Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?
Abstract
:1. Introduction
2. Mycotoxins Commonly Found in Fruit
2.1. Patulin
Factors Affecting Patulin Production
2.2. Ochratoxin
Factors Affecting OTA Production
2.3. Alternaria Toxins
Factors Affecting Alternaria Toxins
3. Fungal and Host Regulation of Mycotoxin Synthesis in Fruit
3.1. Environmental Effects on Gene-Biosynthesis Pathways of the Fungus
Host Effects on the Fungus
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ueno, Y. Mode of action of trichothecenes. Pure Appl. Chem. 1977, 49, 1737–1745. [Google Scholar] [CrossRef]
- Ueno, Y.; Hsieh, D.P. The toxicology of mycotoxins. Crit. Rev. Toxicol. 1985, 14, 99–132. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission regulation (EC) No. 1425/2003 of 11 August 2003 amending regulation (EC) No. 466/2001 as regards patulin. Off. J. Eur. Union L 2003, 203, 1–3. [Google Scholar]
- U.S. Food and Drug Administration. Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. Industry Activities Staff Booklet. Food and Drug Administration August 2000. Available online: http://www.cfsan.fda.gov/_lrd/fdaact.html (accessed on 30 August 2000).
- Drusch, S.; Ragab, W. Mycotoxins in fruits, fruit juices, and dried fruits. J. Food Prot. 2003, 66, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, V.; Magan, N. Environmental conditions affecting mycotoxins. In Mycotoxins in Food: Detection and Control; Elsevier Science: Burlington, ON, Canada, 2004; Volume 103, pp. 174–189. [Google Scholar]
- Tournas, V.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.H.; Moussa, L.A. Influence of gamma-radiation on mycotoxin producing moulds and mycotoxins in fruits. Food Control 2002, 13, 281–288. [Google Scholar] [CrossRef]
- Torres, R.; Valentines, M.; Usall, J.; Vinas, I.; Larrigaudiere, C. Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit. Postharvest Biol. Technol. 2003, 27, 235–242. [Google Scholar] [CrossRef]
- Monbaliu, S.; Van Poucke, C.; Van Peteghem, C.; Van Poucke, K.; Heungens, K.; De Saeger, S. Development of a multi-mycotoxin liquid chromatography/tandem mass spectrometry method for sweet pepper analysis. Rapid Commun. Mass Spectrom. 2009, 23, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, G.; Ruhland, M.; Wallnöfer, P. Metabolism of mycotoxins in plants. Adv. Food Sci. 1999, 21, 71–78. [Google Scholar]
- Singh, Y.P.; Sumbali, G. Aflatoxin B1 contamination in commercial varieties of apple and pear fruits infected with Aspergillus flavus Link ex Fries. Indian Phytopathol. 2011, 64, 100–101. [Google Scholar]
- Ciegler, A.; Vesonder, R.; Jackson, L.K. Produciton and biological activity of patulin and citrinin from Penicillium expansum. Appl. Environ. Microbiol. 1977, 33, 1004–1006. [Google Scholar] [PubMed]
- Brackett, R.; Marth, E. A Research Note: Patulin in Apple Juice from Roadside Stands in Wisconsin. J. Food Prot. 1979, 42, 862–863. [Google Scholar] [CrossRef]
- Hopkins, J. The toxicological hazards of patulin. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 1993, 31, 455–456. [Google Scholar]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.M. Collaborative study of a chromatographic method for determination of patulin in apple juice. J. Assoc. Off. Anal. Chem. 1974, 57, 621–625. [Google Scholar]
- Bullerman, L. Significance of mycotoxins to food safety and human health. J. Food Prot. 1979, 42, 65–86. [Google Scholar] [CrossRef]
- Palmgren, M.; Ciegler, A. Toxicity and carcinogenicity of fungal lactones: Patulin and penicillic acid. Handb. Nat. Toxins 1983, 1, 325–341. [Google Scholar]
- Hasan, H. Patulin and aflatoxin in brown rot lesion of apple fruits and their regulation. World J. Microbiol. Biotechnol. 2000, 16, 607–612. [Google Scholar] [CrossRef]
- Snowdon, A.L. General introduction and fruits. In A Colour Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetables; Wolfe Scientific Ltd.: London, UK, 1990; Volume 1. [Google Scholar]
