Measurement of the Aspherical Optical Surfaces with the Improved Phase Retrieval
Abstract
:1. Introduction
2. Theory of PR
The Principle of PR
3. The Design of the Experiments
3.1. Adjustment of the Optical Path
3.2. The Steps of the Experiments
3.3. Experimental Results and Discussion
- (1)
- The impact of platform vibration on the PR system is small, even negligible;
- (2)
- PR system has a simple structure, and can even detect the whole optical system in place by using the existing camera on the imaging system without any change to the optical path; and
- (3)
- Better measurement accuracy can be obtained with fewer sampling points by CCD in the PR system.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ye, J.; Chen, L.; Li, X.; Yuan, Q.; Gao, Z. Review of optical freeform surface representation technique and its application. Opt. Eng. 2017, 56, 110901. [Google Scholar] [CrossRef]
- Wei, L.; Li, Y.; Jing, J.; Feng, L.; Zhou, J. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 2018, 26, 8550–8565. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.L.; Zhu, Z.B.; Fan, Z.C.; Yan, Y.M.; Ma, D.L. Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination. Opt. Express 2019, 27, A779–A789. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, W.; Ma, H.; Dong, J. Easy-aligned off-axis three-mirror system with wide field of view using freeform surface based on integration of primary and tertiary mirror. Appl. Opt. 2014, 53, 3028–3034. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Cheng, D.; Wang, Y.; Hua, H.; Jin, G. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements. Appl. Opt. 2013, 52, C88–C99. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Sun, Y.; Shen, H. Progress and Prospect of Optical Freeform Surface Measurement. Acta Opt. Sin. 2021, 41, 0112001. [Google Scholar] [CrossRef]
- Tsutsumi, H.; Yoshizumi, K.; Takeuchi, H. Ultrahighly Accuracy 3-D Profilometer. Proc. SPIE 2005, 5638, 387–394. [Google Scholar] [CrossRef]
- Kase, K.; Makinouchi, A.; Nakagawa, T.; Suzuki, H.; Kimura, F. Shape error evaluation method of free-form surfaces. Comput. Des. 1999, 31, 495–505. [Google Scholar] [CrossRef]
- Shen, B.; Huang, G.; Mak, K.; Wang, X. A best-fitting algorithm for optimal location of large-scale blanks with free-form surfaces. J. Mater. Process. Technol. 2003, 139, 310–314. [Google Scholar] [CrossRef]
- Liu, Y. Improving ICP with easy implementation for free-form surface matching. Pattern Recognit. 2004, 37, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Scott, P.; Whitehouse, D. Freeform Surface Characterisation—A Fresh Strategy. CIRP Ann. 2007, 56, 553–556. [Google Scholar] [CrossRef]
- Pant, K.K.; Burada, D.R.; Bichra, M.; Singh, M.P.; Ghosh, A.; Khan, G.S.; Sinzinger, S.; Shakher, C. Subaperture stitching for measurement of freeform wavefront. Appl. Opt. 2015, 54, 10022–10028. [Google Scholar] [CrossRef] [PubMed]
- El-Hayek, N.; Nouira, H.; Anwer, N.; Damak, M.; Gibaru, O. Reconstruction of freeform surfaces for metrology. J. Phys. Conf. Ser. 2014, 483, 012003. [Google Scholar] [CrossRef] [Green Version]
- DeFisher, S.; Bechtold, M.; Mohring, D. A non-contact surface measurement system for freeform and conformal optics. SPIE Proc. 2011, 8016, 80160W. [Google Scholar] [CrossRef]
- Zhang, L. Optical Free-form Surface Subaperture Stitching Interferometry. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Liu, D.; Zhou, Y.; Bai, J.; Shi, T.; Shen, Y.; Yang, Y.; Zhang, L. Aspheric and free-form surfaces test with non-null subaperture stitching interferometry. In Proceedings of the SPIE/COS Photonics Asia, Beijing, China, 31 October 2016. [Google Scholar]
