Microstructure and Corrosion Resistance of LaNi5-xMgx Alloys
Abstract
:1. Introduction
2. Experimental Part
2.1. Research Material
2.2. Research Methodology
2.2.1. Optical Microscopy, Scanning Electron Microscopy, and X-ray Microanalysis of EDS Chemical Composition
2.2.2. Electrochemical Studies
3. Research Results
Analysis of Chemical Composition of Studied Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. Mechanism of the sonochemical production of hydrogen. Int. J. Hydrogen Energy 2015, 40, 4056–4064. [Google Scholar] [CrossRef]
- Kyoung, S.; Ferekh, S.; Gwak, G.; Jo, A.; Ju, H. Three-dimensional modelling and simulation of hydrogen desorption in metal hydride hydrogen storage vessels. Int. J. Hydrogen Energy 2015, 40, 14322–14330. [Google Scholar] [CrossRef]
- He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059. [Google Scholar] [CrossRef]
- Pasini, J.M.; Corgnale, C.; van Hassel, B.; Motyka, T.; Kumar, S.; Simmons, K.L. Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrogen Energy 2013, 38, 9755–9765. [Google Scholar] [CrossRef] [Green Version]
- Chibani, A.; Bougriou, C.; Merouani, S. Simulation of hydrogen absorption/desorption on metal hydride LaNi5-H2: Mass and heat transfer. Appl. Therm. Eng. 2018, 142, 110–117. [Google Scholar] [CrossRef]
- Güther, V.; Otto, A. Recent developments in hydrogen storage applications based on metal hydrides. J. Alloys Compd. 1999, 293, 889–892. [Google Scholar] [CrossRef]
- Klebanoff, L.E.; Keller, J.O. 5-Years of hydrogen storage research in the U.S. DOE metal hydride center of excellence (MHCoE). Int. J. Hydrogen Energy 2013, 38, 4533–4576. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Shafiee, S.; Mccay, M.H. Different reactor and heat exchanger configurations for metal hydride hydrogen storage systems-a review. Int. J. Hydrogen Energy 2016, 41, 9462–9470. [Google Scholar] [CrossRef]
- Busqué, R.; Torres, R.; Grau, J.; Roda, V.; Husar, A. Mathematical modelling; numerical simulation and experimental comparison of the desorption process in a metal hydride hydrogen storage system. Int. J. Hydrogen Energy 2018, 43, 16929–16940. [Google Scholar] [CrossRef] [Green Version]
- Young, K.; Wong, D.F.; Wang, L.; Nei, J.; Ouchi, T.; Yasuoka, S. Mn in misch-metal based superlattice metal hydride alloy–Part 1 structural; hydrogen storage and electrochemical properties. J. Power Sources 2015, 277, 426–432. [Google Scholar] [CrossRef]
- Kukuła, I.; Bala, H. Effect of powder granulation on hydrogen transport rate and hydrogen solubility in LaNi5-parafine composite material. Arch. Met. Mater. 2012, 57, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Karwowska, M.; Fijalkowski, K.J.; Czerwiński, A. Corrosion of hydrogen storage metal alloy LaMm-Ni4.1Al0.3Mn0.4Co0.45 in the aqueous solutions of alkali metal hydroxides. Materials 2018, 11, 2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bala, H.; Dymek, M. Determination of corrosion rate of porous; liquid permeable materials on the example of hydride powder composite. Ochr. Przed Koroz. 2017, 4, 79–83. [Google Scholar] [CrossRef]
- Dymek, M.; Bala, H. Inhibition of LaNi5 electrode decay in alkaline medium by electroless encapsulation of active powder particles. J. Solid State Electrochem. 2016, 20, 2001–2007. [Google Scholar] [CrossRef] [Green Version]