- Larsen, T.O.; Frisvad, J.C.; Ravn, G.; Skaaning, T. Mycotoxin production by Penicillium expansum on blackcurrant and cherry juice. Food Addit. Contam. 1998, 15, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Barkai-Golan, R. Postharvest Diseases of Fruits and Vegetables: Development and Control; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Doores, S.; Splittstoesser, D.F. The microbiology of apples and apple products. Crit. Rev. Food Sci. Nutr. 1983, 19, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Conway, W. Effect of postharvest calcium treatment on decay of Delicious apples. Plant Dis. 1982, 66, 402–403. [Google Scholar] [CrossRef]
- Nunes, C.; Usall, J.; Teixido, N.; Eribe, X.O.D.; Vinas, I. Control of post-harvest decay of apples by pre-harvest and post-harvest application of ammonium molybdate. Pest Manag. Sci. 2001, 57, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Sholberg, P.L.; Conway, W.S. Postharvest pathology. The commercial storage of fruits, vegetables, and florist and nursery stocks. In USDA-ARS Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Wilson, D.; Nuovo, G. Patulin production in apples decayed by Penicillium expansum. Appl. Microbiol. 1973, 26, 124–125. [Google Scholar] [PubMed]
- Beer, S.; Amand, J. Production of the mycotoxin patulin in mature fruits of five apple cultivars infected by Penicillium expansum. Proc. Am. Phytopathol. Soc. 1974, 1, 104–110. [Google Scholar]
- Paster, N.; Huppert, D.; Barkai-Golan, R. Production of patulin by different strains of Penicillium expansum in pear and apple cultivars stored at different temperatures and modified atmospheres. Food Addit. Contam. 1995, 12, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Gimeno, A.; Martins, H.; Bernardo, F. Co-occurrence of patulin and citrinin in Portuguese apples with rotten spots. Food Addit. Contam. 2002, 19, 568–574. [Google Scholar] [CrossRef] [PubMed]
- McCallum, J.; Tsao, R.; Zhou, T. Factors affecting patulin production by Penicillium expansum. J. Food Prot. 2002, 65, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.S.; Beacham-Bowden, T.; Keller, S.E.; Adhikari, C.; Taylor, K.T.; Chirtel, S.J.; Merker, R.I. Apple quality, storage, and washing treatments affect patulin levels in apple cider. J. Food Prot. 2003, 66, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Damoglou, A.P.; Campbell, D.S.; Button, J.E. Some factors governing the production of patulin in apples. Food Microbiol. 1985, 2, 3–10. [Google Scholar] [CrossRef]
- Konstantinou, S.; Karaoglanidis, G.; Bardas, G.; Minas, I.; Doukas, E.; Markoglou, A.N. Postharvest fruit rots of apple in Greece: Pathogen incidence and relationships between fruit quality parameters, cultivar susceptibility, and patulin production. Plant Dis. 2011, 95, 666–672. [Google Scholar] [CrossRef]
- Salomão, B.C.; Aragão, G.M.; Churey, J.J.; Padilla-Zakour, O.I.; Worobo, R.W. Influence of storage temperature and apple variety on patulin production by Penicillium expansum. J. Food Prot. 2009, 72, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Morales, H.; Hasan, H.; Ramos, A.; Sanchis, V. Patulin distribution in Fuji and Golden apples contaminated with Penicillium expansum. Food Addit. Contam. 2006, 23, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Pepeljnjak, S.; Šegvic, M.; Ozegovic, L. Citrininotoxinogenicity of Penicillium spp. isolated from decaying apples. Braz. J. Microbiol. 2002, 33, 134–137. [Google Scholar] [CrossRef]