- MacGovern, A.J.; Wyant, J.C. Computer Generated Holograms for Testing Optical Elements. Appl. Opt. 1971, 10, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Ma, J.; Zhu, R.; Shen, H.; Gao, Z. Investigation of Measurement Uncertainty of Optical Freeform Surface Based on Computer-Generated Hologram. Acta Opt. Sin. 2015, 35, 1112007. [Google Scholar] [CrossRef]
- Rudolf, B.; Du, Y.; Turtaev, S.; Leite, I.T.; Čižmár, T. Thermal stability of wavefront shaping using a DMD as a spatial light modulator. Opt. Express 2021, 29, 41808. [Google Scholar] [CrossRef]
- Michalko, A.; Fienup, J. Sensitivity study of transverse translation diverse phase retrieval for freeform metrology. Opt. Manuf. Test. XII 2018, 10742, 107420T. [Google Scholar] [CrossRef]
- Zeng, F.; Tan, Q.; Liu, Y.; Gu, H.; Zhou, Z.; Jin, G. Freeform metrology based on phase retrieval and computer-generated hologram. SPIE/COS Photonics Asia 2014, 9272, 92720E. [Google Scholar] [CrossRef]
- Brady, G.R.; Guizar-Sicairos, M.; Fienup, J. Optical wavefront measurement using phase retrieval with transverse translation diversity. Opt. Express 2009, 17, 624–639. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ding, L.; Hu, X. An improved phase retrieval algorithm for optical aspheric surface measurement. Opt. Commun. 2011, 284, 1496–1503. [Google Scholar] [CrossRef]
- Moore, D.B.; Fienup, J. Subaperture translation estimation accuracy in transverse translation diversity phase retrieval. Appl. Opt. 2016, 55, 2526–2536. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, J. Spherical mirror testing by phase retrieval wavefront sensor. Optik 2016, 127, 2396–2400. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wang, J.; Wang, B.; Liu, X. Measurement of Small-Slope Free-Form Optical Surfaces with the Modified Phase Retrieval. Micromachines 2022, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.; Marron, J.C.; Schulz, T.J.; Seldin, J.H. Hubble Space Telescope characterized by using phase-retrieval algorithms. Appl. Opt. 1993, 32, 1747–1767. [Google Scholar] [CrossRef] [Green Version]
- Dean, B.H.; Aronstein, D.L.; Smith, J.S.; Shiri, R.; Acton, D.S. Phase retrieval algorithm for JWST Flight and Testbed Telescope. Proc. SPIE 2006, 6265, 314–330. [Google Scholar] [CrossRef]
- Feng, Z.; Cheng, D.; Wang, Y. Transferring freeform lens design into phase retrieval through intermediate irradiance transport. Opt. Lett. 2019, 44, 5501–5504. [Google Scholar] [CrossRef]
- Michalko, A.M.; Fienup, J.R. Concave Mirror Measurement Using Transverse Translation Diverse Phase Retrieval. In Proceedings of the Design and Fabrication Congress 2017, Denver, CO, USA, 9–13 July 2017. [Google Scholar]
- Jurling, A.S.; Fienup, J.R. Applications of algorithmic differentiation to phase retrieval algorithms. J. Opt. Soc. Am. A 2014, 31, 1348–1359. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, J.; Wang, B.; Liu, X. Measurement of the Aspherical Optical Surfaces with the Improved Phase Retrieval. Micromachines 2022, 13, 549. https://doi.org/10.3390/mi13040549
Ma X, Wang J, Wang B, Liu X. Measurement of the Aspherical Optical Surfaces with the Improved Phase Retrieval. Micromachines. 2022; 13(4):549. https://doi.org/10.3390/mi13040549
Chicago/Turabian StyleMa, Xinxue, Jianli Wang, Bin Wang, and Xinyue Liu. 2022. "Measurement of the Aspherical Optical Surfaces with the Improved Phase Retrieval" Micromachines 13, no. 4: 549. https://doi.org/10.3390/mi13040549
APA StyleMa, X., Wang, J., Wang, B., & Liu, X. (2022). Measurement of the Aspherical Optical Surfaces with the Improved Phase Retrieval. Micromachines, 13(4), 549. https://doi.org/10.3390/mi13040549