Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation
Abstract
:1. Introduction
2. BTX-A and Action
3. Neuropathic Pain: Clinical Symptoms and Mechanisms
4. BTX-A and Pain
5. BTX-A and CNS Diseases with Neuropathic Pain
CNS diseases with associated NP |
Post-stroke shoulder pain (PSSP) |
Spinal cord injury (SCI) |
Peripheral nervous system disorders and NP |
Painful diabetic neuropathy |
Post-traumatic neuralgia |
Unusual painful conditions |
phantom limb |
stump pain |
CRPS with focal dystonia |
5.1. Post-Stroke Shoulder Pain
5.2. Pain in Spinal Cord Lesion
6. BTX-A and Pain in Disorders of the Peripheral Nervous System
6.1. Painful Diabetic Neuropathy
6.2. Post-Traumatic Neuralgia
7. BTX Use in Unusual Rehabilitative Clinical Conditions
7.1. Phantom Limb Pain
Study | Design | Pts | BTX-type and doses/PT | Follow-up | Pain measures | Other measures | Adverse event | Drop-out | Outcome | Stat/S |
---|---|---|---|---|---|---|---|---|---|---|
Kong et al. [57] 2007 | RCT, DB | 22 | 8 pts: BTX-A (Botox) 100 U in 2 sites (50 U) of the subscapularis muscle; 9 pts placebo; not specified physical therapy | 6, 12 weeks | VAS | AS; electronic goniometry for shoulder external rotation; functionality by Brunnstrom’s six stages of recovery | pain in site of injection | 1 sub. of BTX-A group | No significant changes in pain or external rotation as a result of administration of BTX-A | no |
Marco et al. [58] 2007 | RCT, DB | 31 | 14 pts: 500 U of BTX-A (Dysport) in 4 sites of the pectoralis major muscle by EMG guidance; 15 pts placebo; both groups received TENS for 6 weeks | 1, 4, 12, 24 weeks | VAS | MAS; flexion, abduction and external rotation of shoulder | no adverse events in BTX-A group; 2 pts in placebo group reported transient fatigue and a moderate strength reduction in the upper extremity | 2 | BTX-A group showed a greater pain reduction than placebo group to VAS. In BTX-A, the mean reduction was 46.2 (SD 34.2) mm at 24 weeks, whereas the reduction was 21.9 (SD 29.4) mm in the placebo group | yes |
Yelnik et al. [59] 2007 | RCT, DB | 20 | 10 pts: 500 U of BTX-A (Dysport) into subscapularis muscle; non standardized physical therapy for stretching and spasticity inhibition | 1, 2, and 4 weeks | VAS | MAS; passive shoulder lateral rotation and abduction | no adverse event apart pain in inoculation site in 2 pts of placebo group | 0 | Improvement of pain in BTX-A group from week 1; significant pain reduction at week 2 (p = 0.042) and at week 4 (p = 0.007); at this time BTX-A group showed 4 points reduction, whereas 1 point was observed in placebo group (p = 0.025). Significant lateral rotation improvement was observed in BTX-A group compared to placebo at week 2 (p = 0.05) and week 4 (p = 0.018) | yes |
De Boer et al. [61] 2008 | RCT, DB | 22 | 10 pts: BTX-A (Botox) 100 U in 2 sites (50 U) of the subscapularis muscle; 11 pts placebo; not specified physical therapy | 6, 12 weeks | VAS | AS; humeral external rotation by means of electrical goniometer; Brunnstrom scale | nr | nr | Both the improvement in external rotation and VAS pain score were not modified by BTX-A treatment | no |
Lim et al. [60] 2008 | RCT, DB | 29 | 16 pts: BTX-A group 100 U Botox in the infraspinatus, pectoralis and subscapularis muscles; 13 pts placebo: intra-articular injection of triamcinolone acetonide (TA); standard course of physiotherapy | 12 weeks | NRS | MAS; ROM of the shoulder for the following movements: forward flexion, abduction, external and internal rotation; arm function by Fugl-Meyer scale; physician global rating | no adverse effect | 4 pts: 2 in BTX-A and 2 in placebo group | Although pain improvement was observed in both groups, it was more in BTX-A than placebo group Decrease in pain was 4.2 and 2.5, respectively (p = 0.051). Overall ROM also improved: 82.9° and 51.8° in BTX-A and TA-treated group (p = 0.059) | yes |
Castiglione et al. [63] 2011 | Pilot study | 5 | Intra-articular 100 U of BTX-A (2 pts Botox, 2 pts Xeomin) and 500 IU (Dysport, 1 subject) | 8 weeks | VAS | nr | nr | nr | At rest significant pain reduction to VAS: 8.7 ± 1; 1.5 ± 1.1; and 1.5 ± 1.2 at baseline, 2 and 8 weeks, respectively (p < 0.001) occurred. Significant pain reduction during shoulder passive arm abduction was also detected | yes |
