Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto
Abstract
:1. Introduction
2. Results
2.1. Exogenous Sinapic Acid Affects Phenolic Acids Profiles of F. culmorum and F. graminearum s.s.
2.2. Exogenous Sinapic Acid Lowers Trichothecene Accumulation in the Media
2.3. Sinapic Acid Inhibits the Activity of Tri Genes Involved in Trichothecene Biosynthesis
2.4. Sinapic Acid Stimulates Ergosterol Biosynthesis by Fungi
3. Discussion
4. Materials and Methods
4.1. Fungal Strains
4.2. Medium and Culture Conditions
4.3. Determination of Phenolic Acids in the Medium
4.4. Determination of Antioxidant Capacity (VCEAC/L) and Radical Scavenging Activity (ABTS) of Sinapic Acid
4.5. Analysis of Trichothecenes from Fungal Cultures
4.6. Extraction of Total RNA and Preparation of cDNA
4.7. RT-qPCR and Data Analyses
4.8. Determination of Ergosterol
4.9. Statistical Analyses
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pasquali, M.; Migheli, Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int. J. Food Microbiol. 2014, 17, 164–182. [Google Scholar] [CrossRef] [PubMed]
- Van der Lee, T.; Zhang, H.; Van Diepeningen, A.; Waalwijk, C. Biogeography of Fusarium graminearum species complex and chemotypes: A review. Food Addit. Contam. 2015, 32, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E. Fusarium Mycotoxins Chemistry, Genetics and Biology; American Phytopathological Society Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef]
- Serfling, S.; Ordon, F. Virulence and toxin synthesis of an azole insensitive Fusarium culmorum strain in wheat cultivars with different levels of resistance to Fusarium head blight (FHB). Plant Pathol. 2014, 63, 1230–1240. [Google Scholar] [CrossRef]
- Trail, F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol. 2009, 149, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Villa, F.; Cappitelli, F.; Cortesi, P.; Kunova, A. Fungal biofilms: Targets for the development of novel strategies in plant disease management. Front. Microbiol. 2017, 8, 654. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.N.; Pinson-Gadais, L.; Richard-Forget, F. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 2009, 113, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Pani, G.; Scherm, B.; Azara, E.; Balmas, V.; Jahanshiri, Z.; Carta, P.; Fabbri, D.; Dettori, M.A.; Fadda, A.; Dessi, A.; et al. Natural and natural-like phenolic inhibitors of type b trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J. Agric. Food Chem. 2014, 62, 4969–4978. [Google Scholar] [CrossRef] [PubMed]
- Walter, S.; Nicholson, P.; Doohan, F.M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol. 2010, 185, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Bollina, V.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol. Biol. 2011, 77, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Gunnaiah, R.; Kushalappa, A.C.; Duggavathi, R.; Fox, S.; Somers, D.J. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 2012, 7, e40695. [Google Scholar] [CrossRef] [PubMed]