- Bala, H.; Dymek, M.; Drulis, H. Development of metal hydride material efficient surface in conditions of galvanostatic charge/discharge cycling. Mater. Chem. Phys. 2014, 48, 1008–1012. [Google Scholar] [CrossRef]
- Stetskiv, A.; Rożdżyńska-Kiełbik, B.; Kowalczyk, G.; Prochwicz, W.; Siemion, P.; Pavlyuk, V. The structural and thermal stability; electrochemical hydrogenation and corrosion behaviour of LaT5-xMx (T = Co, Ni and M = Al, Ge, Li) phases. Solid State Sci. 2014, 38, 35–41. [Google Scholar] [CrossRef]
- Oliva, D.G.; Fuentes, M.; Borzone, E.M.; Meyer, G.O.; Aguirre, P.A. Hydrogen storage on LaNi5-xSnx. Experimental and phenomenological model-based analysis. Energy Convers. Manag. 2018, 173, 113–122. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, O.N. Investigations on synthesis; characterization and hydrogenation behaviour of the spinand thermal-melted versions of LaNi5-xSix (x = 0.1, 0.3, 0.5) hydrogen storage materials. J. Alloys Compd. 1998, 267, 240–245. [Google Scholar] [CrossRef]
- Pandey, S.K.; Srivastava, A.; Srivastava, O.N. Improvement in hydrogen storage capacity in through substitution of Ni by Fe. Int. J. Hydrogen Energy 2007, 32, 2461–2465. [Google Scholar] [CrossRef]
- Luo, S.; Clewley, J.D.; Flanagan, T.B.; Bowman, R.C., Jr.; Wade, L.A. Further studies of the isotherms of LaNi5-xSnx for x = 0–0.5. J. Alloys Compd. 1998, 267, 171–181. [Google Scholar] [CrossRef]
- Spodaryk, M.; Gasilova, N.; Züttel, A. Hydrogen storage and electrochemical properties of LaNi5-xCux hydride-forming alloys. J. Alloys Compd. 2019, 775, 175–180. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, S.; Lu, H.; Wu, J.; Yan, K.; Cheng, H.; Liu, J. Stability of LaNi5-xCox alloys cycled in hydrogen—Part 1 evolution in gaseous hydrogen storage performance. Int. J. Hydrogen Energy 2019, 44, 15159–15172. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Cheng, H.; Yan, K.; Wang, Y.; Liu, Y.; Jin, H.; Zheng, Z. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys. Int. J. Hydrogen Energy 2017, 42, 24904–24914. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Liu, J.; Yang, N.; Chen, J.; Gu, C.; Cheng, H.; Yan, K.; Zhu, Z.; Wang, K. Long-term hydrogen absorption/desorption properties of an AB5-type LaNi4.75Mn0.25 alloy. Mater. Sci. Eng. B 2020, 262, 114777. [Google Scholar] [CrossRef]
- Rożdżyńska-Kiełbik, B.; Iwasieczko, W.; Drulis, H.; Pavlyuk, V.; Bala, H. Hydrogenation equilibria characteristics of LaNi5-xZnx intermetallics. J. Alloys Compd. 2000, 298, 237–243. [Google Scholar] [CrossRef]
- Giza, K. Electrochemical studies of LaNi4.3Co0.4Al0.3 hydrogen storage alloy. Intermetallics 2013, 34, 128–131. [Google Scholar] [CrossRef]
- Giza, K.; Owczarek, E. Electrochemical Hydrogenation and Corrosion Behaviour of LaNi5-xGex (x = 0.3 and 0.6) Alloys. Energies 2021, 14, 5285. [Google Scholar] [CrossRef]
- Todorova, S.; Abrashev, B.; Rangelova, V.; Mihaylov, V.; Vassileva, E.; Petrov, K.; Spassov, T. Hydrogen Gas Phase and Electrochemical Hydriding of LaNi5-xMx (M = Sn, Co, Al) Alloys. Materials 2021, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Jurczyk, M. The progress of nanocrystalline hydride electrode materials. Bull. Pol. Acad. Sci. Tech. Sci. 2004, 52, 67–77. [Google Scholar]