Marciniak et al. [62] 2012 | RCT, DB | 21 | 10 pts: 140–200 U of BTX-A (Botox) into the teres (40–60 U); major, pectoralis muscles (100–150 U); 11 pts: placebo; Occupational therapy | 12 weeks | VAS, daily diaries; McGill pain questionnaire-Short Form | MAS; BDI; passive ROM of the shoulder by goniometer; FIM; DAS; Fugl-Meyer scale | no side effect due to BTX-A | 2 pts of placebo group | Significant pain improvement in both BTX-A and placebo group was observed at 4 weeks after injection, but pain reduction in BTX-A treatment was not greater than placebo group | no |
Study | Design | Pts | BTX-A and doses | Follow-up | Pain measures | Other measures | Adverse event | Drop-out | Outcome | Stat/S |
---|---|---|---|---|---|---|---|---|---|---|
Jabbari et al. [68] 2003 | Case report | 2 | 100 U and 80 U of BTX-A (Botox) subcutaneously at multiple points (16 to 20 sites, 5 U per site (16 to 20 sites) in the region of pain and allodynia | 2–3 years | Pain severity reduction by VAS | nr | no side effects and no weakness | - | Case 1: VAS decreased from 8–10 to 2–3 with an 80% decrease in the frequency of more severe episodes of spontaneous pain. Case 2: significant reduction of burning pain | n/a |
Han et al. [69] 2014 | Case report | 1 | 200 U of BTX-A subcutaneously injected into 10 most painful sites of each sole at 10 U for site | 8 weeks | VAS | nr | no side effect | - | significant improvement of neuropathic pain | n/a |
Study | Design | Patients | BTX-A and doses | Follow-up | Pain measures | Other measures | Adverse event | Drop-out | Outcome | Stat/S |
---|---|---|---|---|---|---|---|---|---|---|
Yuan et al. [93] 2009 | RCT, DB, placebo crossover study | 20 pts | 10 pts in BTX-A: intradermal 50 U of Botox over the dorsum of foot in 12 sites at dose of 4 U for site; 10 pts placebo | 24 weeks | Pain severity reduction by VAS within 12 weeks | Chinese version of Pittsburgh Sleep Quality Index; Short Form 36 QOL questionnaire | mild local skin infection | 2 pts | Significant pain reduction to VAS in BTX-A group; 44.4% of BTX-A patients experienced good responsive (VAS decrease ≥3) vs. none in placebo group; significant improvement in sleep for BTX-A group only at week 4; no significant differences in QOL between groups by Short Form 36 QOL questionnaire | yes |
Ghasemi M et al. [94] 2014 | RCT, DB, placebo controlled | 40 pts | 20 pts in BTX-A: intradermal 100 U of Dysport over the dorsum of foot for 12 sites at dose of 8–10 U for point); 20 pts placebo | 3 weeks | DN4 questionnaire; NPD; VAS | nerve conduction velocity examinations | no side effects | - | Intradermal injection of BTX-A reduced NPS scores for all items except cold sensation (p = 0.05). According to VAS, 30% and 0% of patients in intervention and placebo groups have no pain after intervention (p = 0.01) | yes |
Study | Design | Patients | BTX-type and doses | Follow-up | Pain measures | Other measures | Adverse event | Drop-out | Outcome | Stat/S |
---|---|---|---|---|---|---|---|---|---|---|
Kern et al. [98] 2003 | Case series | 4 | 100 U of BTX-A (Botox) at 20 U for sites in the stump | 3 months in 2 pts | VAS | - | nr | - | In all subjects PLP relief was observed | n/a |
Jin et al. [105] 2009 | Case series | 3 | 300 U (4 points), 500 U (12 points) and 200 U respectively of BTX-A (Dysport) by EMG guidance | 11 weeks | VAS | GCI was based on a scale graded 0 = no effect to 3 = pronounced improvement | no side effect | - | Significant reduction of pain and improvement in prosthesis tolerance and gait. Repeated BTX-A injection every 3 months successfully up 7 years (case 1) | n/a |
Wu H et al. [106] 2012 | Randomized, DB | 14 | 7 pts in BTXA group: 250–300 U of Botox; 7 pts in control group: 1% lidocaine and 40 mg/mL of DepoMedrol; both by EMG guidance | 6 months | VAS; PLP; RLP | changes of the pressure pain tolerance as measured by a pressure algometer | No adverse event | 2 pts at 4 months | No improvement of PLP was observed in both groups. However, immediate improvement of RLP and pain tolerance after injections for Botox (p = 0.002 and p = 0.01, respectively) and Lidocaine/Depomedrol (p = 0.06 and p = 0.07, respectively) occurred | yes |
7.2. Complex Regional Pain Syndrome and Painful Dystonia
8. Limitations in the Use of BTX
9. Considerations and Future Directions
Author Contributions
Conflicts of Interest
References
- Merskey, H.; Bogduk, N. Classification of Chronic Pain, IASP Task Force on Taxonomy, 2nd ed.; IASP Press: Seattle, WA, USA, 1994; pp. 209–214. [Google Scholar]
