A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raub, C.; Lee, C.; Shibata, D.; Taylor, C.; Kartalov, E. HistoMosaic detecting G12V KRAS mutation across colorectal cancer tissue slices through in situ PCR. Anal. Chem. 2016, 88, 2792–2798. [Google Scholar] [CrossRef] [PubMed]
- Raub, C.; Lee, C.; Kartalov, E. Sequestration of bacteria from whole blood by optimized microfluidic cross-flow filtration for rapid antimicrobial susceptibility testing. Sens. Actuators B Chem. 2015, 210, 120–123. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Taylor, C.R.; Scherer, A.; Kartalov, E.P. Microfluidic Diode and Rectifier Produce Complex Non-Linear Behaviors with Newtonian Fluids. J. Appl. Phys. 2010, 106, 114311. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.H.; Taylor, C.R.; Anderson, W.F.; Scherer, A.; Kartalov, E.P. Internally calibrated quantification of VEGF in human plasma by fluorescence immunoassays in disposable elastomeric microfluidic devices. J. Chromatogr. B 2009, 878, 258–263. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kartalov, E.P.; Lin, D.H.; Lee, D.T.; Anderson, W.F.; Taylor, C.R.; Scherer, A. Internally Calibrated Quantitations of Protein Analyte in Human Serum by Fluorescence Immunoassays in Disposable Elastomeric Microfluidic Devices. Electrophoresis 2008, 29, 5010–5016. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The Upcoming 3d-Printing Revolution in Microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef]
- Kartalov, E.P.; Anderson, W.F.; Scherer, A. The Analytical Approach to PDMS Microfluidic Technology and Its Biological Applications. J. Nanosci. Nanotechnol. 2006, 6, 2265–2277. [Google Scholar] [CrossRef]
- Belay, G.; Vervaek, M.; Liao, S.; Ecker, P.; Craeghs, T. Design and Prototyping of Beam Shapers to Generate Circular or Square Top-Hat Beams of Different Size for Additive Manufacturing Applications. SPIE 2020, 113490, 33–41. [Google Scholar] [CrossRef]
- Maj, B.; Mutsaers, P.; Rokita, E.; Voigt, M. Determination of the Microbeam Profile Using Econvolution Procedures. Nucl. Instrum. Methods Phys. Res. B 1996, 113, 391–395. [Google Scholar] [CrossRef]
- Schlutow, H.; Fuchs, U.; Muller, F.; Graf, S. Squared Focal Intensity Distributions for Applications in Laser Material Processing. Materials 2021, 14, 4981. [Google Scholar] [CrossRef]
- Gong, H.; Woolley, A.T.; Nordin, G.P. High Density 3D printed Microfluidic Valves, Pumps, and Multiplexers. Lab Chip 2007, 16, 2450–2458. [Google Scholar] [CrossRef]
- Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-Printed Microfluidic Devices. Biofabrication 2016, 8, 022001. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, S.; Yu, C.H.; Ersoy, F.; Emadi, S.; Khademhosseini, A.; Tasoglu, S. 3D-Printed Microfluidic Chips with Patterned, Cell-Laden Hydrogel Constructs. Biofabrication 2016, 8, 025019. [Google Scholar] [CrossRef] [PubMed]
- Tothill, A.M.; Partridge, M.; James, S.W.; Tatam, R.P. Fabrication and Optimization of a Fused Filament 3D-Printed Microfluidic Platform. J. Micromech. Microeng. 2017, 27, 567. [Google Scholar] [CrossRef]
- Ruiz, C.; Kadimisetty, K.; Yin, K.; Mauk; Zhao, H.; Liu, C. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D printing. Micromachines 2020, 11, 567. [Google Scholar] [CrossRef] [PubMed]
- Childs, E.; Latchman, A.V.; Lamot, A.C.; Hubbard, J.D.; School, R.D. Additive Assembly for PolyJet-Based Multi-Material 3D Printed Microfluidics. J. Microelectromech. Syst. 2020, 29, 1094–1096. [Google Scholar] [CrossRef]
- Dong, Z.; Vuckovac, M.; Cui, W.; Zhou, Q.; Ras, R.H.A.; Levkin, P.A. 3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Adv. Mater. 2021, 33, 2106068. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, N.P.; Cabot, J.M.; Smejkal, P.; Guijt, R.M.; Paull, B.; Breadmore, M.C. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms. Anal. Chem. 2017, 89, 3858–3866. [Google Scholar] [CrossRef]
- Bazaz, S.R.; Rouhi, O.; Raouffi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Warkiani, M.E. 3D Printing of Inertial Microfluidic Devices. Sci Rep. 2020, 10, 5929. [Google Scholar] [CrossRef]