- Snini, S.P.; Tannous, J.; Heuillard, P.; Bailly, S.; Lippi, Y.; Zehraoui, E.; Barreau, C.; Oswald, I.P.; Puel, O. The patulin is a cultivar dependent aggressiveness factor favoring the colonization of apples by Penicillium expansum. Mol. Plant Pathol. 2016, 17, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Morales, H.; Marín, S.; Rovira, A.; Ramos, A.; Sanchis, V. Patulin accumulation in apples by Penicillium expansum during postharvest stages. Lett. Appl. Microbiol. 2007, 44, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Morales, H.; Barros, G.; Marín, S.; Chulze, S.; Ramos, A.J.; Sanchis, V. Effects of apple and pear varieties and pH on patulin accumulation by Penicillium expansum. J. Sci. Food Agric. 2008, 88, 2738–2743. [Google Scholar] [CrossRef]
- Barkai-Golan, R. Postharvest disease suppression by atmospheric modifications. In Food Preservation by Modified Atmospheres; Calderon, M., Barkai-Golan, R., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 237–264. [Google Scholar]
- Zong, Y.; Li, B.; Tian, S. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum. Int. J. Food Microbiol. 2015, 206, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Bayman, P.; Baker, J.L. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Cabañes, F.J.; Bragulat, M.R.; Castellá, G. Ochratoxin A producing species in the genus Penicillium. Toxins 2010, 2, 1111–1120. [Google Scholar]
- Woo, C.S.J.; Partanen, H.; Myllynen, P.; Vähäkangas, K.; El-Nezami, H. Fate of the teratogenic and carcinogenic ochratoxin A in human perfused placenta. Toxicol. Lett. 2012, 208, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Stachurska, A.; Ciesla, M.; Kozakowska, M.; Wolffram, S.; Boesch-Saadatmandi, C.; Rimbach, G.; Jozkowicz, A.; Dulak, J.; Loboda, A. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol. Nutr. Food Res. 2013, 57, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Solcan, C.; Floristean, V.; Pavel, G.; Solcan, G. Induced malabsorbtion in chickens by experimental administration of ochratoxin A. Curr. Opin. Biotechnol. 2013, 24, S105. [Google Scholar] [CrossRef]
- Von Tobel, J.S.; Antinori, P.; Zurich, M-G.; Rosset, R.; Aschner, M.; Glück, F.; Scherl, A.; Monnet-Tschudi, F. Repeated exposure to Ochratoxin A generates a neuroinflammatory response, characterized by neurodegenerative M1 microglial phenotype. Neurotoxicology 2014, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, L.; Dhivya, R.; Dhanasekaran, D.; Periasamy, V.S.; Alshatwi, A.A.; Akbarsha, M.A. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food Chem. Toxicol. 2015, 83, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Calado, T.; Verde, S.C.; Abrunhosa, L.; Fernández-Cruz, M.; Venâncio, A. Cytotoxicity of mycotoxins after gamma irradiation. In Proceedings of the International Conference on Food Contaminants: Challenges in Chemical Mixtures, Lisbon, Portugal, 13–14 April 2015; pp. 149–150. [Google Scholar]
- Stormer, F. Ochratoxin A: A mycotoxin of concern. In Handbook of Applied Mycology; Elsevier Ireland limited: Dublin, Ireland, 1992; Volume 5, pp. 403–432. [Google Scholar]
- Heussner, A.H.; Bingle, L.E. Comparative ochratoxin toxicity: A review of the available data. Toxins 2015, 7, 4253–4282. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.J.; Dobson, A.D. Mycotoxin production by Aspergillus, Fusarium and Penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]
- Bayman, P.; Baker, J.L.; Doster, M.A.; Michailides, T.J.; Mahoney, N.E. Ochratoxin production by the Aspergillus ochraceus group and Aspergillus alliaceus. Appl. Environ. Microbiol. 2002, 68, 2326–2329. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Valez, H.; Dobson, A.D. Analysis of the effect of nutritional factors on OTA and OTB biosynthesis and polyketide synthase gene expression in Aspergillus ochraceus. Int. J. Food Microbiol. 2009, 135, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bellı, N.; Marın, S.; Sanchis, V.; Ramos, A. Influence of water activity and temperature on growth of isolates of Aspergillus section Nigri obtained from grapes. Int. J. Food Microbiol. 2004, 96, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Ayerst, G. The effects of moisture and temperature on growth and spore germination in some fungi. J. Stored Prod. Res. 1969, 5, 127–141. [Google Scholar] [CrossRef]