- Atanasova-Pénichon, V.; Barreau, C.; Richard-Forget, F. Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation. Front. Microbiol. 2016, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; Callewaert, E.; Höfte, M.; De Saeger, S.; Haesaert, G. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol. 2010, 10, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waśkiewicz, A.; Morkunas, I.; Bednarski, W.; Mai, V.-C.; Formela, M.; Beszterda, M.; Wiśniewska, H.; Goliński, P. Deoxynivalenol and oxidative stress indicators in winter wheat inoculated with Fusarium graminearum. Toxins 2014, 6, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Sorrells, M.; Liu, R. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.; Bonnin-Verdal, M.N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Atanasova-Penichon, V. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kulik, T.; Stuper-Szablewska, K.; Bilska, K.; Buśko, M.; Ostrowska-Kołodziejczak, A.; Załuski, D.; Perkowski, J. trans-cinnamic and chlorogenic acids affect the secondary metabolic profiles and ergosterol biosynthesis by Fusarium culmorum and F. graminearum sensu stricto. Toxins 2017, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Ncube, E.N.; Mhlongo, M.I.; Piater, L.A.; Steenkamp, P.A.; Dubery, I.A.; Madala, N.E. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem. Cent. J. 2014, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Abramović, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food. Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Vandal, J.; Abou-Zaid, M.M.; Ferroni, G.; Leduc, L.G. Antimicrobial activity of natural products from the flora of Northern Ontario, Canada. Pharm. Biol. 2015, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, G.; Sachan, A.; Ghosh, S.; Mitra, A. Conversion of sinapic acid to syringic acid by a filamentous fungus Paecilomyces variotii. J. Gen. Appl. Microbiol. 2006, 52, 131–135. [Google Scholar] [CrossRef]
- Mäkelä, M.R.; Marinović, M.; Nousiainen, P.; Liwanag, A.J.M.; Benoit, I.; Sipilä, J.; Hatakka, A.; de Vries, R.P.; Hildén, K.S. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv. Appl. Microbiol. 2015, 91, 63–137. [Google Scholar] [CrossRef]
- Tag, A.G.; Garifullina, G.F.; Peplow, A.W.; Ake, C.J.; Phillips, T.D.; Hohn, T.M.; Beremand, M.N. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl. Environ. Microbiol. 2001, 67, 5294–5302. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, C.C.; Fernando, W.G.D. Comparative analysis of deoxynivalenol biosynthesis related gene expression among different chemotypes of Fusarium graminearum in spring wheat. Front. Microbiol. 2016, 7, 1229. [Google Scholar] [CrossRef] [PubMed]
- Mille-Lindblom, C.; von Wachenfeldt, E.; Tranvik, L.J. Ergosterol as a measure of living fungal biomass: Persistence in environmental samples after fungal death. J. Microbiol. Methods 2004, 59, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tong, J.; Lee, C.W.; Ha, S.; Eom, S.H.; Im, Y.J. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nat. Commun. 2015, 6, 6129. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Lorsbach, B.A. Perspectives on the agrochemical industry and agrochemical discovery. Pest Manag. Sci. 2017, 73, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Pani, G.; Dessì, A.; Dallocchio, R.; Scherm, B.; Azara, E.; Delogu, G.; Migheli, Q. Natural phenolic inhibitors of trichothecene biosynthesis by the wheat fungal pathogen Fusarium culmorum: A computational insight into the structure-activity relationship. PLoS ONE 2016, 11, e0157316. [Google Scholar] [CrossRef] [PubMed]
