition Using Association Rule Mining and Artificial Neural Network. J. Electrochem. Soc. 2021, 168, 062514. [Google Scholar] [CrossRef]
- Wei, J.; Wang, H.; Zhao, T.; Jiang, Y.L.; Wan, J. A New Compact MOSFET Model Based on Artificial Neural Network with Unique Data Preprocessing and Sampling Techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022, 1. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Yao, Y. A Machine Learning-Assisted Model for GaN Ohmic Contacts Regarding the Fabrication Processes. IEEE Trans. Elect. Dev. 2021, 68, 5. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Tadjer, M.J.; Sun, M.; Piedra, D.; Hatem, C.; Anderson, T.J.; Luna, L.E.; Nath, A.; Koehler, A.D.; et al. Vertical GaN junction barrier Schottky rectifiers by selective ion implantation. IEEE Electron Device Lett. 2017, 38, 1097. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, C.; Tang, X.; Song, Q.; He, Y.; Zhang, Y.; Zhang, Y.; Xiao, L.; Wang, L.; Wu, Y. Experimental study of high performance 4H-SiC floating junction jbs diodes. IEEE Access 2020, 8, 93039. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Chen, T.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354. [Google Scholar] [CrossRef] [Green Version]
- Çolak, A.B.; Güzel, T.; Yıldız, O.; Özer, M. An experimental study on determination of the shottky diode current-voltage characteristic depending on temperature with artificial neural network. Physica B 2021, 608, 412852. [Google Scholar] [CrossRef]
- Ha, J.; Lee, G.; Kim, J. Machine Learning Approach for Characteristics Prediction of 4H-Silicon Carbide NMOSFET by Process Conditions. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; Volume 1. [Google Scholar]
- Kalayeh, M.M.; Shah, M. Training faster by separating modes of variation in batch-normalized models. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, Q.; Gül, M.; Azim, M.R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection. Autom. Constr. 2020, 110, 103018. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Varma, R.; Salpekar, O.; Noordhuis, P.; Li, T.; Paszke, A.; Smith, J.; Vaughan, B.; Chintala, S.; et al. Pytorch distributed: Experiences on accelerating data parallel training. arXiv 2020, arXiv:2006.15704. [Google Scholar] [CrossRef]
- Wang, G.; Giannakis, G.B.; Chen, J. Learning ReLU networks on linearly separable data: Algorithm, optimality, and generalization. IEEE Trans. Signal Process. 2019, 67, 2357. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Cao, X.; Li, S.; Katsikis, V.N.; Liao, L. BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer. IEEE/CAA J. Autom. Sin. 2020, 7, 461. [Google Scholar] [CrossRef]
- Raskutti, G.; Wainwright, M.J.; Yu, B. Early stopping and non-parametric regression: An optimal datadependent stopping rule. J. Mach. Learn. Res. 2014, 15, 335. [Google Scholar]
- Rokach, L. Decision Forest: Twenty years of research. Inf. Fusion 2016, 27, 111. [Google Scholar]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Li, J.H.; Yang, F.L. Overview of support vector machine analysis and algorithm. Appl. Res. Comput. 2014, 31, 1281. [Google Scholar]
Paraments | Values |
---|---|
Total Width | 10 µm |
Drift Region Thickness | 5 µm |
Substrate Thickness | 10 µm |
P+ Region Thickness (Impthickness) | 0.4 µm |
P+ Region Width (2 L) | 0.8 µm |
P+ Gap Width (2−2 L) | 1.2 µm |
Drift Region Doping (EpiDop) | 5 × 1015 cm−3 |
Substrate Doping | 1 × 1019 cm−3 |
P+ Region Doping (Impdop) | 1 × 1018 cm−3 |
Paraments | Values |
---|---|
Drift Region Doping (cm−3) | 3 × 1015, 4 × 1015, 5 × 1015, 6 × 1015, 7 × 1015, 8 × 1015, 9 × 1015, 1 × 1016 |
P+ Region Doping (cm−3) | 3 × 1017, 4 × 1017, 5 × 1017, 6 × 1017, 7 × 1017, 8 × 1017, 9 × 1017, 1 × 1018 |
The ratio of P+ region width to adjacent P+ region spacing | 2:8, 1:3, 3:7, 7:13, 2:3, 9:11, 1:1, 3:2 |
P+ Region Thickness (µm) | 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Duan, X.; Wang, S.; Liu, S.; Zhang, J.; Hao, Y. GaN JBS Diode Device Performance Prediction Method Based on Neural Network. Micromachines 2023, 14, 188. https://doi.org/10.3390/mi14010188
Ma H, Duan X, Wang S, Liu S, Zhang J, Hao Y. GaN JBS Diode Device Performance Prediction Method Based on Neural Network. Micromachines. 2023; 14(1):188. https://doi.org/10.3390/mi14010188
Chicago/Turabian StyleMa, Hao, Xiaoling Duan, Shulong Wang, Shijie Liu, Jincheng Zhang, and Yue Hao. 2023. "GaN JBS Diode Device Performance Prediction Method Based on Neural Network" Micromachines 14, no. 1: 188. https://doi.org/10.3390/mi14010188
APA StyleMa, H., Duan, X., Wang, S., Liu, S., Zhang, J., & Hao, Y. (2023). GaN JBS Diode Device Performance Prediction Method Based on Neural Network. Micromachines, 14(1), 188. https://doi.org/10.3390/mi14010188