- Marın, S.; Sanchis, V.; Ramos, A.; Magan, N. Environmental factors, interspecific interactions, and niche overlap between Fusarium moniliforme and F. proliferatum and Fusarium graminearum, Aspergillus and Penicillium spp. isolated from maize. Mycol. Res. 1998, 102, 831–837. [Google Scholar]
- Su-lin, L.L.; Hocking, A.D.; Scott, E.S. Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. Int. J. Food Microbiol. 2006, 110, 209–216. [Google Scholar]
- Selouane, A.; Bouya, D.; Lebrihi, A.; Decock, C.; Bouseta, A. Impact of some environmental factors on growth and production of ochratoxin A of/by Aspergillus tubingensis, A. niger, and A. carbonarius isolated from Moroccan grapes. J. Microbiol. 2009, 47, 411–419. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, J.; Stapleton, P.C.; Dobson, A.D. Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet. Biol. 2006, 43, 213–221. [Google Scholar]
- Mühlencoert, E.; Mayer, I.; Zapf, M.W.; Vogel, R.F.; Niessen, L. Production of ochratoxin A by Aspergillus ochraceus. In Molecular Diversity and PCR-Detection of Toxigenic Fusarium Species and Ochratoxigenic Fungi; Springer: Dordrecht, The Netherlands, 2004; pp. 651–659. [Google Scholar]
- Battilani, P.; Barbano, C.; Marin, S.; Sanchis, V.; Kozakiewicz, Z.; Magan, N. Mapping of Aspergillus section Nigri in Southern Europe and Israel based on geostatistical analysis. Int. J. Food Microbiol. 2006, 111, S72–S82. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.; Hien, L.T.; An, T.V.; Trang, N.T.; Hocking, A.D.; Scott, E.S. Ochratoxin A-producing Aspergilli in Vietnamese green coffee beans. Lett. Appl. Microbiol. 2007, 45, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Roset, M. Quality control. Survey on ochratoxin a in grape juice. Fruit processing. J. Fruit Process. Juice Prod. Eur. Overseas Ind. 2003, 13, 167–172. [Google Scholar]
- Gambuti, A.; Strollo, D.; Genovese, A.; Ugliano, M.; Ritieni, A.; Moio, L.; Vitic, A.J.E. Influence of enological practices on ochratoxin A concentration in wine. Am. J. Enol. Vitic. 2005, 56, 155–162. [Google Scholar]
- Battilani, P.; Giorni, P.; Pietri, A. Epidemiology of toxin-producing fungi and ochratoxin A occurrence in grape. Eur. J. Plant Pathol. 2003, 109, 715–722. [Google Scholar] [CrossRef]
- Bellí, N.; Mitchell, D.; Marín, S.; Alegre, I.; Ramos, A.J.; Magan, N.; Sanchis, V. Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with meteorological conditions. Eur. J. Plant Pathol. 2005, 113, 233–239. [Google Scholar] [CrossRef]
- Leong, S.L.; Hocking, A.D.; Pitt, J.I.; Kazi, B.A.; Emmett, R.W.; Scott, E.S. Australian research on ochratoxigenic fungi and ochratoxin A. Int. J. Food Microbiol. 2006, 111, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Guzev, L.; Danshin, A.; Ziv, S.; Lichter, A. Occurrence of ochratoxin A producing fungi in wine and table grapes in Israel. Int. J. Food Microbiol. 2006, 111, S67–S71. [Google Scholar] [CrossRef] [PubMed]
- Lichter, A.; Danshin, A.; Zahavi, T.; Ovadia, A.; Cuzev, L. Survival of OTA producing fungi during storage of table grapes. Abstracts, Ochratoxin A in Grapes and Wine: Prevention and Control 2005. [Google Scholar]
- Hocking, A.D.; Su-lin, L.L.; Kazi, B.A.; Emmett, R.W.; Scott, E.S. Fungi and mycotoxins in vineyards and grape products. Int. J. Food Microbiol. 2007, 119, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Medina, Á.; Mateo, E.M.; Valle-Algarra, F.M.; Mateo, F.; Mateo, R.; Jiménez, M. Influence of nitrogen and carbon sources on the production of Ochratoxin A by ochratoxigenic strains of Aspergillus spp. isolated from grapes. Int. J. Food Microbiol. 2008, 122, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.; Pitout, M. Biogenesis of ochratoxin. J. S. Afr. Chem. Inst. 1969, 22, S1. [Google Scholar]
