On-Chip Integrated Yb3+-Doped Waveguide Amplifiers on Thin Film Lithium Niobate
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paschotta, R.; Nilsson, J.; Tropper, A.C.; Hanna, D.C. Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 1997, 33, 1049. [Google Scholar] [CrossRef]
- Krupke, W.F. Ytterbium Solid-State Lasers—The First Decade. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1287. [Google Scholar] [CrossRef]
- Gorajoobi, S.B.; Murugan, G.S.; Zervas, M.N. Design of rare-earth-doped microbottle lasers. Opt. Express 2018, 26, 26339. [Google Scholar] [CrossRef]
- Florea, C.; Winick, K.A. Ytterbium-doped glass waveguide laser fabricated by ion exchange. J. Lightwave Technol. 1999, 17, 1593. [Google Scholar] [CrossRef][Green Version]
- Ams, M.; Dekker, P.; Marshall, G.D.; Withford, M.J. Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique. Opt. Lett. 2009, 34, 247–249. [Google Scholar] [CrossRef]
- Liu, K.; Pun, E.Y.B. Modeling and experiments of packaged Er3+-Yb3+ co-doped glass waveguide amplifiers. Opt. Commun. 2007, 273, 413. [Google Scholar] [CrossRef]
- Aghajani, A.; Murugan, G.S.; Sessions, N.P.; Apostolopoulos, V.; Wilkinson, J.S. Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon. Opt. Lett. 2015, 40, 2549–2552. [Google Scholar] [CrossRef]
- Bernhardi, E.H.; van Wolferen, H.A.G.M.; Wörhoff, K.; de Ridder, R.M.; Pollnau, M. Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+. Opt. Lett. 2011, 36, 603. [Google Scholar] [CrossRef]
- de Goede, M.; Chang, L.; Mu, J.; Dijkstra, M.; Obrégon, R.; Martínez, E.; Padilla, L.; Mitjans, F.; García-Blanco, S.M. Al2O3:Yb3+ integrated microdisk laser label-free biosensor. Opt. Lett. 2019, 44, 5937. [Google Scholar] [CrossRef]
- Chryssou, C.E.; Pasquale, F.D.; Pitt, C.W. Improved gain performance in Yb3+-sensitized Er3+-doped alumina (Al2O3) channel optical waveguide amplifiers. J. Lightwave Technol. 2001, 19, 345. [Google Scholar] [CrossRef]
- Siebenmorgen, J.; Calmano, T.; Petermann, K.; Huber, G. Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser. Opt. Express 2010, 18, 16035. [Google Scholar] [CrossRef]
- Loiko, P.; Soulard, R.; Kifle, E.; Guillemot, L.; Brasse, G.; Benayad, A.; Doualan, J.-L.; Braud, A.; Aguiló, M.; Díaz, F.; et al. Ytterbium calcium fluoride waveguide laser. Opt. Express 2019, 27, 12647. [Google Scholar] [CrossRef]
- Romanyuk, Y.E.; Borca, C.N.; Pollnau, M.; Rivier, S.; Petrov, V.; Griebner, U. Yb-doped KY(WO4)2 planar waveguide laser. Opt. Lett. 2006, 31, 53. [Google Scholar] [CrossRef]
- Bolaños, W.; Starecki, F.; Braud, A.; Doualan, J.-L.; Moncorgé, R.; Camy, P. 2.8 W end-pumped Yb3+:LiYF4 waveguide laser. Opt. Lett. 2013, 38, 5377. [Google Scholar] [CrossRef]
- Nikogosyan, D.N. Nonlinear Optical Crystals: A Complete Survey; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Shams-Ansari, A.; Renaud, D.; Cheng, R.; Shao, L.; He, L.; Zhu, D.; Yu, M.; Grant, H.R.; Johansson, L.; Zhang, M.; et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 2022, 9, 408–411. [Google Scholar] [CrossRef]
- de Beeck, C.O.; Mayor, F.M.; Cuyvers, S.; Poelman, S.; Herrmann, J.F.; Atalar, O.; McKenna, T.P.; Haq, B.; Jiang, W.; Witmer, J.D.; et al. III/V-on-lithium niobate amplifiers and lasers. Optica 2021, 8, 1288–1289. [Google Scholar] [CrossRef]
- Jones, J.K.; de Sandro, J.P.; Hempstead, M.; Shepherd, D.P.; Large, A.C.; Tropper, A.C.; Wilkinson, J.S. Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3. Opt. Lett. 1995, 20, 1477. [Google Scholar] [CrossRef]
- Fujimura, M.; Tsuchimoto, H.; Suhara, T. Yb-indiffused LiNbO3 annealed/proton-exchanged waveguide lasers. Electron. Comm. Jpn. Part II 2007, 90, 10. [Google Scholar] [CrossRef]