- Gangadhar, M.; Mishra, R.K.; Sriram, D.; Yogeeswari, P. Future directions in the treatment of neuropathic pain: A review on various therapeutic targets. CNS Neurol. Disord. Drug Targets 2014, 13, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, O.; Austin, S.K.; Khan, R.A.; Smith, B.H.; Torrance, N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain 2014, 155, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Magrinelli, F.; Zanette, G.; Tamburin, S. Neuropathic pain: Diagnosis and treatment. Pract Neurol 2013, 13, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Otto, M.; McQuay, H.J.; Jensen, T.S.; Sindrup, S.H. Algorithm for neuropathic pain treatment: An evidence based proposal. Pain 2005, 118, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Dray, A. Neuropathic pain: Emerging treatments. Br. J. Anaesth. 2008, 101, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Intiso, D. Therapeutic use of Botulinum toxin in Neuro-rehabilitation. J. Toxicol. 2012, 2012, 802893. [Google Scholar] [CrossRef] [PubMed]
- Gilio, F.; Iacovelli, E.; Frasca, V.; Gabriele, M.; Giacomelli, E.; Picchiori, F.; Soldo, P.; Cipriani, A.M.; Ruoppolo, G.; Inghilleri, M. Botulinum toxin type A for the treatment of sialorrhoea in amyotrophic lateral sclerosis: A clinical and neurophysiological study. Amyotroph. Lateral Scler. 2010, 11, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Zangaglia, R.; Cristina, S.; Sommaruga, M.G.; Martignoni, E.; Nappi, G.; Pacchetti, C. Double-blind, placebo-controlled study to evaluate the efficacy and safety of botulinum toxin type A in the treatment of drooling in parkinsonism. Mov. Disord. 2003, 18, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Johnstone, B.R.; Westbury, C.; Rawicki, B.; Reddihough, D.S. Randomized trial of botulinum toxin injections into salivary glands to reduce drooling in children with neurological disorders. Dev. Med. Child Neurol. 2008, 50, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Sotiriou, E.; Lallas, A.; Lazaridou, E.; Ioannides, D. Botulinum toxin A in post-herpetic neuralgia: A parallel, randomized, double-blind, single-dose, placebo-controlled trial. Clin. J. Pain 2013, 29, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Guan, X.; Fan, L.; Li, M.; Liao, Y.; Nie, Z.; Jin, L. Therapeutic efficacy and safety of botulinum toxin type A in trigeminal neuralgia: A systematic review. J. Headache Pain 2013, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Dodick, D.W.; Turkel, C.C.; Demos, G.; Degryse, R.E.; Earl, N.L.; Brin, M.F. Pooled analysis of the safety and tolerability of onabotulinumtoxinA in the treatment of chronic migraine. Eur. J. Neurol. 2014, 21, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.A.; Schütz, S.G.; Simpson, D.M. Botulinum toxin for neuropathic pain and spasticity: An overview. Pain Manag. 2014, 4, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Barash, J.R.; Arnon, S.S. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J. Infect. Dis. 2014, 209, 183–191. [Google Scholar] [CrossRef] [PubMed]
- DasGupta, B.R. Structures of botulinum neurotoxin, its functional domains and perspectives on the crystalline tipe A toxin. In Therapy with Botulinum Toxin; Jankovic, J., Hallet, M., Eds.; Marcel Dekker: New York, NY, USA, 1994; pp. 15–39. [Google Scholar]
- Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; Polverino de Laureto, P.; DasGupta, B.R.; Montecucco, C. Tetanus and boulinum –B neurotoxin block neurotransmitter release by a proteolytic cleavage of synapto-brevin. Nature 1992, 359, 832–835. [Google Scholar] [CrossRef] [PubMed]
- Benecke, R.; Jost, W.H.; Kanovsky, P.; Ruzicka, E.; Comes, G.; Grafe, S. A new botulinum toxin type A free of complexing proteins for treatment of cervical dystonia. Neurology 2005, 64, 1949–1951. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D. Routine use of Xeomin in patients previously treated with Botox: Long term results. Eur. J. Neurol. 2009, 16 (Suppl. S2), 2–5. [Google Scholar] [CrossRef] [PubMed]
- Merskey, H.; Bogduk, N. Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms, 2nd ed.; IASP Press: Seattle, WA, USA, 1994. [Google Scholar]