- Pavlyuk, V.V.; Opainych, I.M.; Bodak, O.I.; Palasinska, T.; Rozdzynska-Kielbik, B.; Bala, H. Interaction of components in the La-Ni-Zn systems. Pol. J. Chem. 1997, 71, 309–313. [Google Scholar]
- Giza, K.; Iwasieczko, W.; Pavlyuk, V.V.; Bala, H.; Drulis, H.; Adamczyk, L. Hydrogen absorption and corrosion resistance of LaNi4.8Al0.2 and LaNi4.8Al0.1Li0.1 alloys. J. Alloys Compd. 2007, 429, 352–356. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Yang, C.; Zhang, J.; Chen, W.; Li, L. Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel. Int. J. Hydrogen Energy 2015, 40, 13949–13956. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, C.; Lai, Q.; Liu, W.; Wang, D.-W.; Aguey-Zinsou, K.-F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storag. Mater. 2018, 10, 168–198. [Google Scholar] [CrossRef]
- Li, T.; Li, Q.; Long, H.; Chou, K.C.; Luo, Q. Interpretation of negative temperature dependence of hydriding reaction in LaNi5-Mg alloys by modified Chou model. Catal. Today 2018, 318, 97–102. [Google Scholar] [CrossRef]
- Giza, K.; Iwasieczko, W.; Pavlyuk, V.; Bala, H.; Drulis, H. Thermodynamical properties of La-Ni-T (T = Mg, Bi and Sb) hydrogen storage systems. J. Power Sources 2008, 181, 38–40. [Google Scholar] [CrossRef]
- Hussein, M.A.; Kumar, M.; Drew, R.; Al-Aqeeli, N. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid. Materials 2018, 11, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, S.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Gajowiec, G.; Bartmański, M.; Majkowska-Marzec, B.; Zieliński, A.; Chmiela, B.; Derezulko, M. Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2. Materials 2020, 11, 1913–1942. [Google Scholar] [CrossRef] [Green Version]
- Balcerzak, M.; Jurczyk, M. Effect of hot pressing on the electrochemical properties of Ti-Ni alloy. Arch. Metall. Mater. 2015, 60, 1335–1340. [Google Scholar] [CrossRef]
- Curioni, M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochim. Acta 2014, 120, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.H.; Thomas, S.; Yuwono, J.A.; Venkatesan, K.; Birbilis, N. Enhanced hydrogen evolution on Mg (OH)2 covered magnesium surfaces. Electrochim. Acta 2015, 161, 144–152. [Google Scholar] [CrossRef]
- Gusieva, K.; Davies, C.H.J.; Scully, J.R.; Birbilis, N. Corrosion of magnesium alloys: The role of alloying. Mater. Rev. 2015, 60, 169–194. [Google Scholar] [CrossRef]
Stop | La (atom %) | Ni (atom %) | Mg (atom %) |
---|---|---|---|
LaNi5 | 16.89 | 83.11 | - |
16.78 | 83.22 | - | |
16.77 | 83,23 | - | |
LaNi4.8Mg0.2 | 17,13 | 79.70 | 3.17 |
17.04 | 79.17 | 3.79 | |
17.09 | 79.62 | 3.29 | |
LaNi4.7Mg0.3 | 18.39 | 77.42 | 4.19 |
18.54 | 77.34 | 4.12 | |
18.70 | 76.55 | 4.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giza, K.; Owczarek, E. Microstructure and Corrosion Resistance of LaNi5-xMgx Alloys. Micromachines 2022, 13, 1192. https://doi.org/10.3390/mi13081192
Giza K, Owczarek E. Microstructure and Corrosion Resistance of LaNi5-xMgx Alloys. Micromachines. 2022; 13(8):1192. https://doi.org/10.3390/mi13081192
Chicago/Turabian StyleGiza, Krystyna, and Edyta Owczarek. 2022. "Microstructure and Corrosion Resistance of LaNi5-xMgx Alloys" Micromachines 13, no. 8: 1192. https://doi.org/10.3390/mi13081192
APA StyleGiza, K., & Owczarek, E. (2022). Microstructure and Corrosion Resistance of LaNi5-xMgx Alloys. Micromachines, 13(8), 1192. https://doi.org/10.3390/mi13081192