- Labronici Bertin, R.; Gonzaga, L.V.; da Silva Campelo Borges, G.; Stremel Azevedo, M.; França Maltez, H.; Heller, M.; Micke, G.A.; Ballod Tavares, L.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, I.H.; Kim, C.S.; Lee, Y.M.; Kim, J.M.; Kim, J.S. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch. Pharm. Res. 2011, 34, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Ponts, N.; Pinson-Gadais, L.; Boutigny, A.L.; Barreau, C.; Richard-Forget, F. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 2011, 101, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, I.E.; Navarro, D.; Record, E.; Asther, M.; Asther, M.; Lesage-Meessen, L. Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: An alternative for producing a strong natural antioxidant. World J. Microbiol. Biotechnol. 2003, 19, 157–160. [Google Scholar] [CrossRef]
- Tillett, R.; Walker, J.R.L. Metabolism of ferulic acid by a Penicillium sp. Arch. Microbiol. 1990, 154, 206–208. [Google Scholar] [CrossRef]
- Kulik, T.; Abarenkov, K.; Buśko, M.; Bilska, K.; van Diepeningen, A.D.; Ostrowska-Kołodziejczak, A.; Krawczyk, K.; Brankovics, B.; Stenglein, S.; Sawicki, J.; et al. ToxGen: An improved reference database for the identification of type B-trichothecene genotypes in Fusarium. PeerJ 2017, 5, e2992. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellergini, N.; Proteggente, A.; Pannala, A.S.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Perkowski, J.; Kiecana, I.; Kaczmarek, Z. Natural occurrence and distribution of Fusarium toxins in 15 naturally-contaminated barley cultivars. Eur. J. Plant Pathol. 2003, 109, 331–339. [Google Scholar] [CrossRef]
- Kulik, T.; Łojko, M.; Jestoi, M.; Perkowski, J. Sublethal concentrations of azoles induce tri transcript levels and trichothecene production in Fusarium graminearum. FEMS Microbiol. Lett. 2012, 335, 58–67. [Google Scholar] [CrossRef]
- Kulik, T.; Buśko, M.; Pszczółkowska, A.; Perkowski, J.; Okorski, A. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett. Appl. Microbiol. 2014, 59, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, 1–10. [Google Scholar] [CrossRef]
- Perkowski, J.; Buśko, M.; Stuper, K.; Kostecki, M.; Matysiak, A.; Szwajkowska-Michałek, L. Concentration of ergosterol in small-grained naturally contaminated and inoculated cereals. Biologia 2008, 63, 542–547. [Google Scholar] [CrossRef]
Sinapic Acid Level | Strain | Tri Genotype | Trichothecene Levels (mg/kg) (n = 3 in Each Condition) | RQ (n = 6 in Each Condition) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DON | 3ADON | 15ADON | NIV | 4ANIV | Sum of Trichothecenes | Tri4 | Tri5 | Tri10 | |||
YES+fungal controls | MUCL 53469 | 3ADON | 17.5 ± 0.4 (a) | 23.1 ± 0.9 (a) | 40.6 | ||||||
CBS 173.31 | 3ADON | 63.7 ± 3.8 (a) | 9.9 ± 0.4 (a) | 73.6 | |||||||
CBS 139512 | NIV | 79.2 ± 3.2 (a) | 96.4 ± 4.8 (a) | 175.6 | |||||||
CBS 119173 | 3ADON | 49.6 ± 3.6 (a) | 12.2 ± 0.8 (a) | 61.8 | |||||||
CBS 138561 | 15ADON | 1.5 ± 0.7 (a) | 1.5 ± 0.7 | 3 | |||||||
MUCL 53455 | NIV | 4.4 ± 0.2 (a) | 4.4 | ||||||||
100 μg/g (0.45 mM) | MUCL 53469 | 3ADON | 1.72 ± 0.04 (b) | 7.75 ± 0.16 (b) | 9.47 | 0.27 (0.22–0.34) | NS | NS | |||
CBS 173.31 | 3ADON | 51.09 ± 1.02 (b) | 9.27 ± 0.37 (a) | 60.36 | 0.09 (0.06–0.15) | 0.29 (0.25–0.35) | NS | ||||
CBS 139512 | NIV | 55.44 ± 2.22 (b) | 16.86 ± 0.84 (b) | 72.3 | 0.15 (0.11–0.2) | NS | NS | ||||
CBS 119173 | 3ADON | 2.6 ± 0.2 (b) | 0.42 ± 0.03 (c) | 3.02 | NS | NS | NS | ||||