- Nickel, F.T.; Seifert, F.; Lanz, S.; Maihöfner, C. Mechanisms of neuropathic pain. Eur. Neuropsychopharmacol. 2012, 22, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Chaplan, S.R. Neuropathic pain: Role of voltage-dependent calcium channels. Reg. Anesth. Pain Med. 2000, 25, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Shinder, V.; Govrin-Lippmann, R.; Cohen, S.; Belenky, M.; Ilin, P.; Fried, K.; Wilkinson, H.A.; Devor, M. Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J. Neurocytol. 1999, 28, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Kurvers, H.A.; Jacobs, M.J.; Beuk, R.J.; van den Wildenberg, F.A.; Kitslaar, P.J.; Slaaf, D.W.; Reneman, R.S. Reflex sympathetic dystrophy: Evolution of microcirculatory disturbances in time. Pain 1995, 60, 333–340. [Google Scholar] [CrossRef]
- Birklein, F.; Weber, M.; Ernst, M.; Riedl, B.; Neundörfer, B.; Handwerker, H.O. Experimental tissue acidosis leads to increased pain in complex regional pain syndrome (CRPS). Pain 2000, 87, 227–234. [Google Scholar] [CrossRef]
- Cohen, S.P.; Mao, J. Neuropathic pain: Mechanisms and their clinical implications. BMJ 2014, 348, f7656. [Google Scholar] [CrossRef] [PubMed]
- Filippi, G.M.; Errico, P.; Santarelli, R.; Bagolini, B.; Manni, E. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol. 1993, 113, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Brin, M.F.; Fahn, S.; Moskowitz, C.; Friedman, A.; Shale, H.M.; Greene, P.E.; Blitzer, A.; List, T.; Lange, D.; Lovelace, R.E.; et al. Localized injections of botulinum toxin for the treatment of focal dystonia and hemifacial spasm. Mov. Disord. 1987, 2, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Arezzo, J.C. Possible mechanisms for the effects of botulinum toxin on pain. Clin. J. Pain 2002, 18, S125–S132. [Google Scholar] [CrossRef] [PubMed]
- Mense, S. Neurobiological basis for the use of botulinum toxin in pain therapy. J. Neurol. 2004, 251 (Suppl. S1), I1–I7. [Google Scholar] [CrossRef] [PubMed]
- Relja, M.; Klepac, N. Different doses of botulinum toxin A and pain responsiveness in cervical dystonia. Neurology 2002, 58, A474. [Google Scholar]
- Sun, S.F.; Hsu, C.W.; Lin, H.S.; Chou, Y.J.; Chen, J.Y.; Wang, J.L. Efficacy of intraarticular botulinum toxin A and intraarticular hyaluronate plus rehabilitation exercise in patients with unilateral ankle osteoarthritis: A randomized controlled trial. J. Foot Ankle Res. 2014, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Mahowald, M.L.; Noorbaloochi, S.J. Intraarticular botulinum toxin a for refractory painful total knee arthroplasty: A randomized controlled trial. J. Rheumatol. 2010, 37, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Placzek, R.; Drescher, W.; Deuretzbacher, G.; Hempfing, A.; Meiss, A.L. Treatment of chronic radial epicondylitis with botulinum toxin A. A double-blind, placebo controlled, randomized multicenter study. J Bone Joint Surg. Am. 2007, 89, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chen, S.M.; Kuan, T.S.; Hsieh, P.C.; Guo, Y.H.; Lin, I.L.; Jou, I.M. Injection of botulinum toxin for treatment of chronic lateral epicondylitis. Semin. Arthritis Rheum. 2012, 41, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Peterlein, C.D.; Funk, J.F.; Hölscher, A.; Schuh, A.; Placzek, R. Is botulinum toxin A effective for the treatment of plantar fasciitis? Clin. J. Pain. 2012, 28, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Llopis, I.V.; Gómez-Gallego, D.; Mondéjar-Gómez, F.J.; López-García, A.; Climent-Barberá, J.M.; Rodríguez-Ruiz, C.M. Botulinum toxin type A in chronic plantar fasciitis: Clinical effects one year after injection. Clin. Rehabil. 2013, 27, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Wang, D. An update on botulinum toxin A injections of trigger points for myofascial pain. Curr. Pain Headache Rep. 2014, 18, 386. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Ho, J.; Kang, H.Y.; Lee, S.H.; Kim, K.I.; Shin, W.G.; Oh, J.M. Low-dose botulinum toxin type A for the treatment of refractory piriformis syndrome. Pharmacotherapy 2007, 27, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Gronseth, G.; French, J. Practice parameters and technology assessments: What they are, what they are not, and why you should care. Neurology 2008, 71, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.; Andriolo, R.B.; Atallah, A.N.; da Silva, E.M. Botulinum toxin for myofascialpain syndromes in adults. Cochrane Database Syst. Rev. 2014, 7, CD007533. [Google Scholar] [PubMed]
- Jabbari, B.; Machado, D. Treatment of refractory pain with botulinum toxins-an evidence-based review. Pain Med. 2011, 12, 1594–1606. [Google Scholar] [CrossRef] [PubMed]