- Schmidt-Heydt, M.; Magan, N.; Geisen, R. Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol. Lett. 2008, 284, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P.; Hohn, T.M. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet. Biol. 1997, 21, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Geisen, R.; Mayer, Z.; Karolewiez, A.; Färber, P. Development of a real time PCR system for detection of Penicillium nordicum and for monitoring ochratoxin A production in foods by targeting the ochratoxin polyketide synthase gene. Syst. Appl. Microbiol. 2004, 27, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Price, M.S.; Conners, S.B.; Tachdjian, S.; Kelly, R.M.; Payne, G.A. Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genet. Biol. 2005, 42, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.; Marín, P.; Magan, N.; González-Jaén, M.T. Relationship between oolute and matric potential stress, temperature, growth, and FUM1 gene expression in two Fusarium verticillioides Strains from Spain. Appl. Environ. Microbiol. 2008, 74, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Stinson, E.E.; Bills, D.D.; Osman, S.F.; Siciliano, J.; Ceponis, M.J.; Heisler, E.G. Mycotoxin production by Alternaria species grown on apples, tomatoes, and blueberries. J. Agric. Food Chem. 1980, 28, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Kanhere, S. Liquid chromatographic determination of tenuazonic acids in tomato paste. J. Assoc. Off. Anal. Chem. 1980, 63, 612–621. [Google Scholar] [PubMed]
- Stack, M.E.; Mislivec, P.B.; Roach, J.; Pohland, A.E. Liquid chromatographic determination of tenuazonic acid and alternariol methyl ether in tomatoes and tomato products. J. Assoc. Off. Anal. Chem. 1984, 68, 640–642. [Google Scholar]
- Fente, C.; Jaimez, J.; Vázquez, B.; Franco, C.; Cepeda, A. Determination of alternariol in tomato paste using solid phase extraction and high-performance liquid chromatography with fluorescence detection. Analyst 1998, 123, 2277–2280. [Google Scholar] [CrossRef] [PubMed]
- Da Motta, S.; Valente Soares, L.M. Survey of Brazilian tomato products for alternariol, alternariol monomethyl ether, tenuazonic acid and cyclopiazonic acid. Food Addit. Contam. 2001, 18, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Stinson, E.E.; Osman, S.F.; Heisler, E.G.; Siciliano, J.; Bills, D.D. Mycotoxin production in whole tomatoes, apples, oranges, and lemons. J. Agric. Food Chem. 1981, 29, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Tournas, V.; Stack, M.E. Production of alternariol and alternariol methyl ether by Alternaria alternata grown on fruits at various temperatures. J. Food Prot. 2001, 64, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Dennis, C. Post-Harvest Pathology of Fruits and Vegetables: JSTOR; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Fallik, E.; Aharoni, Y.; Grinberg, S.; Copel, A.; Klein, J. Postharvest hydrogen peroxide treatment inhibits decay in eggplant and sweet red pepper. Crop Prot. 1994, 13, 451–454. [Google Scholar] [CrossRef]
- Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Reuveni, M.; Sheglov, D.; Sheglov, N.; Ben-Arie, R.; Prusky, D. Sensitivity of Red Delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. Eur. J. Plant Pathol. 2002, 108, 421–427. [Google Scholar] [CrossRef]
- Timmer, L.; Solel, Z.; Gottwald, T.; Ibanez, A.; Zitko, S. Environmental factors affecting production, release, and field populations of conidia of Alternaria alternata, the cause of brown spot of citrus. Phytopathology 1998, 88, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Prusky, D.; Fuchs, Y.; Yanko, U. Assessment of latent infections as a basis for control of postharvest disease of mango. Plant Dis. 1983, 67, 816–818. [Google Scholar] [CrossRef]