- Tsonev, L. Luminescent activation of planar optical waveguides in LiNbO3 with rare earth ions Ln3+–A review. Opt. Mater. 2008, 30, 892. [Google Scholar] [CrossRef]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in on-chip photonic devices based on lithium niobate on insulator. Photon. Res. 2020, 8, 1910. [Google Scholar] [CrossRef]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 2021, 13, 242. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Z.; Liu, Z.; Chu, W.; Zhou, Y.; Zhang, J.; Wu, R.; Wang, M.; Lu, T.; Cheng, Y. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. Opt. Lett. 2021, 46, 380. [Google Scholar] [CrossRef]
- Liu, Y.A.; Yan, X.S.; Wu, J.W.; Zhu, B.; Chen, Y.P.; Chen, X.F. On-chip erbium-doped lithium niobate microcavity laser. Sci. China-Phys. Mech. Astron. 2021, 64, 234262. [Google Scholar] [CrossRef]
- Luo, Q.; Hao, Z.Z.; Yang, C.; Zhang, R.; Zheng, D.H.; Liu, S.G.; Liu, H.D.; Bo, F.; Kong, Y.F.; Zhang, G.Q.; et al. Microdisk lasers on an erbium doped lithium-niobite chip. Sci. China-Phys. Mech. Astron. 2021, 64, 234263. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, Y.; Liu, Z.; Chu, W.; Zhang, H.; Yin, D.; Fang, Z.; Wu, R.; Zhang, J.; Chen, W.; et al. On-chip integrated waveguide amplifiers on Erbium-doped thin film lithium niobate on insulator. Laser Photon. Rev. 2021, 15, 2100030. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Q.; Zhang, K.; Wong, W.-H.; Zhang, D.-L.; Pun, E.Y.-B.; Wang, C. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett. 2021, 46, 1161. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, C.; Hao, Z.; Zhang, R.; Zheng, D.; Bo, F.; Kong, Y.; Zhang, G.; Xu, J. On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett. 2021, 19, 060008. [Google Scholar] [CrossRef]
- Cai, M.; Wu, K.; Xiang, J.; Xiao, Z.; Li, T.; Li, C.; Chen, J. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1. [Google Scholar] [CrossRef]
- Liang, Y.; Zhou, J.; Liu, Z.; Zhang, H.; Fang, Z.; Zhou, Y.; Yin, D.; Lin, J.; Yu, J.; Wu, R.; et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics 2022, 11, 1033–1040. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Fang, Z.; Liu, Z.; Zhang, H.; Yin, D.; Liang, Y.; Zhang, Z.; Liu, J.; Huang, T.; et al. On-chip microdisk laser on Yb3+-doped thin-film lithium niobate. Opt. Lett. 2021, 46, 5651. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, C.; Hao, Z.; Zhang, R.; Ma, R.; Zheng, D.; Liu, H.; Yu, X.; Gao, F.; Bo, F.; et al. On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency. Opt. Lett. 2022, 47, 854–857. [Google Scholar] [CrossRef]
- Wu, R.; Wang, M.; Xu, J.; Qi, J.; Chu, W.; Fang, Z.; Zhang, J.; Zhou, J.; Qiao, L.; Chai, Z.; et al. Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness. Nanomaterials 2018, 8, 910. [Google Scholar] [CrossRef]
- Montoya, E.; Lorenzo, A.; Bausa, L.E. Optical performance of Yb3+ in LiNbO3 laser crystal. J. Phys. Condens. Matter. 1999, 11, 311–320. [Google Scholar] [CrossRef]
- Bausá, L.E.; Ramírez, M.O.; Montoya, E. Optical performance of Yb3+ in LiNbO3 laser crystal. Phys. Status Solidi. A 2004, 201, 289. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Fang, Z.; Zhou, J.; Liang, Y.; Zhou, Y.; Wang, Z.; Liu, J.; Huang, T.; Bao, R.; Yu, J.; et al. On-Chip Integrated Yb3+-Doped Waveguide Amplifiers on Thin Film Lithium Niobate. Micromachines 2022, 13, 865. https://doi.org/10.3390/mi13060865
Zhang Z, Fang Z, Zhou J, Liang Y, Zhou Y, Wang Z, Liu J, Huang T, Bao R, Yu J, et al. On-Chip Integrated Yb3+-Doped Waveguide Amplifiers on Thin Film Lithium Niobate. Micromachines. 2022; 13(6):865. https://doi.org/10.3390/mi13060865
Chicago/Turabian StyleZhang, Zhihao, Zhiwei Fang, Junxia Zhou, Youting Liang, Yuan Zhou, Zhe Wang, Jian Liu, Ting Huang, Rui Bao, Jianping Yu, and et al. 2022. "On-Chip Integrated Yb3+-Doped Waveguide Amplifiers on Thin Film Lithium Niobate" Micromachines 13, no. 6: 865. https://doi.org/10.3390/mi13060865
APA StyleZhang, Z., Fang, Z., Zhou, J., Liang, Y., Zhou, Y., Wang, Z., Liu, J., Huang, T., Bao, R., Yu, J., Zhang, H., Wang, M., & Cheng, Y. (2022). On-Chip Integrated Yb3+-Doped Waveguide Amplifiers on Thin Film Lithium Niobate. Micromachines, 13(6), 865. https://doi.org/10.3390/mi13060865