- Paterson, K.; Lolignier, S.; Wood, J.N.; McMahon, S.B.; Bennett, D.L. Botulinum toxin-A treatment reduces human mechanical pain sensitivity and mechanotransduction. Ann. Neurol. 2014, 75, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Dolly, J.O.; O’Connell, M.A. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr. Opin. Pharmacol. 2012, 12, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Durham, P.L.; Cady, R.; Cady, R. Regulation of calcitonin generelated peptide secretion from trigeminal nerve cells by botulinum toxin type A: Implications for migraine therapy. Headache 2004, 44, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 2005, 26, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.R.; Francis, J. Update on antinociceptive mechanism hypothesis of botulinum toxin A. J. Parkinsonism Relat. Disord. 2011, 17, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bach-Rojecky, L.; Filipović, B.; Lacković, Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience 2011, 186, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matak, I.; Riederer, P.; Lacković, Z. Botulinum toxin's axonal transport from periphery to the spinal cord. Neurochem. Int. 2012, 61, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drinovac, V.; Bach-Rojecky, L.; Matak, I.; Lacković, Z. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology 2013, 70, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matak, I.; Lacković, Z. Botulinum toxin A, brain and pain. Prog. Neurobiol. 2014, 119–120, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Ward, A.B.; Erztgaard, P.; Bensmail, D.; Hecht, M.J.; Lejeune, T.M.; Schnider, P.; Altavista, M.C.; Cavazza, S.; Deltombe, T.; et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J. Rehabil. Med. 2009, 41, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Gamble, G.E.; Barberan, E.; Laasch, H.U.; Bowsher, D.; Tyrrell, P.J.; Jones, A.K.P. Poststroke shoulder pain: A prospective study of the association and risk factors in 152 patients from a consecutive cohort of 205 patients presenting with stroke. EJP 2002, 6, 467–474. [Google Scholar] [CrossRef]
- Lindgren, I.; Jönsson, A.C.; Norrving, B.; Lindgren, A. Shoulder pain after stroke: A prospective population-based study. Stroke 2007, 38, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Zeilig, G.; Rivel, M.; Weingarden, H.; Gaidoukov, E.; Defrin, R. Hemiplegic shoulder pain: Evidence of a neuropathic origin. Pain 2013, 154, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.H.; Neo, J.J.; Chua, K.S. A randomized controlled study of botulinum toxin A in the treatment of hemiplegic shoulder pain associated with spasticity. Clin. Rehabil. 2007, 21, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.; Duarte, E.; Vila, J.; Tejero, M.; Guillen, A.; Boza, R.; Escalada, F.; Espadaler, J.M. Is botulinum toxin type A effective in the treatment of spastic shoulder pain in patients after stroke? A double-blind randomized clinical trial. J. Rehabil. Med. 2007, 39, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Yelnik, A.P.; Colle, F.M.; Bonan, I.V.; Vicaut, E. Treatment of shoulder pain in spastic hemiplegia by reducing spasticity of the subscapular muscle: A randomized, double blind, placebo controlled study of botulinum toxin A. J. Neurol. Neurosurg. Psychiatr. 2007, 78, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Koh, J.H.; Paik, N.J. Intramuscular botulinum toxin-A reduces hemiplegic shoulder pain: A randomized, double-blind, comparative study versus intraarticular triamcinolone acetonide. Stroke 2008, 39, 126–131. [Google Scholar] [CrossRef] [PubMed]
- De Boer, K.S.; Arwert, H.J.; de Groot, J.H.; Meskers, C.G.; Mishre, A.D.; Arendzen, J.H. Shoulder pain and external rotation in spastic hemiplegia do not improve by injection of botulinum toxin A into the subscapular muscle. J. Neurol. Neurosurg. Psychiatr. 2008, 79, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, C.M.; Harvey, R.L.; Gagnon, C.M.; Duraski, S.A.; Denby, F.A.; McCarty, S.; Bravi, L.A.; Polo, K.M.; Fierstein, K.M. Does Botulinum Toxin Type A Decrease Pain and Lessen Disability in Hemiplegic Survivors of Stroke with Shoulder Pain and Spasticity? A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Phys. Med. Rehabil. 2012, 91, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, A.; Bagnato, S.; Boccagni, C.; Romano, M.C.; Galardi, G. Efficacy of intra-articular injection of botulinum toxin type A in refractory hemiplegic shoulder pain. Arch. Phys. Med. Rehabil. 