- Tzivelekis, C.; Selby, M.; Batet, A.; Madadi, H. Microfluidic Chip Fabrication and Performance Analysis of 3D Printed Material for use in Microfluidic Nucleic Acid Amplification Applications. Micromachines 2020, 11, 035005. [Google Scholar] [CrossRef]
- Au, A.K.; Huynh, W.; Horowitz, L.F.; Folch, A. 3D-Printed Microfluidics. Angew. Chem. Int. 2016, 55, 3862–3881. [Google Scholar] [CrossRef] [PubMed]
- Kartalov, E.P.; Scherer, A.; Quake, S.R.; Taylor, C.R.; Anderson, W.F. Experimentally Validated Quantitative Linear Model for the Device Physics of Elastomeric Microfluidic Valves. J. Appl. Phys. 2007, 101, 064505. [Google Scholar] [CrossRef] [PubMed]
- Kartalov, E.P.; Maltezos, G.; Anderson, W.F.; Taylor, C.R.; Scherer, A. Electrical Microfluidic Pressure Gauge for Elastomer Microelectromechanical Systems. J. Appl. Phys. 2007, 102, 084909. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Hu, B.; Yi, L.; Xiao, C.; Cao, X.; Zhao, L.; Shi, H. Engineering of Removing Sacrificial Materials in 3D-Printed Microfluidics. Micromachines 2018, 9, 327. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Beauchamp, M.; Perry, S.; Woolley, A.T.; Nordin, G.P. Optical Approach to Resin Formulation for 3D Printed Microfluidics. RSC Adv. 2015, 5, 106621–106632. [Google Scholar] [CrossRef]
- Sochol, R.D.; Sweet, E.; Glick, C.C.; Venkatesh, S.; Avetisyan, A.; Ekman, K.F.; Raulinaitis, A.; Tsai, A.; Wienkers, A.; Korner, K.; et al. 3D Printed Microfluidic Circuitry via Multijet-Based Additive Manufacturing. Lab Chip 2016, 16, 668–678. [Google Scholar] [CrossRef]
- Gauvin, R.; Chen, Y.; Lee, J.W.; Saman, P.; Zorlutuna, P.; Nichol, J.W.; Bae, H.; Chen, S.; Khademhosseinia, A. Microfabrication of Complex Porous Tissue Engineering Scaffolds Using 2D Projection Stereolithography. Biomaterials 2012, 33, 3824–3834. [Google Scholar] [CrossRef]
- Nguyen, T.; Arias-Thode, Y.; Obraztsova, A.; Sarmiento, A.; Stevens-Bracy; Grbovic, D.; Kartalov, E. Proof-of-concept for a novel application for in situ Microfluidic Benthic Microbial Fuel Cell device (MBMFC). J. Environ. Chem 2021, 9, 105659. [Google Scholar] [CrossRef]
- Coltelli, M.; Catterlin, J.; Scherer, A.; Kartalov, E. Simulations of 3D-Printable biomimetic artificial muscles based on microfluidic microcapacitors for exoskeletal actuation and stealthy underwater propulsion. Sens. Actuators A Phys. 2021, 325, 112700. [Google Scholar] [CrossRef]
- Coltelli, M.; Kartalov, E. Scalable microfluidic double-helix weave architecture for wiring of microcapacitor arrays in 3D-printable biomimetic artificial muscles. Sens. Actuators A Phys. 2021, 340, 113543. [Google Scholar] [CrossRef]
- Guo, J.; Yu, Y.; Cai, L.; Wang, Y.; Shi, K.; Shang, L.; Pan, J.; Zhao, Y. Microfluidics for Flexible Electronics. Mater. Today Commun. 2021, 44, 105–135. [Google Scholar] [CrossRef]
- Fallahi, H.; Zhang, J.; Phan, H.; Nguyen, N. Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines 2019, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Sharafeldin, M.; Jones, A.; Rusling, J. 3D-Printed Biosensor Arrays for Medical Diagnostics. Micromachines 2018, 9, 394. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, P.; Sen, R.; Dwivedi, N.; Khan, R.; Solanki, P.; Srivastava, A.; Dhand, C. 3D-Printed Microfluidics and Potental Biomedical Applacations. Front. Nanotechnol. 2021, 3, 609355. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornik, T.; Kempa, J.; Catterlin, J.; Kartalov, E. A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices. Micromachines 2023, 14, 16. https://doi.org/10.3390/mi14010016
Hornik T, Kempa J, Catterlin J, Kartalov E. A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices. Micromachines. 2023; 14(1):16. https://doi.org/10.3390/mi14010016
Chicago/Turabian StyleHornik, Terak, James Kempa, Jeffrey Catterlin, and Emil Kartalov. 2023. "A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices" Micromachines 14, no. 1: 16. https://doi.org/10.3390/mi14010016
APA StyleHornik, T., Kempa, J., Catterlin, J., & Kartalov, E. (2023). A Solution to the Clearance Problem of Sacrificial Material in 3D Printing of Microfluidic Devices. Micromachines, 14(1), 16. https://doi.org/10.3390/mi14010016