CBS 138561 | 15ADON | 0.14 ± 0.01 (b) | ND | 0.14 | NS | NS | NS | ||||
MUCL 53455 | NIV | 3.06 ± 0.18 (b) | 3.06 | 0.224 (0.163–0.31) | 0.554 (0.46–0.667) | 0.241 (0.225–0.259) | |||||
400 μg/g (1.8 mM) | MUCL 53469 | 3ADON | 0.37 ± 0.01 (c) | 0.55 ± 0.03 (c) | 0.92 | 0.08 (0.062–0.1) | 0.06 (0.05–0.07) | 0.25 (0.22–0.29) | |||
CBS 173.31 | 3ADON | 41.21 ± 2.47 (c) | 5.36 ± 0.22 (b) | 46.57 | 0.12 (0.07–0.16) | 0.17 (0.07–0.45) | 0.37 (0.3–0.45) | ||||
CBS 173.32 | NIV | 30.55 ± 0.92 (c) | 16.54 ± 0.5 (b) | 47.09 | 0.11 (0.08–0.18) | 0.08 (0.04–0.23) | 0.228 (0.12–0.45) | ||||
CBS 173.33 | 3ADON | 0.9 ± 0.05 (b) | 1.5 ± 0.11 (b) | 2.4 | 0.014 (0.012–0.017) | 0.008 (0.004–0.015) | NS | ||||
CBS 173.34 | 15ADON | 0.08 ± 0,01 (b) | ND | 0.08 | 0.001 (0–0.001) | 0.009 (0.004–0.028) | NS | ||||
CBS 173.35 | NIV | 0.35 ± 0.01 (c) | 0.35 | 0.189 (0.14–0.271) | 0.321 (0.234–0.455) | 0.099 (0.092–0.106) | |||||
800 μg/g (3.6 mM) | MUCL 53469 | 3ADON | 0.06 ± 0.01 (c) | 0.44 ± 0.02 (c) | 0.5 | 0.004 (0.003–0.006) | 0.007 (0.05–0.01) | NS | |||
CBS 173.31 | 3ADON | 0.22 ± 0.01 (d) | 0.13 ± 0.003 (c) | 0.35 | 0.02 (0.016–0.037) | 0.07 (0.05–0.09) | 0.27 (0.25–0.29) | ||||
CBS 139512 | NIV | 13.82 ± 0.69 (d) | 7.01 ± 0.14 (c) | 20.83 | 0.003 (0.003–0.004) | 0.01 (0.005–0.035) | NS | ||||
CBS 119173 | 3ADON | 2 ± 0.04 (b) | 0.3 ± 0.01 (c) | 2.3 | 0.001 (0.001) | 0.001 (0.001) | 0.195 (0,180–0.213) | ||||
CBS 138561 | 15ADON | 0.01 ± 0.01 (b) | ND | 0.01 | 0.001 (0.001–0.001) | 0.033 (0.015–0.062) | NS | ||||
MUCL 53455 | NIV | 0.1 ± 0.003 (c) | 0.1 | 0.048 (0.035–0.067) | 0.082 (0.068–0.099) | 0.039 (0.037–0.042) |
Phenolic Acid | Retention Times (Min) * | VCEAC/L | ABTS (μmol TROLOX/100 g s.m.) |
---|---|---|---|
Sinapic acid | 7.2 | 121 | 194.5 |
Ferulic acid | 7.3 | 88.3 | 117.6 |
trans-Cinnamic acid | 9.6 | 812.3 | 314.9 |
Species | Strain | Trichothecene Genotype | Origin, Host and Year of Isolation |
---|---|---|---|
F. culmorum | CBS 173.31, NRRL 26853 | 3ADON | Canada, oat, 1927 |
MUCL 53469 | 3ADON | Belgium, corn, 2007 | |
CBS 139512 | NIV | Poland, wheat kernel, 2003 | |
F. graminearum s.s. | CBS 119173, NRRL 38369 | 3ADON | USA, Louisiana, wheat head, 2005 |
CBS 138561 | 15ADON | Poland, wheat kernel, 2010 | |
MUCL 53455 | NIV | Belgium, corn, 2007 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulik, T.; Stuper-Szablewska, K.; Bilska, K.; Buśko, M.; Ostrowska-Kołodziejczak, A.; Załuski, D.; Perkowski, J. Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto. Toxins 2017, 9, 264. https://doi.org/10.3390/toxins9090264
Kulik T, Stuper-Szablewska K, Bilska K, Buśko M, Ostrowska-Kołodziejczak A, Załuski D, Perkowski J. Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto. Toxins. 2017; 9(9):264. https://doi.org/10.3390/toxins9090264
Chicago/Turabian StyleKulik, Tomasz, Kinga Stuper-Szablewska, Katarzyna Bilska, Maciej Buśko, Anna Ostrowska-Kołodziejczak, Dariusz Załuski, and Juliusz Perkowski. 2017. "Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto" Toxins 9, no. 9: 264. https://doi.org/10.3390/toxins9090264
APA StyleKulik, T., Stuper-Szablewska, K., Bilska, K., Buśko, M., Ostrowska-Kołodziejczak, A., Załuski, D., & Perkowski, J. (2017). Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto. Toxins, 9(9), 264. https://doi.org/10.3390/toxins9090264