2011, 92, 1034–1037. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Fitzgerald, P.M. Botulinum toxin for shoulder pain: A cochrane systematic review. J. Rheumatol. 2011, 38, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Bryce, T.N.; Biering-Sørensen, F.; Finnerup, N.B.; Cardenas, D.D.; Defrin, R.; Ivan, E.; Lundeberg, T.; Norrbrink, C.; Richards, J.S.; Siddall, P.; et al. International Spinal Cord Injury Pain (ISCIP) Classification: Part 2. Initial validation using vignettes. Spinal Cord 2012, 50, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Siddall, P.J.; Yezierski, R.P. Pain following spinal cord injury. Spinal Cord 2001, 39, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Wollaars, M.M.; Post, M.W.; van Asbeck, F.W.; Brand, N. Spinal cord injury pain: The influence of psychologic factors and impact on quality of life. Clin. J. Pain 2007, 23, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, B.; Maher, N.; Difazio, M.P. Botulinum toxin a improved burning pain and allodynia in two patients with spinal cord pathology. Pain Med. 2003, 4, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.A.; Song, D.H.; Chung, M.E. Effect of subcutaneous injection of botulinum toxin A on spinal cord injury-associated neuropathic pain. Spinal Cord 2014, 52 (Suppl. S1), S5–S6. [Google Scholar] [CrossRef] [PubMed]
- Intiso, D.; Basciani, M. Botulinum toxin type A in the healing of a chronic buttock ulcer in a patient with spastic paraplegia after spinal cord injury. J. Rehabil. Med. 2009, 41, 1100–1102. [Google Scholar] [CrossRef] [PubMed]
- Guariguata, L. By the numbers: New estimates from the IDF Diabetes Atlas Update for 2012. Diabetes Res. Clin. Pract. 2012, 98, 524–525. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; England, J.; Franklin, G.M.; Backonja, M.; Cohen, J.; del Toro, D.; Feldman, E.; Iverson, D.J.; Perkins, B.; Russell, J.W.; et al. Evidence-based guideline: Treatment of painful diabetic neuropathy: Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2011, 76, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Pradeepa, R.; Rema, M.; Vignesh, J.; Deepa, M.; Deepa, R.; Mohan, V. Prevalence and risk factors for diabetic neuropathy in an urban south Indian population: The Chennai Urban Rural Epidemiology Study (CURES-55). Diabet. Med. 2008, 25, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Rubino, A.; Rousculp, M.D.; Davis, K.; Wang, J.; Bastyr, E.J.; Tesfaye, S. Diagnosis of diabetic peripheral neuropathy among patients with type 1 and type 2 diabetes in France, Italy, Spain, and the United Kingdom. Prim. Care Diabetes 2007, 1, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Fedele, D.; Comi, G.; Coscelli, C.; Cucinotta, D.; Feldman, E.L.; Ghirlanda, G.; Greene, D.A.; Negrin, P.; Santeusanio, F. A multicenter study on the prevalence of diabetic neuropathy in Italy. Italian Diabetic Neuropathy Committee. Diabetes Care 1997, 20, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Gudala, K.; Muthyala, H.; Esam, H.P.; Nayakallu, R.; Bhansali, A. Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. J. Diabetes Investig. 2014, 5, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.; Kulkarni, J.; Boulton, A.J. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.B.; Kim, D.J.; Noh, J.H.; Yoo, J.; Moon, J.W. Comparison of balance ability between patients with type 2 diabetes and with and without peripheral neuropathy. PMR 2014, 6, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Guiotto, A.; Sawacha, Z.; Guarneri, G.; Cristoferi, G.; Avogaro, A.; Cobelli, C. The role of foot morphology on foot function in diabetic subjects with or without neuropathy. Gait Posture 2013, 37, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Chiles, N.S.; Phillips, C.L.; Volpato, S.; Bandinelli, S.; Ferrucci, L.; Guralnik, J.M.; Patel, K.V. Diabetes, peripheral neuropathy, and lower-extremity function. J. Diabetes Complicat. 2014, 28, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, K.; Matricali, G.A.; Roosen, P.; Nobels, F.; Tits, J.; Desloovere, K.; Bruyninckx, H.; Flour, M.; Deleu, P.A.; Verhoeven, W.; et al. Comparison of foot segmental mobility and coupling during gait between patients with diabetes mellitus with and without neuropathy and adults without diabetes. Clin. Biomech. (Bristol Avon). 2013, 28, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, K.; Bouhassira, D.; de Bacquer, D.; Weiss, S.; Matthys, K.; Raemen, H.; Mathieu, C.; Colin, I.M. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 2009, 35, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Sadosky, A.; Schaefer, C.; Mann, R.; Bergstrom, F.; Baik, R.; Parsons, B.; Nalamachu, S.; Nieshoff, E.; Stacey, B.R.; Anschel, A.; et al. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: Results from a retrospective chart review and cross-sectional survey. Diabetes Metab. Syndr. Obes. 2013, 6, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Sartor, C.D.; Hasue, R.H.; Cacciari, L.P.; Butugan, M.K.; Watari, R.; Pássaro, A.C.; Giacomozzi, C.; Sacco, I.C. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: Results of a randomized controlled trial. BMC Musculoskelet. Disord. 2014, 15, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, S.; Colberg, S.R.; Parson, H.K.; Vinik, A.I. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy. J. Diabetes Complicat. 2014, 28, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Taveggia, G.; Villafañe, J.H.; Vavassori, F.; Lecchi, C.; Borboni, A.; Negrini, S. Multimodal treatment of distal sensorimotor polyneuropathy in diabetic patients: A randomized clinical trial. J. Manip. Physiol. Ther. 2014, 37, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Griebeler, M.L.; Morey-Vargas, O.L.; Brito, J.P.; Tsapas, A.; Wang, Z.; Carranza Leon, B.G.; Phung, O.J.; Montori, V.M.; Murad, M.H. Pharmacologic interventions for painful diabetic neuropathy: An umbrella systematic review and comparative effectiveness network meta-analysis. Ann. Intern. Med. 2014, 161, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Rosebenrg, C.J.; Watson, J.C. Treatment of painful diabetic peripheral neuropathy. Prosthet. Orthot. Int. 2015, 39, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Petropoulos, I.N.; Alam, U.; Malik, R.A. Treatment of painful diabetic neuropathy. Ther. Adv. Chronic Dis. 2015, 6, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; O’Connor, A.B.; Backonja, M.; Farrar, J.T.; Finnerup, N.B.; Jensen, T.S.; Kalso, E.A.; Loeser, J.D.; Miaskowski, C.; Nurmikko, T.J.; et al. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain 2007, 132, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D. Painful diabetic neuropathy: Treatment and future aspects. Diabetes Metab. Res. Rev. 2008, 24 (Suppl. S1), S52–S57. [Google Scholar] [CrossRef] [PubMed]
- Bach-Rojecky, L.; Salković-Petrisić, M.; Lacković, Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: Bilateral effect after unilateral injection. Eur. J. Pharmacol. 2010, 633, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, R.Y.; Sheu, J.J.; Yu, J.M.; Chen, W.T.; Tseng, I.J.; Chang, H.H.; Hu, C.J. Botulinum toxin for diabetic neuropathic pain: A randomized double-blind crossover trial. Neurology 2009, 72, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Ansari, M.; Basiri, K.; Shaigannejad, V. The effects of intradermal botulinum toxin type a injections on pain symptoms of patients with diabetic neuropathy. J. Res. Med. Sci. 2014, 19, 106–111. [Google Scholar] [PubMed]
- Ranoux, D.; Attal, N.; Morain, F.; Bouhassira, D. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann. Neurol. 2008, 64, 274–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittekindt, C.; Liu, W.C.; Preuss, S.F.; Guntinas-Lichius, O. Botulinum toxin A for neuropathic pain after neck dissection: A dose-finding study. Laryngoscope 2006, 116, 1168–1171. [Google Scholar] [CrossRef] [PubMed]
- Kern, U.; Martin, C.; Scheicher, S.; Müller, H. Does botulinum toxin A make prosthesis use easier for amputees? J. Rehabil. Med. 2004, 36, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Kern, U.; Martin, C.; Scheicher, S.; Müller, H. Botulinum toxin type A influences stump pain after limb amputations. J. Pain Symptom Manag. 2003, 26, 1069–1070. [Google Scholar] [CrossRef]
- Van Hilten, J.J.; van de Beek, W.J.; Vein, A.A.; van Dijk, J.G.; Middelkoop, H.A. Clinical aspects of multifocal or generalized tonic dystonia in reflex sympathetic dystrophy. Neurology 2001, 56, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
- Flor, H.; Nikolajsen, L.; Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Latremoliere, A.; Woolf, C. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci. 1990, 13, 88–92. [Google Scholar] [CrossRef]
- Sherman, R.A. Phantom limb pain. Mechanism based management. Clin. Podiatr. Med. Surg. 1994, 11, 85–106. [Google Scholar] [PubMed]