- Panigrahi, S. Alternaria Toxins. Handbook of Plant and Fungal Toxicants; CRC Press: Boca Raton, FL, USA, 1997; pp. 319–337. [Google Scholar]
- Ozcelik, S.; Ozcelik, N.; Beuchat, L.R. Toxin production by Alternaria alternata in tomatoes and apples stored under various conditions and quantitation of the toxins by high-performance liquid chromatography. Int. J. Food Microbiol. 1990, 11, 187–194. [Google Scholar] [CrossRef]
- Hassan, H. Alternaria mycotoxins in Black rot lesion of tomato fruits: Conditions and regulations of their productions. Acta Immunol. Hung. 1996, 43, 125–133. [Google Scholar] [CrossRef]
- Pose, G.; Patriarca, A.; Kyanko, V.; Pardo, A.; Pinto, V.F. Water activity and temperature effects on mycotoxin production by Alternaria alternata on a synthetic tomato medium. Int. J. Food Microbiol. 2010, 142, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Skrinjar, M.; Dimic, G. Ochratoxigenicity of Aspergillus ochraceus group and Penicillium verrucosum var. cyclopium strains on various media. Acta Microbiol. Hung. 1992, 39, 257–261. [Google Scholar] [PubMed]
- Mitchell, D.; Parra, R.; Aldred, D.; Magan, N. Water and temperature relations of growth and ochratoxin A production by Aspergillus carbonarius strains from grapes in Europe and Israel. J. Appl. Microbiol. 2004, 97, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Valero, A.; Farré, J.R.; Sanchis, V.; Ramos, A.J.; Marín, S. Effects of fungal interaction on ochratoxin A production by A. carbonarius at different temperatures and aw. Int. J. Food Microbiol. 2006, 110, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.; Aldred, D.; Magan, N. Environmental factors and weak organic acid interactions have differential effects on control of growth and ochratoxin A production by Penicillium verrucosum isolates in bread. Int. J. Food Microbiol. 2005, 98, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Cairns-Fuller, V.; Aldred, D.; Magan, N. Water, temperature and gas composition interactions affect growth and ochratoxin A production by isolates of Penicillium verrucosum on wheat grain. J. Appl. Microbiol. 2005, 99, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Pardo, E.; Malet, M.; Marín, S.; Sanchis, V.; Ramos, A. Effects of water activity and temperature on germination and growth profiles of ochratoxigenic Penicillium verrucosum isolates on barley meal extract agar. Int. J. Food Microbiol. 2006, 106, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Llorens, A.; Mateo, R.; Hinojo, M.; Valle-Algarra, F.; Jiménez, M. Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. Int. J. Food Microbiol. 2004, 94, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Hope, R.; Aldred, D.; Magan, N. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett. Appl. Microbiol. 2005, 40, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.L.; Chulze, S.; Magan, N. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int. J. Food Microbiol. 2006, 106, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Nesci, A.; Rodriguez, M.; Etcheverry, M. Control of Aspergillus growth and aflatoxin production using antioxidants at different conditions of water activity and pH. J. Appl. Microbiol. 2003, 95, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.M.M.; Cavaglieri, L.R.; Fraga, M.E.; Direito, G.M.; Dalcero, A.M.; Rosa, C.A.R. Influence of water activity, temperature and time on mycotoxins production on barley rootlets. Lett. Appl. Microbiol. 2006, 42, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.H.; Leonard, T.J. Culture conditions control expression of the genes for aflatoxin and sterigmatocystin biosynthesis in Aspergillus parasiticus and A. nidulans. Appl. Environ. Microbiol. 1998, 64, 2275–2277. [Google Scholar] [PubMed]