- McCormick, Z.; Chang-Chien, G.; Marshall, B.; Huang, M.; Harden, R.N. Phantom limb pain: A systematic neuroanatomical-based review of pharmacologic treatment. Pain Med. 2014, 15, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Kollewe, K.; Krampfl, K.; Dengler, R.; Mohammadi, B. Treatment of phantom limb pain with botulinum toxin type A. Pain Med. 2009, 10, 300–303. [Google Scholar] [PubMed]
- Wu, H.; Sultana, R.; Taylor, K.B.; Szabo, A. A prospective randomized double-blinded pilot study to examine the effect of botulinum toxin type A injection versus Lidocaine/Depomedrol injection on residual and phantom limb pain: Initial report. Clin. J. Pain 2012, 28, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Marinus, J.; Moseley, G.L.; Birklein, F.; Baron, R.; Maihöfner, C.; Kingery, W.S.; van Hilten, J.J. Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 2011, 10, 637–648. [Google Scholar] [CrossRef]
- Lang, A.E.; Chen, R. Dystonia in complex regional pain syndrome type I. Ann. Neurol. 2010, 67, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Gosso, M.F.; de Rooij, A.M.; Alsina-Sanchis, E.; Kamphorst, J.T.; Marinus, J.; van Hilten, J.J.; van den Maagdenberg, A.M. Systematic mutation analysis of seven dystonia genes in complex regional pain syndrome with fixed dystonia. J. Neurol. 2010, 257, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Van Rooijen, D.E.; Roelen, D.L.; Verduijn, W.; Haasnoot, G.W.; Huygen, F.J.; Perez, R.S.; Claas, F.H.; Marinus, J.; van Hilten, J.J.; van den Maagdenberg, A.M. Genetic HLA associations in complex regional pain syndrome with and without dystonia. J. Pain 2012, 13, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Oaklander, A.L.; Fields, H.L. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann. Neurol. 2009, 65, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Schilder, J.C.; van Dijk, J.G.; Dressler, D.; Koelman, J.H.; Marinus, J.; van Hilten, J.J. Responsiveness to botulinum toxin type A in muscles of complex regional pain patients with tonic dystonia. J. Neural Transm. 2014, 121, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Kharkar, S.; Ambady, P.; Venkatesh, Y.; Schwartzman, R.J. Intramuscular botulinum toxin in complex regional pain syndrome: Case series and literature review. Pain Physician. 2011, 14, 419–424. [Google Scholar] [PubMed]
- Shaw, L.; Rodgers, H.; Price, C.; van Wijck, F.; Shackley, P.; Steen, N.; Barnes, M.; Ford, G.; Graham, L. BoTULS investigators (2010). BoTULS: A multicentrerandomized controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technol. Assess. 2010, 14, 1–113. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, G.; de Andrés, J.; Villanueva-Pérez, V.L.; Asensio-Samper, J.M. Subcutaneous and perineural botulinum toxin type A for neuropathic pain: Adescriptive review. Clin. J. Pain 2013, 29, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Argoff, C.E. A focused review on the use of botulinum toxins for neuropathic pain. Clin. J. Pain 2002, 18 (Suppl. S6), S177–S181. [Google Scholar] [CrossRef] [PubMed]
- Jeynes, L.C.; Gauci, C.A. Evidence for the use of botulinum toxin in the chronic pain setting–A review of the literature. Pain Pract. 2008, 8, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Kalso, E.; McQuay, H.J. Managing potential publication bias. In Systematic Reviews in Pain Research: Methodology Refined; McQuay, H.J., Kalso, E., Moore, R.A., Eds.; IASP Press: Seattle, WA, USA, 2008; pp. 15–23. [Google Scholar]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Intiso, D.; Basciani, M.; Santamato, A.; Intiso, M.; Di Rienzo, F. Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation. Toxins 2015, 7, 2454-2480. https://doi.org/10.3390/toxins7072454
Intiso D, Basciani M, Santamato A, Intiso M, Di Rienzo F. Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation. Toxins. 2015; 7(7):2454-2480. https://doi.org/10.3390/toxins7072454
Chicago/Turabian StyleIntiso, Domenico, Mario Basciani, Andrea Santamato, Marta Intiso, and Filomena Di Rienzo. 2015. "Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation" Toxins 7, no. 7: 2454-2480. https://doi.org/10.3390/toxins7072454
APA StyleIntiso, D., Basciani, M., Santamato, A., Intiso, M., & Di Rienzo, F. (2015). Botulinum Toxin Type A for the Treatment of Neuropathic Pain in Neuro-Rehabilitation. Toxins, 7(7), 2454-2480. https://doi.org/10.3390/toxins7072454