- Schmidt-Heydt, M.; Geisen, R. A microarray for monitoring the production of mycotoxins in food. Int. J. Food Microbiol. 2007, 117, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, T.; Subramanyam, C. Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic. Biol. Med. 2000, 29, 981–985. [Google Scholar] [CrossRef]
- Ellner, F. Results of long-term field studies into the effect of strobilurin containing fungicides on the production of mycotoxins in several winter wheat varieties. Mycotoxin Res. 2005, 21, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Barkai-Golan, R.; Paster, N. Mouldy fruits and vegetables as a source of mycotoxins: Part 1. World Mycotoxin J. 2008, 1, 147–159. [Google Scholar] [CrossRef]
- Jackson, L.S.; Al-Taher, F. Factors Affecting Mycotoxin Production in Fruits; Elsevier: San Diego, CA, USA, 2008. [Google Scholar]
- Sanzani, S.M.; Schena, L.; Nigro, F.; De Girolamo, A.; Ippolito, A. Effect of quercetin and umbelliferone on the transcript level of Penicillium expansum genes involved in patulin biosynthesis. Eur. J. Plant Pathol. 2009, 125, 223–233. [Google Scholar] [CrossRef]
- Tolaini, V.; Zjalic, S.; Reverberi, M.; Fanelli, C.; Fabbri, A.A.; Fiore, A.D.; Rossi, P.D.; Ricelli, A. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits. Int. J. Food Microbiol. 2010, 138, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Barad, S.; Chen, Y.; Luo, X.; Tannous, J.; Dubey, A.; Matana, N.G.; Tian, S.; Li, B.; Keller, N.; et al. LaeA regulation of secondary metabolism modulates virulence in Penicillium expansum and is mediated by sucrose. Mol. Plant Pathol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Barad, S.; Horowitz, S.B.; Kobiler, I.; Sherman, A.; Prusky, D. Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum. Mol. Plant-Microbe Interact. 2014, 27, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Barad, S.; Horowitz, S.B.; Moscovitz, O.; Lichter, A.; Sherman, A.; Prusky, D. A Penicillium expansum glucose oxidase–encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. Mol. Plant-Microbe Interact. 2012, 25, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.D.; O’Keeffe, T.L.; Mahoney, N.E. Inhibition of ochratoxin A production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia 2007, 164, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.H.; Muria-Gonzalez, M.J.; Mead, O.L.; Solomon, P.S. SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum. Appl. Environ. Microbiol. 2015, 81, 5309–5317. [Google Scholar] [CrossRef] [PubMed]
- Barad, S.; Espeso, E.A.; Sherman, A.; Prusky, D. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum. Mol. Plant Pathol. 2016, 17, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Cayley, G.R.; Lacey, J. Effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl. Environ. Microbiol. 1984, 47, 1113–1117. [Google Scholar] [PubMed]
- Hassan, A.M.; Abdel-Aziem, S.H.; El-Nekeety, A.A.; Abdel-Wahhab, M.A. Panax ginseng extract modulates oxidative stress, DNA fragmentation and up-regulate gene expression in rats sub chronically treated with aflatoxin B1 and fumonisin B1. Cytotechnology 2015, 67, 861–871. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Barad, S.; Sionov, E.; Keller, N.P.; Prusky, D.B. Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens? Toxins 2017, 9, 280. https://doi.org/10.3390/toxins9090280
Kumar D, Barad S, Sionov E, Keller NP, Prusky DB. Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens? Toxins. 2017; 9(9):280. https://doi.org/10.3390/toxins9090280
Chicago/Turabian StyleKumar, Dilip, Shiri Barad, Edward Sionov, Nancy P. Keller, and Dov B. Prusky. 2017. "Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?" Toxins 9, no. 9: 280. https://doi.org/10.3390/toxins9090280
APA StyleKumar, D., Barad, S., Sionov, E., Keller, N. P., & Prusky, D. B. (2017). Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens? Toxins, 9(9), 280. https://doi.org/10.3390/toxins9090280